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Abstract—This paper proposes a fast and compact software of this operation, a polynomial of degree= g—1, is the CRC
implementation for checking the validity of Cyclic Redundancy  that is appended to the payload data, replacing the padded
Codes of order five (CRC5), such as used in the USB protocol. zero-bits:

The algorithm is adapted to the memory- and clock cycle ’

restrictions found in small microcontrollers. B(z) =Q(z) - G(z) + R(x)
< B(z) - R(z) = Q(z) - G(z)
~———

message
I. INTRODUCTION

Since the message (payload+CRC) is always divisible by
. ) - 2 e generator polynomial7(xz), we can check validity by
detecting payload corruption arising from transmissiaorsr . . .

. . . calculating the CRC on the entire message, which should
[1]. In particular, the Universal Serial Bus (USB [2, sect . o )

: leave a zero remainder. This is enabled by the appending of
8]) uses CRC16 for securing payload data and CRC5 for : - .
securing address/endpoint information in SETUP/IN/OUT . 2" bits when originally calculating the CRC.
9 P The division is calculated on the finite Galois field of two

token packets. We will focus on the latter in this paper. elements, GF(2). In this finite field the operations are carry

Efficient software implementations of CRC calculat|on§eSS’ so the field’s addition and subtraction operationgneg

have begn known. for.a long time, usually deploying a looku rate to the exclusive-OR (XOR) of just the corresponding
table using a 8-bit-wise processing of the payload (see [3 L
lements (bit-wise).

However, the size of the byte-wise lookup Fab!g (256 entries The generator polynomial for CRC5 used in USB is (see
of one byte each for CRC5) puts a rather significant memm& sect 8.3.5.1])
footprint for small microcontrollers controlling a device "™ D
Bitwise algorithms avoid the memory required for the lookup G(z) = 2° + 22 + 2° of degreey = 5
table at the expense of excessively more clock cycles. For
microcontrollers supporting nibble operations, a tablkig
of significantly smaller size with two lookup operations perrhis generator polynomial can therefore be interpreted as a
byte can be implemented. bitstring of six bits length100101.

In USB the address/endpoint information is eleven bits
wide, and secured by the five bit wide CRC. Since the validity ) )
checking is accomplished by calculating the CRC over both- CRC Compostion Operation
these fields, and comparing to a known residual, our algarith  The division is a linear, distributive operation, so
can operate on an integral number of bytes, in particular, tw

Cyclic Redundancy Codes (CRC) are commonly used f

=1-2°40-2*4+0-2°+1-22+0-2 +1-2°

bytes. (z ®y) mod G = (z mod G) ® (y mod G)
II. CRC ALGEBRA or
A CRC algorithm treats the bits of a payload data of length cre(z @ y) = cre(x) @ ere(y)
[ bits, padded by appendimgzero bits, as the coefficients of a o )
binary polynomialB(z) of degreeb = [ + g — 1, and divides where® denotes the bit-wise XOR operation.

that by a constant generator polynomia(x) of degreeg.  However, many real-world CRC functions add a constant to

Appending the padding bits reserves space for adding thgs remainder, as we will discuss soon. In this case the above
CRC lateron, and enforces all payload bits up to the leastyyation does not hold:

significant bit (LSB) being mangled thru the division.

The quotient@(xz) of the division is not relevant. The CRC(z) = (x mod G) @ ¢ with ¢ #£ 0
remainder CRC(z®y)=((z®y) mod G) ®c
R(x) = B(z) mod G(z) (z mod G) & (y mod G) & c

# ((zmod G) & ¢) @ ((y mod G) & c)

http://www.michael-joost.de/tech.html
Copyright © 2013 Michael Joost. All rights reserved. CRC(x) ® CRC(y)
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B. Bit Sequence Operation

Assume a bit sequence consisting of two parts, a prefix

sequenceP and a suffix sequencg. The partial CRC over
P is already known as

R,=PmodG = P-29=Q,G+R,

The CRC over the sequencB(z)
calculated as

R=[P:Slmod G = (P-2°" @ S) mod G

whereslen denotes the length of in bits.

Substituting the partial CRC we get

R=((QyG®R,) 2" © S) mod G
((QpG . 25len) o (Rp . 25len o S)) mod G
(@G - 27" mod G) & (R, - 27" @ $) mod G)

= (R, 2" @ S) mod G

[Ry: S]mod G

We find thatere([P : S]) = cre([ere(P) : S]). The prefix

10100111010 00000 mod 100101
-100101 | |
------ |
0110011 |
-100101 |
------ !
101100 |
-100101 |
------ !
0100110 |
-100101 |
00011 0000|
-10 0101]
------ |
1 01010
-1 00101
01111 remainder
10100111010 01111 message

A problem with this simple approach is that any leading
zero-bits in the payload do not affect the remainder, thus
are not protected. Inserted zero-bits at the beginningdcoul
not be detected, as well as a replacement by zero of both,
the payload and the CRC (a long burst error). Therefore,
typical CRC algorithms demand that a constant value is
added (modulo-2) to the head of the payload message. This
is usually a bit-string of all-1 bits with the size of the CRC
polynomial's degree, effectively inverting the firgtbits of
the payload. In case of CRC5 in USB this is defined as the
5-bit string 11111. Likewise, the USB standard demands that
the remainder is inverted when inserted into the message, so

sequence can be substituted for its partial CRC residu#@iat trailing zero-bits in the payload are protected.

without changing the overall CRC residual.

C. An Example

To clarify on the long division used in the CRC caclculatio
we consider arExample.

We consider the 11-bit payload string 10100111010 (53A
By padding five zero bits at the end we get the ponnomiae

B(x) of degree 15:

b=15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1[o]1]of o[ 1] 1] so[1]ofof of o] o g

=11 g=5 —

Fig. 1. Message Example

The polynomial division of that message string by the
CRCS5 polynomial on GF(2) can be evaluated manually much
the same as in conventional math. We start with the current

remainder initialized to the firsy + 1 bits of the divisor.

Whenever the most significant bit of the current remainder
is 1, we subtract (using modulo-2 operation) the generator
polynomial from the remainder. Then any leading zero-bits
are discarded from the remainder, and a corresponding
number of bits is fed from the dividend to the right end of

the current remainder. The calculation stops when no furthe

bits are left from the dividend.

n

As a consequence of these modifications, the division
of the complete message (payload+CRC) by the generator
polynomial no longer leaves a zero remainder. Both these
operations have the effect of adding a constant (though
depending on the message length) value to the division’s
remainder.

gurthermore, the USB standard demands that all data is

ent with the least-significant bit first. An interesting esid
ffect of the carry-less modulo-2 operation on GF(2) is that
reversing the payload (but not the generator polynomial)
results in the same, but reversed, remainder value from the
polynomial division. Therefore, we can neglect the bitesrd
dependencies from our considerations.

Incorporating the above modifications now gives the
correct results as expected by the USB standard:

10100111010 OOOOOI mod 100101
1

101111 |
-100101 |

0101010 |
-100101 |

0111110 |
-100101 |

|
11011 0 |
-10010 1 |

remainder
CRC

inv: 00111
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For checking the validity of a received message we use thORing the payload bit until its position has reached the
exact same mechanism as in calculating the CRC at theMSB position. Furthermore, when the last payload bit has
sender, just on a longer 'payload’ field of 16 bit, comprisindpbeen processed in that position, the trailing padded ziso-b
the original payload and the appended CRC. That alsan be ignored, respectively, XORed alltogether into the
includes inverting the top-most five bits and appending fiveemainder without having any effect on its value.
zero-bits. The instructions for division are now:
Appending the zero-bits isn't strictly necessary for vidid
checking. The reason is just to use the same algorithm asXOR the next payload bit with the most significant bit of
for generating the CRC, and to retrieve the same residutle current remainder, and if the result is one, then subtrac
as defined in the USB standard. We could also check for(XOR) the generator polynomial from the remainder. Shift
remainder ofl1111 after processing the last bit of the CRC.the remainder left by one bit position, leaving the LSB zero.
The effect of processing the subsequent trailing zero-bits
is independent of the payload and the CRC, thus, resultsThe CRC calculation now is somewhat shorter:
always in the same values.
10100111010 mod 100101
10100111010 00111 00000 mod 100101 11111 initial
11111

111110 shift  (0) <-—--
_____ +1 payload
0101111
-100101 011110
—————— 111100 shift

0101010 +0 payload
-100101 e
—————— 111100
0111110 -100101 poly
100101
------ 11001
11011 0 110010 shift
-10010 1 +1 payload
1001 10 010010
-1001 01 100100 shift
______ ) ) o +0 payload
000 11111 O if CRC valid, this is 11121 e
-10010 1 100100
————— - -100101 poly
1101 10 e
-1001 01 00001
------ 000010 shift  (4) <
100 110 +0 payload
-100 101
—————— 000010
00 01100 000100 shift
01100 remainder +1 payload
. . T 100100
This is the residual specified in the USB standard for any -100101 poly
CRC-valid message. 00001
000010 shift
+1 payload
[1l. OPTIMIZATIONS 100010
. . -100101 ol
A. Tail-Cutting Ll poy
00111
As indicated before, the processing of the trailing zeits-bi 901110 Sphaigloa g
in validity checking isn't really necessary. Also, when Toii10

calculating the CRC, the final value is only dependent on -100101 poly

the remainder achieved after processing the last payldad bi 01011 A

This gives reason to have a closer look at the XOR-and-shift 4groto Sp";ﬁ.oad

operations we do in the long division: 010110

101100 shift
L . +1 payload
Check the most significant bit (MSB) of the current 561100
remainder, and eventually subtract (XOR) the generator 011000 shift A
K ) . +000000 payload+trailer

polynomial from the remainder if the MSB had been one, 571000

which results in the MSB being cleared. Then shift the 11000  remainder

remainder left by one bit position, leaving the LSB zero. inv: 00111  CRC

Finally, feed (XOR) the next payload bit into the LSB

position.

B. Size of Remainder

In the carry-less calculations the feeded payload bit has noln this calculation the current remainder seems to be of
effect unless it reaches the MSB position of the remaindesize ¢ + 1 bits. However, we can separate the MSB-and-
and is used there for the decision about the eventual XORimpgyload processing from the remainder. The result of that
of the generator polynomial. Until then it is just shiftedoperation is not retained anyway:
left for one place in each step. Therefore, we can delafs the MSB of the generator polynomial is always equal
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to one, subtracting that from/ S B, cimainder © payload is  into an appropriate table lookup. In particular, eight laite

always zero if the subtraction is executed, and is already zefrequently used, requiring a lookup-table of 256 entridse T

otherwise. Thus, we only need to take care of the rightmostumber of bits in the payload should be an integral multiple

g bits of the remainder, in addition to the bit that pops outf the portion size, or otherwise the last (or the first) morti

on the left in the shift operation. needs to be handled bit-wise or with lookups in a separately
designed table lookup.

D. Constructing the Lookup-Table

C. Table-Lookup. . ~ Since the values in the lookup-table are constant, they
Next we consider using a lookup-table for compressingan he pre-calculated without any timing pressure using the
several steps of the calculation, using a lookup of présoy bit-wise algorithm. For any possible payload of the
calculated values. In the above example, to alter theortion size the difference (in modulo-2 arithmetic) to the
current remainder from step (0) to (4) we need to perforng| remainder is recorded in the appropriate table entry.
the combination of all the subtractions of the generat@fpyiously, the table only considers the pure division, s th

polynomial in that area (marked igreer), which can be jnyersion of initial payload bits and the CRC must be disdble
expressed as a single operand. Lets first append (virtually) here.

the initial remainder all the zero-bits that are caused ey th
shift operations, and the non-subtractions of the generatg. In-Byte Operation

polynom. As a consequence of the linear, distributive property of the
CRC division we can calculate the CRC of a byte consisting
111110 0000 poyy of two nibblesAB as
0300101 poly cre(A0 A OB) = ere(A0) A cre(0B)
-000000 no poly

10106 00010 The terms on the right can be looked up in two tables of 16
----- entries. So, instead of a 256 byte sized table for byte-mode
operation, we only need two tables with a total extension of
32 bytes, of course at the cost of two table lookup operations
o _ per payload byte, plus a XOR and some nibble operations.

11160 © 'gg'ﬁler%n;ag'iréd%me We are still reading the payload in natural byte-wise mode.

00010 (4) final reminder

or, looking only at the remainder’s value, we can do

F. Unrolled Loop

It is obvious that in thosen = 4 steps there are™ = 16 In the case of CRC5-checking in USB the payload is fixed

possibilities to subtract or not subtract the generatqf 16 pits, so the loop running thru the two payload bytes can
polynomial at its respective fixed offset, thus, a table @ftth he ynrolled into explicit invocations.

many entries suffices to calculate the transition from any

given remainder value to the remainder value 4 steps ahead, IV. CODE IMPLEMENTATIONS

by XORing the appropriate pre-calculated table value. For better explanation we first present a nibble-mode
What is left is to determine which of those table entries timplementation in C++.

use. Obviously, this depends on the starting value of the
remainder and on the four payload bits that are processedifind -
those steps. We consider now all the operations modifyin@nst unsi gned char UsbCrcicre5Tabled]] =
the remainder value that have been left out in the above tabile

C++ code

0x00, OxOE, 0x1C, Ox12, Ox11, Ox1F, OxOD, 0x03,

approach, in particular, the XOR of the remainder's MSB OXOB, Ox05, Ox17, Ox19, OX1A Ox14, Ox06, OX08
with the next payload bit (marked ired): ¥
const unsi gned char UsbhCrc:crc5Table0[] =
111110 {
+Jlro pay:oag 0x00, 0x16, 0x05, Ox13, OX0A, Ox1C, OXOF, Ox19,
1 Payioad Ox14, 0x02, Ox11, Ox07, OXLE, Ox08, Ox1B, OXOD
+0 payload h
010110 J
bool

These top-most four bits are used as the index into ousbCrcicre5Check(  const unsigned char+ data )
lookup-table: The top-most four bits of the remainder befor? """"""""

the initial shift operation, XORed with the next four bits of unsi gneg cEar b = data[g]T;bloi%bF:& o0
unsi gnea char crc = Crc &
the payload. _ ~ cre5TableO[(b >> 4) & OXOF];
Once we have calculated the new remainder we can repedt = datal] ~ crc;
return (crc5Tabled[b & OxOF]

the process on the next four bits of the input, until the end ~ CroSTableO[(b>>4) & OXOF]) == Ox06;
of input is reached. } /1 crc5Check

Of course, any other number of steps can be compressed
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Likewise, an optimized code fragment for Atmel's APR the nibble-mode’s usage, but at the cost of 279% the CPU
microcontroller family ([5], via avr-gcc):

Listing 2. Atmel AVR Assembler code

; check the CRCS

; footprint: 56+32 bytes, 38 clock cycles

; both these tabl es have to be located in the

; sane 256-byte segnent !
.section .progmem.data.crc5Table4,"a",
type crc5Table4 @bj ect

size  crc5Table4 16

@rogbits

clock-cycle consumption.

Which implementation to choose depends on the weighting
of the restrictions to consider. If both, the memory and the
clock cycles, are equally of concern, the solution with the
least distance from the origin (null-algorithm) might bee th
most appropriate, hence, the nibble-mode implementation.

Time-Memory Footprint

crc5Table4:
.byte  0x00, OXOE, OX1C, 0x12, Ox11, OxLF, OxOD, Ox03 300
.byte  OxOB, Ox05, Ox17, Ox19, Ox1A, Ox14, Ox06, Ox08 byte
.section .progmem.data.crc5Table0,"a", @rogbits
type crc5TableQ @bj ect
.size  crcbTableQ 16 —
crc5TableO: 9 200
.byte  Ox00, 0x16, Ox05, 0x13, Ox0A, Ox1C, OxOF, 0x19 _‘%
.byte  Ox14, 0x02, Ox11, Ox07, Ox1E, Ox08, 0x1B, OxOD =
5]
.text QE)
; check the CRCS 100
; assume Y points to recei ved message, with E Wﬂe
: payl oad/crc5 in Y+1 and Y+2 —
; uses 2 registers: rxByte, crcb5 for calculation \\ﬂbit
; uses Z registers for progmem pointer
I di ZH, hi 8(crc5Table4) ; 1 clock cycle o
I dd rxByte, Y+1 ; 2 clock cycles 0 25 50 75 100
; xor with the initial ORCval ue of Ox1F
| di crch, Ox1F ; 1 clock cycle clock cvcles
eor rxByte, crc5 ; 1 clock cycle
nov ZL, rxByte ; 1 clock cycle : ] :
andi 7L OxOF ' 1 clock cycle Fig. 2. Memory/Time Tradeoffs for CRC5 Checker Implemdotat
subi ZL, | 08(-(crc5Table4)) 1 clock cycle
'ng\'f‘ %fs’rxéyte ; 3 ﬁ: gg:: gﬁ: o All resource figures are based on implementations for the
swap  ZL i Lclock cycle AVR® microcontroller architecture with optimized assembly
and %t O,ng(_(C,C5Tab,eO» ; 1¢lock g§g:§ code inlined similar to the code implementation given in
I pm rxByte, Z ;3 clock cycles listing 2. For other architectures the footprint/performa
?";owmfmf,ggfg‘fond byte + Lclockcycle results might be different, of course.
I dd rxByte, Y+2 ; 2 clock cycles
; xor with the current CRC5 valu
eor rxByte, crc5 ; 1 clock cycle
nmov ZL, rxByte ; 1 clock cycle
andi ZL, OxOF ; 1 clock cycle
subi ZL, | 08(-(crc5Table4)) 1 clock cycle \_/l' CONCLU_S|ON ) o
lpm  cre5 Z ; 3clock cycles We proposed an implementation for checking the validity
nmov ZL, rxByte ; 1 clock cycle f CRC5 d field d i th USB
svap 7L : 1 cl ock cycle (0] -secgre messa.ge lelds, as USGI !n e
andi  ZL, OXOF ;i 1lclock cycle protocol. An implementation based on 4-bit-wide lookup
subi ZL, | 08(-(crc5Table0)) ; 1 clock cycle tabl id ti | trad f betw
I pm nByte, Z 3 clock cycles ables provi es ar_1 optimal trade-o e eeq memory us_age
eor cres, nByte ; 1clock cycle and CPU utilization, compared to other implementation
; check for valid residual: reverse of 0xOC = 0x06 .
cpi crc5, 0x06 ; 1 clock cycle Strategles-
brne ignore ; 1clock cycle (nobranch) While we focus in this paper on the needs of the USB

V. RESOURCEUSAGE
As already stated, several other implementations of the

protocol for excatly two bytes long messages (payload+CRC)
the algorithm can be easily extended to longer messages.

CRC5-Checker can be considered, with separate goals.

The byte-mode implementation performs a lookup in 41
table of 256 bytes for each payload byte. While the CPU
clock-cycle consumption of this strategy is only 42% of the
nibble-mode’s utilization, this comes at the cost of 314%2]
memory usage, possibly further increased by alignment
offcuts on the large table. 3]

The bit-mode implementation avoids the memory overhead
of a lookup-table, so its memory utilization is only 45% of
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