MICROCHIP

16-Bit MCU and DSC
Programmer’s Reference M anual

High-Performance Microcontrollers (MCU)
and Digital Signal Controllers (DSC)

© 2005-2018 Microchip Technology Inc. DS70000157G

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= ISO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELoOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad 1/0, SMART-L.S., SQl,
SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany Il GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2005-2018, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-2896-1

DS70000157G-page 2

© 2005-2018 Microchip Technology Inc.

MICROCHIP

Table of Contents

PAGE

SECTION 1. INTRODUCTION 5
a1 oo [8 o3 1] o I PSPPI 6
Y =T o TN =@ o} =T o (LSS 6
[NV =Y o] o]0 =Y | A0 T o] oo A SRS 6
Style and SymbOl CONVENTIONS ...ttt ettt ettt e e e e ettt e e e e e e et e e e e e e nneeaeeennsbeeaaeesnnnnneas 7
INSTFUCHION SEE SYMDOISottt ettt e e e e ettt e e e e e sae e ee e e e eaeeeeaaaanneeeaeeannnaeeaaeann 8
SECTION 2. PROGRAMMER’S MODEL 9
16-Bit MCU and DSC Core ArchiteCture OVEIVIEWoooueiiiiiiieiie ettt seeee et e e e e snee e e enns 10
oo =T a0 0T TN 1Yo T [SRR 14
WOrKING REGISTEI AITAY ...ttt h e et e et e e eh et e et e e e ne e e ean e e e sate e e s 19
Default Working Register (WREG)oouiiiiiiii ittt e s nnee s 20
Software Stack Frame POINTET ... ettt e e ettt e e e e be e e e e e e nae e e e e e nbeeeee e e eeeeas 20
S T0] 1= TSI =T Sl o o Y S 20
Stack Pointer Limit ReGIStEr (SPLIM) ...ttt et e e st e e e e ntee e e se e e e saeeeeeneeeennneas 20
Accumulator A and Accumulator B (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)c.cccceuueenn. 20
e roTe] e I @0 10] | (=] OO O PSPPI 21
TBLPAG REGISIET ...ttt ettt ettt e ettt e e ae e e e eh et e e bt e e nn e e e ea e e e et e 21
PSVPAG Register (PIC24F, PIC24H, dsPIC30F and dSPIC33F)cccciiiiiiiiiiieie e 21
10 18 | (=T 1] (=T SRR 21
DCOUNT Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C DEVICES)cccuvrerrueerinuieeaaiieeniee e 21
DOSTART Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C DeViCeS)ccccevrueerriereaniierieeeieeenns 22
DOEND Register (dsPIC30F, dsPIC33F, dsPIC33E and dSPIC33C DEVICES)ccevverirueeruirriieiieeniee e 22
STATUS REGISIET ...ttt ettt e bt e et e ettt e st et e s b et e e bt e sate e e ss b ee e e be e e nan e e e nneee s 22
C0re CONMIOl REGISTET ...ttt ettt e et s e e et e eeabe e e rabe e e e be e e naneeenneeens 25
] T2 Lo 01T =Y o 115 (] R 25
DO Stack (dsPIC33E and dSPIC33C DEVICES)eeiiuuieiiiiieaiieeeiieeeaiee e ettt e e seeeeesnaeeesneeessmneeeanaeeeanneeesnneeenneeeas 26
SECTION 3. INSTRUCTION SET OVERVIEW 39
g 1g'eTo 18 oz 1 1] o ISP 40
INSTFUCHION SEE OVEIVIEW ...ttt e e ettt e e e ettt e e e e ennsbeeeeeanseeeeeeeanbeeeeeeaansneeas 40
Instruction Set SUMMArY TabIEScooiiiiiiiii et e e et s e e e s e e e e e e enee e e sneeeas 42
SECTION 4. INSTRUCTION SET DETAILS 53
Data ADAreSSiNG MOGESooiiiiiiiii ettt bt e et e sa et e ettt e bt e s e ns e et e e nae e e anee s 54
Program AdAreSSiNG MOAESoiiiiiiiiiiie ettt ettt et sb e e e b e e et e e nne e anee s 63
INSTFUCHION STAIIS ...ttt e ettt e e e e e e et e e e e e aaeeeeeaaanseeaeeaaasseeaeeeanseeeaeeaansneeas 64
=L CS3 @ 01T = 1T o SRS 66
WOTrd MOVE OPEIAtIONSoeiiiiiiiieii et e et e e e e e e e et te e e e e eatateeeeeesassaeeeeeseatsaseessnseeeeessananeeeeaanes 68
Using 10-Bit Literal OPErandsccoeiiiiiiiiie e siee ettt e e st e e e ettt e e sateeeantee e e nseeesmneeesnseeeanneeeenneeeesneeenn 71
Bit Field Insert/Extract Instructions (dSPIC33C DeVices ONlY)cooiiiiiiiiiiiiiie e 71
Software Stack Pointer and Frame POINTErc.oo oo 72
Conditional Branch INSIIUCHIONSeiiii ettt e e e e e e e et e e e e e nbeeeee e eeeeeeas 78
S - (1 =30 = | SRS 79
Assigned Working ReGISIEr USAGEoouuiiiiiiiiiiii ettt e et e e e e satbeeee e as 80
DSP Data Formats (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C DeViCeS)cccccerrieerriiireniireeieeee s 83
Accumulator Usage (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C DevViCes)cccceeiiiiiiieeieiiiiieeeeeeeeeee 85
Accumulator Access (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C DeViCes)c.ccvueverrireniiiennineenieeenne 86
DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C DeVICES)ccceeerririereeriereneeniennen 86

© 2005-2018 Microchip Technology Inc. DS70000157G-page 3

16-Bit MCU and DSC Programmer’s Reference Manual

DSP Accumulator Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)ccccoecerervereenns 90
Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 90
Data Range Limit Instructions (dSPIC33C DeVices ONIY)ccoiiiiiiiiiiiiiiiiiieee e 92
Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E
ANA ASPIC33C DIBVICES) ..eeueiieiutieeeiiee it e e st e e e e ettt e ettt e et e e st ee e mte e e amaeeeaaseeeeasteeeaneeeeanseeenseeeenneneennneeann 93
Normalizing the Accumulator with the NORMInstruction (dsPIC33C Devices Only)cccccoeeviiveiiieeenieeennee 93
Extended Precision Arithmetic Using Mixed-Sign Multiplications (dsPIC33E and dsPIC33C Only) 94
SECTION 5. INSTRUCTION DESCRIPTIONS 95
INSEUCION SYMDOIS ...t sbe e e et e nr e e e e are e e nne e e e nane 96
Instruction Encoding Field Descriptors INtrodUCHIONoueiiiiiiiiii e 96
Instruction Description EXAMPIEccooiiiiii it e et e e e e e e e e e e s e e e e e e e eeaeaeeeeeeeana e nnnnnnne 101
TSy (W T o] T I L=< Tod o] T SRR 102
SECTION 6. BUILT-IN FUNCTIONS 459
a1 1o [8 oz 1T] o ISR 460
BUIlt-in FUNCHON LISt ...ttt et e e et e e e st et e e e e e b e ee e e e e e s nnbneeas 461
SECTION 7. REFERENCE 497
LTS3 (Ut o T =1 Y= T RS PU 498
Instruction Set SUMMArY TabI@ooueiiiiii e e e e 501
Y (o] T o 113 (o] YRR 511
SECTION 8. INDEX 513
SECTION 9. WORLDWIDE SALES AND SERVICE 520

DS70000157G-page 4 © 2005-2018 Microchip Technology Inc.

MICROCHIP

Section 1. Introduction

=1
—
=
o
Q.
c
(2]
=
o
>

HIGHLIGHTS

This section of the manual contains the following major topics:

T INEFOAUCTION ...t e e e e e s sr e e e nre e e e 6
1.2 ManUal ODJECHIVEoveeiieeiieeeeee e e e e e et re e e e eaanees 6
1.3 DevelopmMENt SUPPOITottt ettt nre e 6
1.4 Style and Symbol CONVENTIONSooiuiiiiiiiii et 7
1.5 Instruction Set SYMDOISccc.uiiiiii e 8

© 2005-2018 Microchip Technology Inc. DS70000157G-page 5

16-Bit MCU and DSC Programmer’s Reference Manual

1.1 INTRODUCTION

Microchip Technology focuses on products for the embedded control market. Microchip is a
leading supplier of the following devices and products:

+ 8-Bit General Purpose Microcontrollers (PIC® MCUs)

+ 16-Bit Digital Signal Controllers (dsPIC® DSCs)

» 16-Bit and 32-Bit Microcontrollers (MCUs)

» Specialty and Standard Nonvolatile Memory Devices

+ Security Devices (KEELOQ® Security ICs)

» Application-Specific Standard Products

Information about these devices and products, with corresponding technical documentation, is
available on the Microchip web site (www.microchip.com).

1.2 MANUAL OBJECTIVE

This manual is a software developer’s reference for the 16-bit MCU and DSC device families. It
describes the Instruction Set in detail and also provides general information to assist the
development of software for the 16-bit MCU and DSC device families.

This manual does not include detailed information about the core, peripherals, system integration
or device-specific information. The user should refer to the specific device family reference
manual for information about the core, peripherals and system integration. For device-specific
information, the user should refer to the specific device data sheets. The information that can be
found in the data sheets includes:

» Device memory map

+ Device pinout and packaging details

+ Device electrical specifications

« List of peripherals included on the device

Code examples are given throughout this manual. These examples are valid for any device in
the 16-bit MCU and DSC families.

1.3 DEVELOPMENT SUPPORT

Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:
* Code Generation

» Hardware/Software Debug

* Device Programmer

¢ Product Evaluation Boards

Information about the latest tools, product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from your local Microchip Sales Office.

Microchip offers other reference tools to speed up the development cycle. These include:
» Application Notes

» Reference Designs

» Microchip Web Site

» Local Sales Offices with Field Application Support

» Corporate Support Line

The Microchip web site also lists other sites that may be useful references.

DS70000157G-page 6

© 2005-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 1. Introduction

14

STYLE AND SYMBOL CONVENTIONS

Throughout this document, certain style and font format conventions are used. Table 1-1
provides a description of the conventions used in this document.

Table 1-1:

Document Conventions

Symbol or Term

Description

Roman Font, Italic

set To force a bit/register to a value of logic ‘1".
clear To force a bit/register to a value of logic ‘0.
Reset 1. To force a register/bit to its default state.

2. A condition in which the device places itself after a device Reset
occurs. Some bits will be forced to ‘0’ (such as interrupt enable bits),
while others will be forced to ‘1’ (such as the 1/0 data direction bits).

Oxnnnn Designates the number ‘nnnn’ in the hexadecimal number system. These
conventions are used in the code examples. For example, 0x013F or
0xA800.

: (colon) Used to specify a range or the concatenation of registers/bits/pins.

One example is ACCAU:ACCAH:ACCAL, which is the concatenation of

three registers to form the 40-bit Accumulator.

Concatenation order (left-right) usually specifies a positional relationship

(MSb to LSb, higher to lower).

<> Specifies bit locations in a particular register.

One example is SR<7:5> (or IPL<2:0>), which specifies the register and

associated bits or bit locations.

LSb, MSb Indicates the Least Significant or Most Significant bit in a field.

LSB, MSB Indicates the Least/Most Significant Byte in a field of bits.

Isw, msw Indicates the least/most significant word in a field of bits

Couri er New Used for code examples, binary numbers and for Instruction mnemonics

Font in the text.

Times New Used for equations and variables.

Times New Used in explanatory text for items called out from a figure, equation or
Roman Font, example.

Bold Italic

Note: A Note presents information that we want to re-emphasize, either to help

you avoid a common pitfall or make you aware of operating differences
between some device family members. A Note can be in a box, or when
used in a table or figure, it is located at the bottom of the table or figure.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 7

=1
—t
=
@)
Q
c
o
=
@)
=

16-Bit MCU and DSC Programmer’s Reference Manual

1.5 INSTRUCTION SET SYMBOLS
The summary tables in Section 3.2 “Instruction Set Overview” and Section 7.2 “Instruction
Set Summary Table”, and the instruction descriptions in Section 5.4 “Instruction
Descriptions” utilize the symbols shown in Table 1-2.

Table 1-2: Symbols Used in Instruction Summary Tables and Descriptions

Symbol® Description

{} Optional field or operation

[text] The location addressed by text

(text) The contents of text

#t ext The literal defined by text

a e [b, ¢, d] [“@”mustbeinthesetof[b, c, d]

<n: ne Register bit field

{l abel :} Optional label name

Acc Accumulator A or Accumulator B

AVB Accumulator Write-Back

bit4d 4-bit wide bit position (0:7 in Byte mode, 0:15 in Word mode)

Expr Absolute address, label or expression (resolved by the linker)

f File register address

litl 1-bit literal (0:1)

lit4 4-bit literal (0:15)

lith 5-bit literal (0:31)

1it8 8-bit literal (0:255)

lit10 10-bit literal (0:255 in Byte mode, 0:1023 in Word mode)

lit1l4 14-bit literal (0:16383)

1it16 16-bit literal (0:65535)

1it23 23-bit literal (0:8388607)

Slit4 Signed 4-bit literal (-8:7)

Slité Signed 6-bit literal (-32:31) (range is limited to -16:16)

Slit1o0 Signed 10-bit literal (-512:511)

Slitl6 Signed 16-bit literal (-32768:32767)

TOS Top-of-Stack

Wb Base Working register

wi Destination Working register (Direct and Indirect Addressing)

Wio Destination Working register (Direct and Indirect Addressing, including Indirect Addressing with Offset)

Wn W Working register divide pair (dividend, divisor)

Wn * Wn Working register multiplier pair (same source register)

Wn * W Working register multiplier pair (different source registers)

Wh Both source and destination Working register (Direct Addressing)

Whd Destination Working register (Direct Addressing)

Whs Source Working register (Direct Addressing)

VREG Default Working register (assigned to W0)

'3 Source Working register (Direct and Indirect Addressing)

Wso Source Working register (Direct and Indirect Addressing, including Indirect Addressing with Offset)

WK Source Addressing mode and Working register for X data bus prefetch

Wkd Destination Working register for X data bus prefetch

W Source Addressing mode and Working register for Y data bus prefetch

Wd Destination Working register for Y data bus prefetch

Note 1: The range of each symbol is instruction-dependent. Refer to Section 5. “Instruction Descriptions” for

the specific instruction range.

DS70000157G-page 8

© 2005-2018 Microchip Technology Inc.

MICROCHIP

Section 2. Programmer’s M odel

HIGHLIGHTS

This section of the manual contains the following major topics:

2.1
2.2
23
24
25
2.6
2.7
2.8

2.9
2.10
21
2.12
2.13
2.14
2.15
2.16
217
2.18
2.19

16-Bit MCU and DSC Core Architecture OVEIVIEWcoccueiiiiieeiiiieeeeeeeeee e 10
Programmer’s MOGEL........ooviiiiiiiie et e e e e e e e e e e e e e e s e s e e eeees 14
WOrking REGISTEI AITAY ...ttt 19
Default Working Register (WREG)ooouiiiiiiiiiiie e 20
Software Stack Frame Pointero 20
Software Stack POINTEr.ooiie e 20
Stack Pointer Limit Register (SPLIM)..........ooiiiiiieeccee e 20
Accumulator A and Accumulator B (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C

DBVICES) ...ttt e e e e e e e e — e e e e e et a e e e e e araeeaeaaae 20
Program COUNTET ...t e e e e e e et e e e e e snreeae e nn 21
TBLPAG REGISTENei ittt ettt ettt e e 21
PSVPAG Register (PIC24F, PIC24H, dsPIC30F and dsPIC33F)cccccoeieiiiieeiieene 21
RCOUNT REGISEN ...ttt 21
DCOUNT Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)............. 21
DOSTART Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)............ 22
DOEND Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)................ 22
STATUS REGISTET ...ttt 22
Core CoNrol REGISTETouiiiiiii e e 25
ShadOW REGISTEIS ..ot 25
DO Stack (dsPIC33E and dSPIC33C DEVICES)uuevieiiiiiiiieeeciieee et 26

© 2005-2018 Microchip Technology Inc. DS70000157G-page 9

T
o
=S
@)
23
3
o
=

16-Bit MCU

and DSC Programmer’s Reference Manual

2.1 16-BIT MCU AND DSC CORE ARCHITECTURE OVERVIEW

This section provides an overview of the 16-bit architecture features and capabilities for the
following families of devices:
» 16-Bit Microcontrollers (MCU):
- PIC24F
- PIC24H
- PIC24E
» 16-Bit Digital Signal Controllers (DSC):
- dsPIC30F
- dsPIC33F
- dsPIC33E
- dsPIC33C

2.11 Features Specific to 16-Bit MCU and DSC Core

The core of the 16-bit MCU and DSC devices is a 16-bit (data) modified Harvard architecture with
an enhanced instruction set. The core has a 24-bit instruction word, with an 8-bit opcode field.
The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program
memory space. An instruction prefetch mechanism is used to help maintain throughput and
provides predictable execution. The majority of instructions execute in a single cycle.

2111 REGISTERS

The 16-bit MCU and DSC devices have sixteen 16-bit Working registers. Each of the Working
registers can act as a data, address or offset register. The 16th Working register (W15) operates
as a Software Stack Pointer (SSP) for interrupts and calls.

2112 INSTRUCTION SET

The instruction set is almost identical for the 16-bit MCU and DSC architectures. The instruction
set includes many addressing modes and was designed for optimum C compiler efficiency.

2113 DATA SPACE ADDRESSING

The data space can be addressed as 32K words or 64 Kbytes. The upper 32 Kbytes of the data
space memory map can optionally be mapped into program space at any 16K program word
boundary, which is a feature known as Program Space Visibility (PSV). The program to data
space mapping feature lets any instruction access program space as if it were the data space,
which is useful for storing data coefficients.

Note: Some devices families support Extended Data Space (EDS) Addressing. See the
specific device data sheet and family reference manual for more details on this
feature.

2114 ADDRESSING MODES

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct,
Register Indirect and Register Offset Addressing modes. Each instruction is associated with a
predefined addressing mode group, depending upon its functional requirements. As many as
seven addressing modes are supported for each instruction.

For most instructions, the CPU is capable of executing a data (or program data) memory read, a
Working register (data) read, a data memory write and a program (instruction) memory read per
instruction cycle. As a result, 3-operand instructions can be supported, allowing A + B = C
operations to be executed in a single cycle.

DS70000157G-page 10

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

2115 ARITHMETIC AND LOGIC UNIT

A high-speed, 17-bit by 17-bit multiplier is included to significantly enhance the core’s arithmetic
capability and throughput. The multiplier supports Signed, Unsigned, and Mixed modes, as well
as 16-bit by 16-bit, or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a
single cycle.

The 16-bit Arithmetic Logic Unit (ALU) is enhanced with integer divide assist hardware that
supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT
instruction looping mechanism, and a selection of iterative divide instructions, to support 32-bit
(or 16-bit) divided by 16-bit integer signed and unsigned division. All divide operations require
19 cycles to complete, but are interruptible at any cycle boundary.

2116 EXCEPTION PROCESSING

The 16-bit MCU and DSC devices have a vectored exception scheme with support for up to
eight sources of non-maskable traps and up to 246 interrupt sources. In both families, each
interrupt source can be assigned to one of seven priority levels.

2.1.2 PIC24E, dsPIC33E and dsPIC33C Features

In addition to the information provided in Section 2.1.1 “Features Specific to 16-Bit MCU and
DSC Core”, this section describes the enhancements that are available in the PIC24E,
dsPIC33E and dsPIC33C families of devices.

Y
o
=3
S
a3
3
@
_t
(72}

21.21 DATA SPACE ADDRESSING

The Base Data Space address is used in conjunction with a Read or Write Page register
(DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address, which can also be
used for PSV access. The EDS can be addressed as 8M words or 16 Mbytes. Refer to “Data
Memory” (DS70595) in the “dsPIC33/PIC24 Family Reference Manual” for more details on EDS,
PSV and table accesses.

Note: Some PIC24F devices also support Extended Data Space. Refer to “CPU with
Extended Data Space (EDS)” (DS39732) and “Data Memory with Extended
Data Space (EDS)” (DS39733) in the “dsPIC33/PIC24 Family Reference Manual”
for details.

21.22 AUTOMATIC MIXED-SIGN MULTIPLICATION MODE
(dsPIC33E AND dsPIC33C ONLY)

In addition to signed and unsigned DSP multiplications, dsPIC33E and dsPIC33C devices
support mixed-sign (unsigned-signed and signed-unsigned) multiplications without the need to
dynamically reconfigure the Multiplication mode and shift data to account for the difference in
operand formats. This mode is particularly beneficial for dsPIC33C executing extended precision
(32-bit and 64-bit) algorithms. Besides DSP instructions, MCU multiplication (MJL) instructions
can also utilize either accumulator as a result destination, thereby enabling faster extended
precision arithmetic. Refer to Section 4.11.1 “Implied DSP Operands (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)” and Section 4.21 “Extended Precision Arithmetic
Using Mixed-Sign Multiplications (dsPIC33E and dsPIC33C Only)” for more details on
mixed-sign DSP multiplications.

2.1.23 MCU MULTIPLICATIONS WITH 16-BIT RESULT

16x16-bit MUL instructions include an option to store the product in a single 16-bit Working register
rather than a pair of registers. This feature helps free up a register for other purposes, in cases where
the numbers being multiplied are small in magnitude, and therefore, expected to provide a 16-bit
result. See the individual MUL instruction descriptions in Section 5.4 “Instruction Descriptions” for
more details.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 11

16-Bit MCU

and DSC Programmer’s Reference Manual

21.24 HARDWARE STACK FOR DOLOOPS (dsPIC33E AND dsPIC33C ONLY)

The single-level DO Loop Shadow register set has been replaced by a 4-level deep DO loop
hardware stack. This provides automatic DO Loop register save/restore for up to 3 levels of DO
loop nesting, resulting in more efficient implementation of nested loops. Refer to Section 2.19
“DO Stack (dsPIC33E and dsPIC33C Devices)” for more details on DO loop nesting in
dsPIC33E and dsPIC33C devices.

2.1.25 DSP CONTEXT SWITCH SUPPORT (dsPIC33E AND dsPIC33C ONLY)

In dsPIC33E and dsPIC33C devices, the DSP Overflow and Saturation Status bits are writable.
This allows the state of the DSP engine to be efficiently saved and restored while switching
between DSP tasks. See Section 2.16.4 “DSP ALU Status Bits (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)” for more details on DSP Status bits. In addition, dsPIC33C
devices have up to four additional sets of DSP Accumulators A and B for fast context switching.
Please see the specific device data sheet for details.

2.1.26 EXTENDED CALL AND GOTOINSTRUCTIONS (PIC24E, dsPIC33E AND
dsPIC33C ONLY)

The CALL. L Wh and GOTO. L W instructions extend the capabilities of the CALL Wh and GOTO Wh
by enabling 32-bit addresses for computed branch/call destinations. In these enhanced instruc-
tions, the destination address is provided by a pair of Working registers, rather than a single
16-bit register. See the CALL. L and GOTQ. L instruction descriptions in Section 5.4 “Instruction
Descriptions” for more details.

2.1.27 COMPARE/BRANCH INSTRUCTIONS (PIC24E, dsPIC33E AND
dsPIC33C ONLY)

PIC24E/dsPIC33E/dsPIC33C devices feature conditional Compare/Branch (CPBxx) instruc-
tions. These instructions extend the capabilities of the Compare/Skip (CPSxx) instructions by
allowing branches, rather than only skipping over a single instruction. See the CPBEQ, CPBNE,
CPBGT and CPBLT instruction descriptions in Section 5.4 “Instruction Descriptions” for more
details on Compare/Branch instructions.

2.1.3 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Features

In addition to the information provided in Section 2.1.1 “Features Specific to 16-Bit MCU and
DSC Core”, this section describes the DSP enhancements that are available in the dsPIC30F,
dsPIC33F, dsPIC33E and dsPIC33C families of devices.

2.1.3.1 PROGRAMMING LOOP CONSTRUCTS

Overhead-free program loop constructs are supported using the DO instruction, which is
interruptible.

2132 DSP INSTRUCTION CLASS

The DSP class of instructions are seamlessly integrated into the architecture and execute from
a single execution unit.

2133 DATA SPACE ADDRESSING

The data space is split into two blocks, referred to as X and Y data memory. Each memory block
has its own independent Address Generation Unit (AGU). The MCU class of instructions oper-
ates solely through the X memory AGU, which accesses the entire memory map as one linear
data space. The DSP dual source class of instructions operates through the X and Y AGUs,
which splits the data address space into two parts. The X and Y data space boundary is arbitrary
and device-specific.

DS70000157G-page 12

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

2134 MODULO AND BIT-REVERSED ADDRESSING

Overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address
spaces. The Modulo Addressing removes the software boundary checking overhead for DSP
algorithms. Furthermore, the X AGU Circular Addressing can be used with any of the MCU class
of instructions. The X AGU also supports Bit-Reversed Addressing, to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

2135 DSP ENGINE

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit
saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of
shifting a 40-bit value, up to 16 bits right or up to 16 bits left, in a single cycle. The DSP
instructions operate seamlessly with all other instructions and have been designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two Working registers. This requires that
the data space be split for these instructions and linear for all others. This is achieved in a
transparent and flexible manner through dedicating certain Working registers to each address
space.

Y
o
=3
S
a3
3
@
_t
(72}

2136 EXCEPTION PROCESSING

The dsPIC30F devices have a vectored exception scheme with support for up to eight sources of
non-maskable traps and up to 54 interrupt sources. The dsPIC33F, dsPIC33E and dsPIC33C have
a similar exception scheme, but support up to 118, and up to 246 interrupt sources, respectively. In
all three families, each interrupt source can be assigned to one of seven priority levels.

Refer to “Interrupts” (DS70000600) of the “dsPIC33/PIC24 Family Reference Manual” for more
details on exception processing.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 13

16-Bit MCU and DSC Programmer’s Reference Manual

2.2 PROGRAMMER’S MODEL

Figure 2-1 through Figure 2-5 show the programmer’s model diagrams for the 16-bit MCU and
DSC families of devices.

Figure 2-1: PIC24F and PIC24H Programmer’s Model Diagram

15
WO/WREG \
DI Vand ML w1
Result Registers w2
w3
W4
W5
W6
w7 >
Working Registers
wa g Reg
w9
W10
W11
W12
W13
W14/Frame Pointer
W15/Stack Pointer j
SPLIM | Stack Pointer Limit Register
22 0
" 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
13 0
| RCOUNT | REPEAT Loop Counter
15 0
| CORCON | CPU Core Control Register
|_|_|_|_|_|_|_ STATUS Register
€ SRH

DS70000157G-page 14 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Figure 2-2: PIC24E Programmer’s Model Diagram

15
WO/WREG
DI V and MJL W1
Result Registers w2
W3
w4
W5
Wé
W7 >
Working Registers
ws g Reg 5
W9 —
W10 9
(@]
<=
W11 oo
w12 o 3
(9]
W13 ('BD
=
W14/Frame Pointer o
W15/Stack Pointer j
SPLIM | Stack Pointer Limit Register
22 0
" 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
9 0
| DSRPAG | Data Space Read Page Address
8 0
| DSWPAG | Data Space Write Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
| CORCON | CPU Core Control Register
===]=]=]=1= STATUS Register
< SRH > < SRL !

© 2005-2018 Microchip Technology Inc. DS70000157G-page 15

16-Bit MCU and DSC Programmer’s Reference Manual

Figure 2-3: dsPIC30F and dsPIC33F Programmer’s Model Diagram

— — — — 1
15 PUSH. S Shadow
WO/WREG Register |
DiVand ML w1 | |
Result Registers W2 | DO Shadow |
Register
- w3 L — — —
Wwa Legend
MAC Operand J W5
Registers w6
- w7
Working Registers
we > g Reg
MAC Address J W9
Registers W10
W11
N—
W12
W13
W14/Frame Pointer
W15/Stack Pointer /
SPLIM | Stack Pointer Limit Register
39 31 15 0
ACCA DSP
ACCB | Accumulators
22 0
| 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
13 0
| RCOUNT | REPEAT Loop Counter
13 0
| DCOUNT |'| DO Loop Counter
!
24 0
[o] DOSTART lo H DO Loop Start Address
!
24 0
[o] DOEND [o “ DO Loop End Address
!
15 0
| CORCON | CPU Core Control Register
| oa| o8 | sa | sB |oaB|saB| pa | oc fipL2iPL1[iPLo| RA STATUS Register
< SRH > SRL !

DS70000157G-page 16 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Figure 2-4: dsPIC33E Programmer’s Model Diagram

15
~ — PUSH. Sand !
WO/WREG POP. S Shadow
DI V and MUL W1 Registers
<
Result Registers w2 | I:I Nested DO |
- w3 LSk
W4 Legend
MAC Operand J W5
Registers w6
= w7 (1)
wa > Working Registers
MAC Address J W9
Registers W10 U
o
L W11 e
W12 <=
oo
w13 o3
W14/Frame Pointer @ 3
D
W15/Stack Pointer J =
"
SPLIM | Stack Pointer Limit Register
39 31 15 0
ACCA | pgp
ACCB | Accumulators
22 0
|| 0 | Program Counter
7 0
| TBLPAG | Data Table Page Address
9 0
| DSRPAG | X Data Space Read Page Address
8 0
| DSWPAG | X Data Space Write Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
| DCOUNT I_‘ DO Loop Counter
!
24 0
[o] DOSTART [o |‘| DO Loop Start Address
!
24 0
lo] DOEND [o |‘| DO Loop End Address
L
15 0
| CORCON | cPU Core Control Register
| oa [o8B | sa|sB |oas|saB| DA |Dc JipL2|ipL1]iPLo| RA STATUS Register
< SRH > SRL >
Note 1: Some dsPIC33E devices have up to four additional sets of Working registers (W0-W14) for context switching. Please see the
specific device data sheet for details.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 17

16-Bit MCU and DSC Programmer’s Reference Manual

Figure 2-5: dsPIC33C Programmer’s Model
D15 DO
D15 | DO
D15 | DO
D15 | DO
D15 | DO
4 WO (WREG)| wo | wo | wo [wo
WO-W3 W1| W1 W1 | W1 | W1
W2| W2 | w2 | W2 | w2
W3| W3 | W3 | W3 |W3
W4| W4 | W4 | W4 | w4 Alternate
DSP Operand _ ws| ws | w5 [ws|ws| Working/Address
Registers we| we | we | we |we Registers
Working/Address < — W7 W7 [W7 | W7 | W7
Registers ws| ws | ws | ws|ws
DSP Address W9| W9 | W9 | w9 [w9
Registers W10[W10 | W10 |W10|W10
- W11 | W11 | W11 |W11 W11
W12 W12 | W12 |[W12|W12
W13 W13 | W13 |W13|W13
Frame Pointer/W14| W14 | W14 |W14|W14 /
\ Stack Pointer/W15 | 0
U /] PUSH. Sand POP. S Shadows
SPLIM ‘ 0 ‘ Stack Pointer Limit
|:| Nested DO Stack
AD39 AD31 AD15 ADO
AD39 AD31] AD15 | ADO
AD39 AD3 1| AD15 | ADO
AD39 AD31] AD15] ADO
AD39] AD31] AD15] ADO
DSP ACCA
Accumulators ACCB
PC23 PCO
| 0 || ” 0 | Program Counter
7 0
TBLPAG Data Table Page Address
9 0
| DSRPAG | X Data Space Read Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
DCOUNT ! DO Loop Counter and Stack
23 0
0 DOSTART 0 DO Loop Start Address and Stack
23 0
0 DOEND 0 DO Loop End Address and Stack
15 0
| CORCON | CPU Core Control Register
- SRL >
[oa|oB|sa|se|oas|sas|DA DClIPL2|IPL1|IPLO| rRa[N Jov] z]c E STATUS Register

DS70000157G-page 18 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

All registers in the programmer’s model are memory-mapped and can be manipulated directly by
the instruction set. A description of each register is provided in Table 2-1.

Note: Unless otherwise specified, the Programmer’s Model register descriptions in I
Table 2-1 apply to all MCU and DSC device families.
Table 2-1: Programmer’s Model Register Descriptions
Register Description

CORCON CPU Core Configuration register

PC 23-Bit Program Counter

PSVPAGY) Program Space Visibility Page Address register

DSRPAG® Extended Data Space (EDS) Read Page register

DSWPAG®) Extended Data Space (EDS) Write Page register U
RCOUNT REPEAT Loop Counter register 8
SPLIM Stack Pointer Limit Value register § o
SR ALU and DSP Engine STATUS Register % g
TBLPAG Table Memory Page Address register - @
WO0-W15¢) Working register array)
ACCA, ACCB®® 40-Bit DSP Accumulators

DCOUNT®) DO Loop Counter register

DOSTART®) DOLoop Start Address register

DOEND®) DO Loop End Address register

Note 1: This register is only available on PIC24F, PIC24H, dsPIC30F and dsPIC33F

devices.

2: This register is only available on PIC24E, dsPIC33E and dsPIC33C devices.

3: This register is only available on dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
devices.

4: dsPIC33C devices and some dsPIC33E devices have up to four additional sets of
Working registers for context switching. Please see the device data sheet for details.

5. dsPIC33C devices have up to four additional sets of accumulators for context
switching. Please see the device data sheet for details.

2.3 WORKING REGISTER ARRAY

The 16 Working (W) registers can function as data, address or offset registers. The function of a
W register is determined by the instruction that accesses it.

Byte instructions, which target the Working register array, only affect the Least Significant Byte
(LSB) of the target register. Since the Working registers are memory-mapped, the Least and
Most Significant Bytes can be manipulated through byte-wide data memory space accesses.

Note: dsPIC33C devices and some dsPIC33E devices have up to four additional sets of
Working registers for context switching. Please see the device data sheet to find out
the exact number of register contexts available on a device. The context switching
can be performed quickly using the CTXTSWP instruction.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 19

16-Bit MCU and DSC Programmer’s Reference Manual

2.4 DEFAULT WORKING REGISTER (WREG)

The instruction set can be divided into two instruction types: Working register instructions and file
register instructions. The Working register instructions use the Working register array as data
values or as addresses that point to a memory location. In contrast, file register instructions
operate on a specific memory address contained in the instruction opcode.

File register instructions that also utilize a Working register do not specify the Working register that
is to be used for the instruction. Instead, a default Working register (WREG) is used for these file
register instructions. Working register, WO, is assigned to be the WREG. The WREG assignment
is not programmable.

2.5 SOFTWARE STACK FRAME POINTER

A frame is a user-defined section of memory in the stack, used by a function to allocate memory
for local variables. W14 has been assigned for use as a Stack Frame Pointer with the link (LNK)
and unlink (ULNK) instructions. However, if a Stack Frame Pointer and the LNK and ULNK
instructions are not used, W14 can be used by any instruction in the same manner as all other
W registers. On dsPIC33E, dsPIC33C and PIC24E devices, a Stack Frame Active (SFA) Status
bit is used to support nested stack frames. See Section 4.8.2 “ Software Stack Frame Pointer”
for detailed information about the Frame Pointer.

2.6 SOFTWARE STACK POINTER

W15 serves as a dedicated Software Stack Pointer, and will be automatically modified by function
calls, exception processing and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
Stack Pointer. Refer to Section 4.8.1 “Software Stack Pointer” for detailed information about
the Stack Pointer.

2.7 STACK POINTER LIMIT REGISTER (SPLIM)

The SPLIM is a 16-bit register associated with the Stack Pointer. It is used to prevent the Stack
Pointer from overflowing and accessing memory beyond the user allocated region of stack
memory. Refer to Section 4.8.3 “Stack Pointer Overflow” for detailed information about the
SPLIM.

2.8 ACCUMULATOR A AND ACCUMULATOR B
(dsPIC30F, dsPIC33F, dsPIC33E AND dsPIC33C DEVICES)

Accumulator A (ACCA) and Accumulator B (ACCB) are 40-bit wide registers, utilized by DSP
instructions to perform mathematical and shifting operations. Each accumulator is composed of
three memory-mapped registers:

* AccxU (bits 39-32)

* AccxH (bits 31-16)

» AccxL (bits 15-0)

In dsPIC33E devices, Accumulator A and Accumulator B can also be used as destination

registers in MCU MJL. xx instructions. This helps reduce the execution time of extended
precision arithmetic operations.

Refer to Figure 4-13 for details on using ACCA and ACCB.

Note: dsPIC33C devices have up to four additional sets of accumulators for context
switching. Please see the device data sheet to find out the exact number of register
contexts available on a device. The context switching can be performed quickly
using the CTXTSWP instruction.

DS70000157G-page 20

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

29 PROGRAM COUNTER

The Program Counter (PC) is 23 bits wide. Instructions are addressed in the 4M x 24-bit user
program memory space by PC<22:1>, where PC<0> is always set to ‘0’ to maintain instruction
word alignment and provide compatibility with Data Space Addressing. This means that during
normal instruction execution, the PC increments by two.

Program memory, located at 0x800000 and above, is utilized for device configuration data,
Unit ID and Device ID. This region is not available for user code execution and the PC cannot
access this area. However, one may access this region of memory using table instructions. For
details on accessing the configuration data, Unit ID and Device ID, refer to the specific device
family reference manual.

2.10 TBLPAG REGISTER

The TBLPAG register is used to hold the upper eight bits of a program memory address during
table read and write operations. Table instructions are used to transfer data between program
memory space and data memory space. For details on accessing program memory with the table
instructions, refer to the family reference manual of the specific device.

Y
o
=3
S
a3
3
@
_t
(72}

2.11 PSVPAG REGISTER (PIC24F, PIC24H, dsPIC30F AND dsPIC33F)

Program Space Visibility (PSV) allows the user to map a 32-Kbyte section of the program
memory space into the upper 32 Kbytes of data address space. This feature allows transparent
access of constant data through instructions that operate on data memory. The PSVPAG register
selects the 32-Kbyte region of program memory space that is mapped to the data address space.
For details on Program Space Visibility, refer to the specific device family reference manual.

2.12 RCOUNT REGISTER

The 14-bit RCOUNT register (16-bit for PIC24E, dsPIC33E and dsPIC33C devices) contains the
loop counter for the REPEAT instruction. When a REPEAT instruction is executed, RCOUNT is
loaded with the repeat count of the instruction, either “lit14” for the “REPEAT #l i t 14” instruction
(“it15” for the “REPEAT #l i t 15” instruction for PIC24E, dsPIC33E and dsPIC33C devices) or
the 14 LSbs of the Wn register for the “REPEAT Wh” instruction (entire Wn for PIC24E, dsPIC33E
and dsPIC33C devices). The REPEAT loop will be executed RCOUNT + 1 time.

Note 1: If a REPEAT loop is executing and gets interrupted, RCOUNT may be cleared by
the Interrupt Service Routine (ISR) to break out of the REPEAT loop when the
foreground code is re-entered.

2: Refer to the specific device family reference manual for complete details about
REPEAT loops.

2.13 DCOUNT REGISTER (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The 14-bit DCOUNT register (16-bit for dsPIC33E and dsPIC33C devices) contains the loop
counter for hardware DOloops. When a DO instruction is executed, DCOUNT is loaded with the
loop count of the instruction, either “I i t 14” for the “DO #l it 14, Expr” instruction (| i t 15”
for the “DO #l i t 15, Expr” instruction for dsPIC33E devices) or the 14 LSbs of the Ws register
for the “DO W&, Expr” instruction (entire Wn for dsPIC33E devices). The DO loop will be
executed DCOUNT + 1 time.

Note 1: IndsPIC30F and dsPIC33F devices, the DCOUNT register contains a shadow register.
See Section 2.18 “Shadow Registers” for information on shadow registers.

2. The dsPIC33E devices have a 4-level deep, nested DO stack instead of a shadow
register.

3: Refer to the specific device family reference manual for complete details about DO
loops.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 21

16-Bit MCU and DSC Programmer’s Reference Manual

2.14 DOSTART REGISTER (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The DOSTART register contains the starting address for a hardware DOloop. When a DO instruc-
tion is executed, DOSTART is loaded with the address of the instruction that follows the DO
instruction. This location in memory is the start of the DO loop. When looping is activated,
program execution continues with the instruction stored at the DOSTART address after the last
instruction in the DOloop is executed. This mechanism allows for zero overhead looping.

Note 1: For dsPIC30F and dsPIC33F devices, DOSTART has a shadow register. See
Section 2.18 “Shadow Registers” for information on shadowing.

2. The dsPIC33E and dsPIC33C devices have a 4-level deep, nested DO stack
instead of a shadow register. The DOSTART register is read-only in dsPIC33E and
dsPIC33C devices.

3: Refer to the specific device family reference manual for complete details about DO
loops.

2.15 DOEND REGISTER (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The DOEND register contains the ending address for a hardware DOloop. When a DO instruction
is executed, DOEND is loaded with the address specified by the expression in the DOinstruction.
This location in memory specifies the last instruction in the DO loop. When looping is activated
and the instruction stored at the DOEND address is executed, program execution will continue
from the DOloop start address (stored in the DOSTART register).

Note 1: For dsPIC30F and dsPIC33F devices, DOEND has a shadow register. See
Section 2.18 “Shadow Registers” for information on shadow registers.

2. The dsPIC33E and dsPIC33C devices have a 4-level deep, nested DO stack
instead of a shadow register.

3: Refer to the specific device family reference manual for complete details about DO
loops.

2.16 STATUS REGISTER

The 16-bit STATUS Register maintains status information for the instructions which have been
executed most recently. Operation Status bits exist for MCU operations, loop operations and
DSP operations. Additionally, the STATUS Register contains the CPU Interrupt Priority Level bits,
IPL<2:0>, which are used for interrupt processing.

Depending on the MCU and DSC family, one of the following STATUS Registers is used:

» Register 2-1 for PIC24F, PIC24H and PIC24E devices
* Register 2-2 for dsPIC30F and dsPIC33F devices
» Register 2-3 for dsPIC33E and dsPIC33C devices

2.16.1 MCU ALU Status Bits

The MCU operation Status bits are either affected or used by the majority of instructions in the
instruction set. Most of the logic, math, rotate/shift and bit instructions modify the MCU Status bits
after execution, and the conditional branch instructions use the state of individual Status bits to deter-
mine the flow of program execution. All conditional branch instructions are listed in Section 4.9
“Conditional Branch Instructions”.

The Carry (C), Zero (Z), Overflow (OV), Negative (N) and Digit Carry (DC) bits show the imme-
diate status of the MCU ALU by indicating whether an operation has resulted in a Carry, Zero,
Overflow, Negative result or Digit Carry. When a subtract operation is performed, the C flag is
used as a Borrow flag.

DS70000157G-page 22

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

The Z Status bit is useful for extended precision arithmetic. The Z Status bit functions like a
normal Z flag for all instructions except those that use a carry or borrow input (ADDC, CPB, SUBB
and SUBBR). See Section 4.10 “Z Status Bit” for more detailed information.

Note 1: All MCU bits are shadowed during execution of the PUSH. S instruction and they
are restored on execution of the POP. S instruction.

2: Al MCU bits, except the DC flag (which is not in the SRL), are stacked during
exception processing (see Section 4.8.1 “ Software Stack Pointer”).

2.16.2 REPEAT Loop Active (RA) Status Bit

The REPEAT Loop Active bit (RA) is used to indicate when looping is active. The RA flag indicates
that a REPEAT instruction is being executed and it is only affected by the REPEAT instructions.
The RA flag is set to ‘1’ when the instruction being repeated begins execution and it is cleared
when the instruction being repeated completes execution for the last time.

Since the RA flag is also read-only, it may not be directly cleared. However, if a REPEAT or its
target instruction is interrupted, the Interrupt Service Routine may clear the RA flag of the SRL,
which resides on the stack. This action will disable looping once program execution returns from
the Interrupt Service Routine, because the restored RA will be ‘0.

2.16.3 DOLoop Active (DA) Status Bit (dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C Devices)

The DOLoop Active bit (DA) is used to indicate when looping is active. The DOinstructions affect
the DA flag, which indicates that a DOloop is active. The DA flag is set to ‘1’ when the first instruc-
tion of the DOloop is executed and it is cleared when the last instruction of the loop completes
final execution.

<
o
Q
@

S, Jawwelboud

The DA flag is read-only. This means that looping is not initiated by writing a ‘1’ to DA, nor is it
terminated by writing a ‘0’ to DA. If a DO loop must be terminated prematurely, the EDT bit
(CORCON<11>) should be used.

2.16.4 DSP ALU Status Bits (dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C Devices)

The high byte of the STATUS Register (SRH) is used by the DSP class of instructions and it is
modified when data passes through one of the adders. The SRH provides status information about
overflow and saturation for both accumulators. The Saturate A, Saturate B, Overflow A and Overflow
B (SA, SB, OA, OB) bits provide individual accumulator status, while the Saturate AB and Overflow
AB (SAB, OAB) bits provide combined accumulator status. The SAB and OAB bits provide an
efficient method for the software developer to check the register for saturation or overflow.

The OA and OB bits are used to indicate when an operation has generated an overflow into the
guard bits (bits 32 through 39) of the respective accumulator. This condition can only occur when
the processor is in Super Saturation mode or if saturation is disabled. It indicates that the
operation has generated a number which cannot be represented with the lower 31 bits of the
accumulator. The OA and OB bits are writable in dsPIC33E and dsPIC33C devices.

The SA and SB bits are used to indicate when an operation has generated an overflow out of the
MSb of the respective accumulator. The SA and SB bits are active, regardless of the Saturation
mode (Disabled, Normal or Super) and may be considered “sticky”. Namely, once the SA or SB
bit is set to ‘1’, it can only be cleared manually by software, regardless of subsequent DSP
operations. When it is required, the BCLR instruction can be used to clear the SA or SB bit.

In addition, the SA and SB bits can be set by software in dsPIC33E and dsPIC33C devices,
enabling efficient context state switching.

For convenience, the OA and OB bits are logically ORed together to form the OAB flag, and the
SA and SB bits are logically ORed to form the SAB flag. These cumulative Status bits provide
efficient overflow and saturation checking when an algorithm is implemented. Instead of interro-
gating the OA and OB bits independently for arithmetic overflows, a single check of OAB can be
performed. Likewise, when checking for saturation, SAB may be examined instead of checking
both the SA and SB bits. Note that clearing the SAB flag will clear both the SA and SB bits.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 23

16-Bit MCU and DSC Programmer’s Reference Manual

2.16.5 Interrupt Priority Level Status Bits

The three Interrupt Priority Level (IPL) bits of the SRL (SR<7:5>) and the IPL3 bit (CORCON<3>)
set the CPU’s IPL, which is used for exception processing. Exceptions consist of interrupts and
hardware traps. Interrupts have a user-defined priority level between 0 and 7, while traps have a
fixed priority level between 8 and 15. The fourth Interrupt Priority Level bit, IPL3, is a special IPL
bit that may only be read or cleared by the user. This bit is only set when a hardware trap is
activated and it is cleared after the trap is serviced.

The CPU’s IPL identifies the lowest level exception which may interrupt the processor. The
interrupt level of a pending exception must always be greater than the CPU’s IPL for the CPU to
process the exception. This means that if the IPL is 0, all exceptions at Priority Level 1 and above
may interrupt the processor. If the IPL is 7, only hardware traps may interrupt the processor.

When an exception is serviced, the IPL is automatically set to the priority level of the exception
being serviced, which will disable all exceptions of equal and lower priority. However, since the
IPL field is read/write, one may modify the lower three bits of the IPL in an Interrupt Service
Routine to control which exceptions may preempt the exception processing. Since the SRL is
stacked during exception processing, the original IPL is always restored after the exception is
serviced. If required, one may also prevent exceptions from nesting by setting the NSTDIS bit
(INTCON1<15>).

Note: For more detailed information on exception processing, refer to the family reference I

manual of the specific device.

DS70000157G-page 24

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

2.17 CORE CONTROL REGISTER

For all MCU and DSC devices, the 16-bit CPU Core Control register (CORCON) is used to set the
configuration of the CPU. This register provides the ability to map program space into data space.

In addition to setting CPU modes, the CORCON register contains status information about the
IPL<3> Status bit, which indicates if a trap exception is being processed.

Depending on the MCU and DSC family, one of the following CORCON registers is used:

» Register 2-4 for PIC24F and PIC24H devices

* Register 2-5 for PIC24E devices

* Register 2-6 for dsPIC30F and dsPIC33F devices
* Register 2-7 for dsPIC33E and dsPIC33C devices

2.17.1 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Specific Bits

In addition to setting CPU modes, the following features are available through the CORCON register:

» Sets the ACCA and ACCB saturation enable

+ Sets the Data Space Write Saturation mode

+ Sets the Accumulator Saturation and Rounding modes

+ Sets the Multiplier mode for DSP operations

+ Terminates DOloops prematurely

 Provides status information about the DOloop nesting level (DL<2:0>)

+ Selects fixed or variable interrupt latency (dsPIC33E and dsPIC33C only)

Y
o
=3
S
a3
3
@
_t
(72}

2.17.1.1 PIC24E, dsPIC33E AND dsPIC33C SPECIFIC BITS
A Status bit (SFA) is available that indicates whether the stack frame is active.

Note: PIC24E, dsPIC33E and dsPIC33C devices do not have a PSV control bit; it has
been replaced by the SFA bit.

2.18 SHADOW REGISTERS

A shadow register is used as a temporary holding register and can transfer its contents to or from
the associated host register when instructed. Some of the registers in the programmer’s model
have a shadow register, which is utilized during the execution of a DO, POP. S or PUSH. S
instruction. Shadow register usage is shown in Table 2-2.

Note: The DO instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.
Table 2-2: Automatic Shadow Register Usage
Location pdd POP. S/ PUSH. S

DCOUNT® Yes —
DOSTART® Yes —
DOEND® Yes —
STATUS Register — DC, N, OV, Z and C bits — Yes
WO0-W3 — Yes

Note 1: The DOShadow registers are only available in dsPIC30F and dsPIC33F devices.

For dsPIC30F and dsPIC33F devices, since the DCOUNT, DOSTART and DOEND registers are
shadowed, the ability to nest DOloops without additional overhead is provided. Since all shadow
registers are one register deep, up to one level of DOloop nesting is possible. Further nesting of
DOloops is possible in software, with support provided by the DO Loop Nesting Level Status bits
(DL<2:0>) in the CORCON register (CORCON<10:8>).

Note: All shadow registers are one register deep and not directly accessible. Additional
shadowing may be performed in software using the software stack.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 25

16-Bit MCU

and DSC Programmer’s Reference Manual

2.19 DOSTACK (dsPIC33E AND dsPIC33C DEVICES)

The DO stack is used to preserve the following elements associated with a DO loop underway
when another DOloop is encountered (i.e., a nested DOloop).

+ DOSTART register value

» DOEND register value

* DCOUNT register value

Note that the DOLevel Status field (DL<2:0>) also acts as a pointer to address the DOstack. After
the DOinstruction is executed, the DO Level Status field (DL<2:0>) points to the next free entry.

The DOSTART, DOEND, and DCOUNT registers each have an associated hardware stack that
allows the DOloop hardware to support up to three levels of nesting. A conceptual representation
of the DO stack is shown in Figure 2-6.

Figure 2-6: DO Stack Conceptual Diagram

Note 1: For DOregister entries, DL<2:0> bits represent the value before the DO stack is executed.
2: For DOinstruction buffer entries, DL<2:0> bits represent the value after the DO stack is executed.
3: If DL<2:0> = 000, no DOloops are active (DA = 0).

DL<2:0> DOSTART DOEND DCOUNT
o0 | TEmpty 1 |
001 Lev;el 1 Registers :

010 Lev:el 2 Registers :
011 Levlel 3 Registers :
100

DS70000157G-page 26

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-1: SR: CPU STATUS Register (PIC24H, PIC24F and PIC24E Devices)

u-0 uU-0 uU-0 uU-0 uU-0 uU-0 uU-0 R/W-0
= = = | = = = || = oo
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2(:2) IPL1(:2) IPLO(2) RA N oV z C
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ o
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown o
=<
bit 15-9 Unimplemented: Read as ‘0’ 8%
bit 8 DC: MCU ALU Half Carry/Borrow bit ® 3
1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) (—2_
of the result occurred)

0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(+?)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled

110 = CPU Interrupt Priority Level is 6 (14

101 = CPU Interrupt Priority Level is 5 (

100 = CPU Interrupt Priority Level is 4 (

011 = CPU Interrupt Priority Level is 3 (
(
(
(

)
)
)
)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1
000 = CPU Interrupt Priority Level is O
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop is in progress
0 = REPEAT loop is not in progress
bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)
bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 1 Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry-out from the MSb occurred
0 = No carry-out from the MSb occurred

13
12
11
10
9)
8)

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when
IPL<3>=1.

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 27

16-Bit MCU and DSC Programmer’s Reference Manual

Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices)

R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R-0 R/W-0
OA OB sat2 | sgd? 0AB | saB(®23 | pa® DC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL20) IPL16®) IPLO®) RA N oV z C
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 OA: Accumulator A Overflow bit

1 = Accumulator A overflowed
0 = Accumulator A has not overflowed
bit 14 OB: Accumulator B Overflow bit
1 = Accumulator B overflowed
0 = Accumulator B has not overflowed
bit 13 SA: Accumulator A Saturation bit®:?)
1 = Accumulator A is saturated or has been saturated since this bit was last cleared
0 = Accumulator A is not saturated
bit 12 SB: Accumulator B Saturation bit®:?)
1 = Accumulator B is saturated or has been saturated at since this bit was last cleared
0 = Accumulator B is not saturated
bit 11 OAB: OA || OB Combined Accumulator Overflow bit
1 = Accumulator A or B has overflowed
0 = Neither Accumulator A nor B has overflowed
bit 10 SAB: SA || SB Combined Accumulator bit(:2:3)
1 = Accumulator A or B is saturated or has been saturated since this bit was last cleared
0 = Neither Accumulator A nor B is saturated
bit 9 DA: DOLoop Active bit)
1 = DOloop is in progress
0 = DOloop is not in progress
bit 8 DC: MCU ALU Half Carry bit

1 = A carry-out from the MSb of the lower nibble occurred
0 = No carry-out from the MSb of the lower nibble occurred

Note 1: This bit may be read or cleared, but not set.

Once this bit is set, it must be cleared manually by software.
Clearing this bit will clear SA and SB.

This bit is read-only.

The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1.

DS70000157G-page 28 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices) (Continued)

bit 7-5

bit 4

bit 3

bit 2

bit 1

bit 0

Note 1:

IPL<2:0>: Interrupt Priority Level bits(®)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
110 = CPU Interrupt Priority Level is 6 (

101 = CPU Interrupt Priority Level is 5 (

100 = CPU Interrupt Priority Level is 4 (
011 = CPU Interrupt Priority Level is 3 (
010 = CPU Interrupt Priority Level is 2 (
001 = CPU Interrupt Priority Level is 1 (
000 = CPU Interrupt Priority Level is O (
RA: REPEAT Loop Active bit

1 = REPEAT loop is in progress

0 = REPEAT loop is not in progress
N: MCU ALU Negative bit

1 = The result of the operation was negative

0 = The result of the operation was not negative
OV: MCU ALU Overflow bit

1 = Overflow occurred

0 = No overflow occurred

Z: MCU ALU Zero bit

1 = The result of the operation was zero

0 = The result of the operation was not zero

C: MCU ALU Carry/Borrow bit

1 = A carry-out from the MSb occurred
0 = No carry-out from the MSb occurred

15)
14)
13)
12)
11)
10)
9)
8)

This bit may be read or cleared, but not set.

Once this bit is set, it must be cleared manually by software.
Clearing this bit will clear SA and SB.

This bit is read-only.

The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority

Level. The value in parentheses indicates the IPL, if IPL3 = 1.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 29

Y
o
=3
S
a3
3
@
_t
(72}

16-Bit MCU and DSC Programmer’s Reference Manual

Register 2-3: SR: CPU STATUS Register (dsPIC33E and dsPIC33C Devices)

R/W-0 R/W-0 R/W-0 R/W-0 R/C-0 R/C-0 R-0 R/W-0
OA OB sa® | sBO® OAB SAB | DA DC
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2(2) IPL1@2) IPLO(2) RA N oV z C
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 OA: Accumulator A Overflow Status bit

1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed
bit 14 OB: Accumulator B Overflow Status bit
1 = Accumulator B has overflowed
0 = Accumulator B has not overflowed
bit 13 SA: Accumulator A Saturation Status bit®
1 = Accumulator A is saturated or has been saturated since this bit was last cleared
0 = Accumulator A is not saturated
bit 12 SB: Accumulator B Saturation Status bit®
1 = Accumulator B is saturated or has been saturated since this bit was last cleared
0 = Accumulator B is not saturated
bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit
1 = Accumulator A or B has overflowed
0 = Neither Accumulator A nor B has overflowed
bit 10 SAB: SA || SB Combined Accumulator Status bit
1 = Accumulator A or B is saturated or has been saturated since this bit was last cleared
0 = Neither Accumulator A nor B is saturated
bit 9 DA: DOLoop Active bit
1 = DOloop is in progress
0 = DOloop is not in progress
bit 8 DC: MCU ALU Half Carry/Borrow bit

1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred

0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
2: The IPL<2:0> Status bits are read-only when the NSTDIS bit INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.
3: Adata write to SR can modify the SA or SB bits by either a data write to SA and SB or by clearing the SAB
bit. To avoid a possible SA/SB bit write race condition, the SA and SB bits should not be modified using bit
operations.

DS70000157G-page 30 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-3: SR: CPU STATUS Register (dsPIC33E and dsPIC33C Devices) (Continued)

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(+?)
111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (
000 = CPU Interrupt Priority Level is O (
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop is in progress
0 = REPEAT loop is not in progress
bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)
bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 1 Z: MCU ALU Zero bit
1 = The result of the operation was zero
0 = The result of the operation was not zero
bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry-out from the MSb of the result occurred
0 = No carry-out from the MSb of the result occurred

13
12
11
10
9)
8)

Y
o
=3
S
a3
3
@
_t
(72}

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when IPL3 = 1.
2: The IPL<2:0> Status bits are read-only when the NSTDIS bit INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.
3: Adata write to SR can modify the SA or SB bits by either a data write to SA and SB or by clearing the SAB
bit. To avoid a possible SA/SB bit write race condition, the SA and SB bits should not be modified using bit
operations.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 31

16-Bit MCU and DSC Programmer’s Reference Manual

Register 2-4: CORCON: Core Control Register (PIC24F and PIC24H Devices)

u-0 u-0 uU-0 u-0 uU-0 u-0 uU-0 U-0
bit 15 bit 8
u-0 uU-0 uU-0 uU-0 R/C-0 R/W-0 U-0 U-0
— — — — 1PL3(12) PSV — —
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-4 Unimplemented: Read as ‘0’
bit 3 IPL3: Interrupt Priority Level 3 Status bit(1-2)

1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

bit 2 PSV: Program Space Visibility in Data Space Enable bit

1 = Program space is visible in data space

0 = Program space is not visible in data space
bit 1-0 Unimplemented: Read as ‘0’

Note 1: This bit may be read or cleared, but not set.

2: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

DS70000157G-page 32

© 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-5: CORCON: Core Control Register (PIC24E Devices)

R/W-0 uU-0 U-0 u-0 u-0 u-0 uU-0 uU-0
= — | - | - | - = =
bit 15 bit 8
u-0 uU-0 u-0 uU-0 R/C-0 R-0 uU-0 uU-0
— — — — IPL3(:2) SFA — —
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ o
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown o
=<
bit 15 VAR: Variable Exception Processing Latency Control bit 8 %
1 = Variable (bounded deterministic) exception processing latency ® 3
0 = Fixed (fully deterministic) exception processing latency @
bit 14-4 Unimplemented: Read as ‘0’)
bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(1:2)

1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less
bit 2 SFA: Stack Frame Active Status bit

1 = Stack frame is active; W14 and W15 address 0x0000 to OxFFFF, regardless of DSRPAG and
DSWPAG values
0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This bit may be read or cleared, but not set.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 33

16-Bit MCU and DSC Programmer’s Reference Manual

Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices)

uU-0 uU-0 u-0 R/W-0 R(0)/W-0 R-0 R-0 R-0
— — — | us | Ept® | bp2®d | pL1®d DLO®
bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3(*5) PSV RND IF
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0’
bit 12 US: Unsigned or Signed Multiplier Mode Select bit

1 = Unsigned mode enabled for DSP multiply operations
0 = Signed mode enabled for DSP multiply operations

bit 11 EDT: Early DOLoop Termination Control bit(})
1 = Terminates executing DOloop at the end of current iteration
0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits(>3)

111 = DOlooping is nested at 7 levels
110 = DOlooping is nested at 6 levels
110 = DOlooping is nested at 5 levels
110 = DOlooping is nested at 4 levels
011 = DOlooping is nested at 3 levels
010 = DOlooping is nested at 2 levels
001 = DOlooping is active, but not nested (just 1 level)
000 = DOlooping is not active
bit 7 SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation is enabled
0 = Accumulator A saturation is disabled
bit 6 SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation is enabled
0 = Accumulator B saturation is disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation is enabled
0 = Data space write saturation is disabled
bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)
bit 3 IPL3: Interrupt Priority Level 3 Status bit*>)

1 = CPU Interrupt Priority Level is 8 or greater (trap exception is activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception is activated)

Note 1. This bit will always read as ‘0.

DL<2:1> bits are read-only.

The first two levels of DOloop nesting are handled by hardware.
This bit may be read or cleared, but not set.

This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

DS70000157G-page 34 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices) (Continued)

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space is visible in data space
0 = Program space is not visible in data space
bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding is enabled
0 = Unbiased (convergent) rounding is enabled
bit 0 IF: Integer or Fractional Multiplier Mode Select bit

1 = Integer mode enabled for DSP multiply operations
0 = Fractional mode enabled for DSP multiply operations

Note 1: This bit will always read as ‘0’

DL<2:1> bits are read-only.

The first two levels of DOloop nesting are handled by hardware.

This bit may be read or cleared, but not set.

This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

Y
o
=3
S
a3
3
@
_t
(72}

© 2005-2018 Microchip Technology Inc. DS70000157G-page 35

16-Bit MCU and DSC Programmer’s Reference Manual

Register 2-7: CORCON: Core Control Register (dsPIC33E and dsPIC33C Devices)

R/W-0 uU-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
VAR — ust | wuso | EDT® p.2 | DL DLO

bit 15 bit 8
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3(2:3) SFA RND IF

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable (bounded deterministic) exception processing latency
0 = Fixed (fully deterministic) exception processing latency

bit 14 Unimplemented: Read as ‘0’
bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits

11 = Reserved

10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed

bit 11 EDT: Early DOLoop Termination Control bit(D)
1 = Terminates executing DOloop at end of current loop iteration
0 = No effect

bit 10-8 DL<2:0>: DOLoop Nesting Level Status bits

111 =7 DOloops are active

001 =1 DOloop is active
000 = 0 DOloops are active

bit 7 SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation is enabled
0 = Accumulator A saturation is disabled

bit 6 SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation is enabled
0 = Accumulator B saturation is disabled
bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit

1 = Data space write saturation is enabled
0 = Data space write saturation is disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(2:3)

1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less

Note 1: This bit always reads as ‘0’.
2: This bit may be read or cleared, but not set.
3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

DS70000157G-page 36 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-7: CORCON: Core Control Register (dsPIC33E and dsPIC33C Devices) (Continued)

bit 2 SFA: Stack Frame Active Status bit
1 = Stack frame is active; W14 and W15 address 0x0000 to OxFFFF, regardless of DSRPAG and
DSWPAG values
0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding is enabled
0 = Unbiased (convergent) rounding is enabled
bit 0 IF: Integer or Fractional Multiplier Mode Select bit

1 = Integer mode is enabled for DSP multiply
0 = Fractional mode is enabled for DSP multiply

Note 1: This bit always reads as ‘0’.
2: This bit may be read or cleared, but not set.
3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

Y
o
=3
S
a3
3

@

_t
(72}

© 2005-2018 Microchip Technology Inc. DS70000157G-page 37

16-Bit MCU and DSC Programmer’s Reference Manual

NOTES:

DS70000157G-page 38 © 2005-2018 Microchip Technology Inc.

MICROCHIP
Section 3. Instruction Set Overview

HIGHLIGHTS

This section of the manual contains the following major topics:

B 70 IO 1o (oY [UTex 1o IFS U 40
3.2 INStrUCHON SEt OVEIVIEWeveieeeieeeeeee et e e e e e e e e aaanes 40
3.3 Instruction Set SuMmMary Tablesooouiiiiiiii e 42

2
o=
< c
® o
= e~
<_.
"ED:s

7))
)
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 39

16-Bit MCU

and DSC Programmer’s Reference Manual

3.1 INTRODUCTION

The 16-bit MCU and DSC instruction set provides a broad suite of instructions that support
traditional microcontroller applications and a class of instructions that support math-intensive
applications. Since almost all of the functionality of the 8-bit PIC® MCU instruction set has been
maintained, this hybrid instruction set allows an easy 16-bit migration path for users already
familiar with the PIC microcontroller.

3.2 INSTRUCTION SET OVERVIEW

Depending on the device family, the 16-bit MCU and DSC instruction set contains up to
105 instructions, which can be grouped into the functional categories shown in Table 3-1. Table 1-2
defines the symbols used in the instruction summary tables. Table 3-2 through Table 3-11 define
the syntax, description, storage and execution requirements for each instruction. Storage require-
ments are represented in 24-bit instruction words and execution requirements are represented in
instruction cycles.

Table 3-1: Instruction Groups
Functional Group Summary Table Page Number
Move Instructions Table 3-2 42
Math Instructions Table 3-3 43
Logic Instructions Table 3-4 45
Rotate/Shift Instructions Table 3-5 46
Bit Instructions Table 3-6 47
Compare/Skip and Compare/Branch Instructions Table 3-7 48
Program Flow Instructions Table 3-8 49
Shadow/Stack Instructions Table 3-9 51
Control Instructions Table 3-10 51
DSP Instructions™® Table 3-11 52

Note 1: DSP instructions are only available in the dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C device families.

Most instructions have several different addressing modes and execution flows, which require
different instruction variants. For instance, depending on the device family, there are up to six
unique ADD instructions and each instruction variant has its own instruction encoding. Instruction
format descriptions and specific instruction operation are provided in Section 5. “Instruction
Descriptions”. Additionally, a composite alphabetized instruction set table is provided in
Section 7. “Reference”.

DS70000157G-page 40

© 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview

3.21 Multicycle Instructions

As shown in the instruction summary tables, most instructions execute in a single cycle with the
following exceptions:

Note: The DO and DI VF instructions are only available in the dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C device families.

* Instructions, DO, MOV. D, PCP. D, PUSH. D, TBLRDH, TBLRDL, TBLWI'H and TBLWIL,
require two cycles to execute.

* Instructions, DI V. S, DI V. U and DI VF, are single-cycle instructions, which should be
executed 18 consecutive times as the target of a REPEAT instruction.

* Instructions that change the Program Counter also require two cycles to execute, with the
extra cycle executed as a NOP. Compare/Skip instructions, which skip over a two-word
instruction, require three instruction cycles to execute, with two cycles executed as a NOP.
Compare/Branch instructions (dsPIC33E/dsPIC33C/PIC24E devices only) require
five instruction cycles to execute when the branch is taken.

» The RETFI E, RETLWand RETURN are a special case of an instruction that changes the
Program Counter. These execute in three cycles, unless an exception is pending, and then
they execute in two cycles.

Note 1: Instructions which access program memory as data, using Program Space Visibility
(PSV), will incur a one or two-cycle delay for PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices, whereas using PSV in dsPIC33E and PIC24E devices incurs a
four-cycle delay based on Flash memory access time. However, regardless of
which device is being used, when the target instruction of a REPEAT loop accesses
program memory as data, only the first execution of the target instruction is subject
to the delay. See the specific device family reference manual for details.

2: All instructions may incur an additional delay on some device families depending
on Flash memory access time. For example, PIC24E, dsPIC33E and dsPIC33C
devices have a three-cycle Flash memory access time. However, instruction
pipelining increases the effective instruction execution throughput. Refer to “ CPU”
in the “dsPIC33/PIC24 Family Reference Manual” for details on instruction timing.

3: All read and Read-Modify-Write (RMW) operations (including bit operations) on
non-CPU Special Function Registers (e.g., I/O Port, Peripheral Control or STATUS
Registers; interrupt flags, etc.) in PIC24E, dsPIC33E and dsPIC33C devices require
two instruction cycles to execute. However, all write operations on both CPU and
non-CPU Special Function Registers, and all read and Read-Modify-Write operations
on CPU Special Function Registers, require one instruction cycle.

M3IAIBAQ
189S uoNINIISU|

3.2.2 Multiword Instructions

As defined by Table 3-2, almost all instructions consume one instruction word (24 bits), with the
exception of the CALL, DO and GOTO instructions, which are program flow Instructions listed in
Table 3-8. These instructions require two words of memory because their opcodes embed large
literal operands.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 41

16-Bit MCU and DSC Programmer’s Reference Manual

3.3 INSTRUCTION SET SUMMARY TABLES
Table 3-2: Move Instructions
N Page
Assembly Syntax Description Words | Cycles Numgber
EXCH Wis, Whd Swap Wns and Wnd 1 1 254
LDSLV Whs, WAd, #l i t 20) Move a single instruction word from Master to 1 1 279
Slave PRAM
MOV f {, wReG® Move f to destination 1 1 299
MoV WREG f Move WREG to f 1 1 300
VoY f, Wd Move f to Wnd 1 1(4) 301
MoV Whs, f Move Wns to f 1 1 302
MOV. B #it8, Wd Move 8-bit literal to Wnd 1 1 303
MoV #lit16, Wid Move 16-bit literal to Wnd 1 1 304
MOV [W+Slit10], Wid |Move [Ws with offset] to Wnd 1 1(4) 305
MoV Whs, [Wd+Sl it 10] Move Wns to [Wd with offset] 1 1 306
MOV Ve, Wi Move Ws to Wd 1 1(4) 307
MOV. D Wis, Wad Move double Wns to Wnd:Wnd + 1 1 2(4) 309
MOV. D Vi, Wid Move double Ws:Ws + 1 to Wnd 1 2(4) 309
MOVPAG #lit10, DSRPAG? | Move 10-bit literal to DSRPAG 1 1 311
MOVPAG #lit9, DSWPAG? Move 9-bit literal to DSWPAG 1 1 311
MOVPAG #lit8, TBLPAG? Move 8-bit literal to TBLPAG 1 1 311
MOVPAG W, DSRPAG? Move Wn to DSRPAG 1 1 312
SWAP Wh Whn = byte or nibble swap Wn 1 1 439
TBLRDH [W], Wi Read high program word to Wd 1 209 440
TBLRDL [V&], W Read low program word to Wd 1 23 442
TBLWIH W, [W] Write Ws to high program word 1 24 444
TBLWIL W, [W] Write Ws to low program word 1 2(4) 446
VFSLV Whs, Wad, #l i t 20 Verify Slave processor program RAM 1 1 450
Note 1: When the optional {, WREG operand is specified, the destination of the instruction is WREG. When
{, WVREG is not specified, the destination of the instruction is the file register f.

2: The MOVPAGinstruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

3: IndsPIC33E and PIC24E devices, and in dsPIC33C Master cores, these instructions require three
additional cycles — compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices and in dsPIC33C
Slave cores.

4: In dsPIC33E, dsPIC33C and PIC24E devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F
and PIC24H devices.

5: These instructions are only available in dsPIC33C devices.

DS70000157G-page 42

© 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-3: Math Instructions
Assembly Syntax Description Words | Cycles Nsrigbeer

ADD f {,weeg® Destination = f + WREG 1 10) 102

ADD #it10, Wh Wn = [it10 + Wn 1 1 103

ADD Wb, #1 i t5, W Wd = Wb + Iit5 1 1 104

ADD Vb, Vi, Wi Wd = Wb + Ws 1 16) 105

ADDC f {,weg® Destination = f + WREG + (C) 1 10) 110

ADDC #it10, Wh Wn = it10 + Wn + (C) 1 1 111

ADDC Wb, #1 i t5, W Wd = Wb + Iit5 + (C) 1 1 112

ADDC Wb, VW, W Wd = Wb + Ws + (C) 1 10) 114

DAW B Wh Whn = decimal adjust Wn 1 1 225

DEC f {,weeg® Destination = f — 1 1 10) 226

DEC Ve, Wi Wd = Ws — 1 1 16) 227

DEC2 f {,weg® Destination = f— 2 1 10) 229

DEC2 Ve, Wi Wd = Ws -2 1 16) 230

DV.S Wn W Signed 16/16-bit integer divide, Q — W0, R — W1 1 18/6(| 233

DIV.U Wn W Unsigned 16/16-bit integer divide, Q — WO, R — W1 1 18/6@ | 235

DI VF Wn Wh Signed 16/16-bit fractional divide, Q - W0, R — W1 1 18/6® 236

DI VF2 wn Wi ©® Signed 16/16-bit fractional divide (W1:W0 preserved) 1 6 238

DIV2.S Wnw® Signed 16/16-bit fractional divide (W1:WO preserved) 1 6 240

DV2.U Wnw® Unsigned 16/16-bit integer divide (W1:WO preserved) 1 6 241 =

FLI M Wb, Vg ©) Force data (upper and lower) range limit without limit 1 1 261 @) (:n*
excess result (<D g

FLIM V Wb, V¢, wad©® Force data (upper and lower) range limit with limit 1 1 262 E g-
excess result D s

I NC f {, weg® Destination = f + 1 1 16 267 = %

I NC Ve, Wi Wd =Ws + 1 1 16 268 -~

I NC2 f {,weeg® Destination = f + 2 1 10) 269

I NC2 Ve, W Wd = Ws + 2 1 10) 270

MUL f W3:W2 = f * WREG 1 16) 323

MIL.SS Wb, W, Wid {Wnd + 1,Wnd} = signed(Wb) * signed(Ws) 1 10) 325

MJLL.SS Wb, W, Acc™ Accumulator = signed(Wb) * signed(Ws) 1 10) 327

MJL. SU Wb, #lit5, Wwid {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 328

Note 1: When the optional {, WREG operand is specified, the destination of the instruction is WREG. When { , WREG

is not specified, the destination of the instruction is the file register f.

2: In PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F and dsPIC33E devices, the divide instructions must be
preceded with a “REPEAT #17” instruction, such that they are executed 18 consecutive times, thus taking
18 instruction cycles. In dsPIC33C devices, the divide instructions must be preceded with a
“REPEAT #5” instruction, such that they are executed six consecutive times, thus taking six instruction
cycles.

3: These instructions are only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: These instructions are only available in dsPIC33E and dsPIC33C devices.

5: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU Special
Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and dsPIC33F
devices.

6: These instructions are only available in dsPIC33C devices.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 43

16-Bit MCU and DSC Programmer’s Reference Manual

Table 3-3: Math Instructions (Continued)

Assembly Syntax Description Words | Cycles NE;gbeer
MLL.SU Wb, V&, Wid {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 10) 329
MILL.SU Wb, W, Acc™ Accumulator = signed(Wb) * unsigned(Ws) 1 10) 331
MJL. SU Wb, # i t5, Acc® |Accumulator = signed(Wb) * unsigned(lit5) 1 1 332
MIL.US Wb, W, Wid {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 10) 333
MILL.US Wb, W, Acc™ Accumulator = unsigned(Wb) * signed(Ws) 1 10) 335
MJUL. WU Wb, #l i t5, Wwid {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5) 1 1 336
MUL. WU Wb, V&, Wad {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws) 1 10) 337
MILL.UU Wb, W, Acc™ Accumulator = unsigned(Wb) * unsigned(Ws) 1 10) 339
MJUL. WU Wb, # i t5, Acc® |Accumulator = unsigned(Wb) * unsigned(lit5) 1 1 340
MULW SS Wb, V&, Wad®) Wnd = signed(Wb) * signed(Ws) 1 10) 341
MULW SU Wb, Vi, Wad®) Wnd = signed(Wb) * unsigned(Ws) 1 10) 343
MILWSU Wb, #it5, Wid® [Wnd = signed(Wb) * unsigned(lit5) 1 1 345
MULW US Wb, V&, Wad®) Wnd = unsigned(Wb) * signed(Ws) 1 10) 346
MULW UU Wb, V&, Wad©) Wnd = unsigned(Wb) * unsigned(Ws) 1 10) 348
MILWUU Wb, #it5, Wd® |Wnd = unsigned(Wb) * unsignedlit5) 1 1 349
SE V&, Wid Wnd = sign-extended Ws 1 10) 406
SUB f {,weg® Destination = f - WREG 1 10) 418
SUB #it10, W Wn = Wn —it10 1 1 419
SUB Wb, # i t5, W Wd = Wb — lit5 1 1 420
SUB Wb, V&, W Wd = Wb — Ws 1 10) 421
SUBB f {,weeg® Destination = f - WREG — (C) 1 10) 424
SUBB #it10, W Wn = Wn —it10 — (C) 1 1 425
SUBB Wb, # i t5, W Wd = Wb —lit5 — (C) 1 1 426
SUBB Vb, V&, W Wd = Wb — Ws — (C) 1 10) 428
SUBBR f {,weeg® Destination = WREG — f — (C) 1 10) 430
SUBBR Wb, #1 i t5, W Wd = lits - Wb — (C) 1 1 431
SUBBR Wb, W, W Wd = Ws — Wb — (C) 1 10) 433
SUBR f {,weg® Destination = WREG — f 1 10) 435
SUBR Wb, # i t5, W Wd = lit5 — Wb 1 1 436
SUBR Wb, VW, W Wd = Ws — Wb 1 10) 437
ZE V&, Wad Wnd = zero-extended Ws 1 10) 456
Note 1: When the optional {, WREG operand is specified, the destination of the instruction is WREG. When { , WREG

is not specified, the destination of the instruction is the file register f.

2: In PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F and dsPIC33E devices, the divide instructions must be
preceded with a “REPEAT #17” instruction, such that they are executed 18 consecutive times, thus taking
18 instruction cycles. In dsPIC33C devices, the divide instructions must be preceded with a
“REPEAT #5” instruction, such that they are executed six consecutive times, thus taking six instruction
cycles.

3: These instructions are only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: These instructions are only available in dsPIC33E and dsPIC33C devices.

5. In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU Special
Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and dsPIC33F
devices.

6: These instructions are only available in dsPIC33C devices.

DS70000157G-page 44 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-4: Logic Instructions
Assembly Syntax Description Words Cycles NLF:;gbeer
AND f {,weg® Destination = f . AND. WREG 1 10) 116
AND #1110, Wh Wn = [it10 .AND. Wn 1 1 117
AND Wb, #lit5, Wi Wd = Wb .AND. lit5 1 1 118
AND Wb, Vi8, W Wd = Wb .AND. Ws 1 1) 119
CLR f f = 0x0000 1 1 192
CLR WREG WREG = 0x0000 1 1 192
CLR Wi Wd = 0x0000 1 1 193
coM f {,wReg @ Destination = f 1 10 197
com V&, W Wd = Ws 1 1) 198
I OR f {,weeg ® Destination = f .IOR. WREG 1 1) 271
I OR #1110, Wh Whn =1it10 .IOR. Wn 1 1 272
I OR W, #lit5, Wi Wd = Wb .IOR. lits 1 1 273
I OR Vb, Vié, W Wd = Wb .IOR. Ws 1 1) 274
NEG f {,wReg @ Destination = f + 1 1 10 350
NEG V6, W Wd = Ws + 1 1 1) 351
SETM f f = OxFFFF 1 1 408
SETM VREG WREG = OxFFFF 1 1 409
SETM Wi Wd = OxFFFF 1 1 409
XOR f {,wReg @ Destination = f XOR. WREG 1 10 451
XOR #1110, Wh Whn =1it10 .XOR. Wn 1 1 452
XOR W, #lit5, Wi Wd = Wb .XOR. lits 1 1 453
XOR Wb, Vi, W Wd = Wb .XOR. Ws 1 1(2) 454
Note 1: When the optional { , WREG operand is specified, the destination of the instruction is WREG. When
{, VREG is not specified, the destination of the instruction is the file register f.
2. In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU

Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and

dsPIC33F devices.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 45

2
o=
< c
® o
= e~
<_.
"ED:

7))
D
~+

16-Bit MCU and DSC Programmer’s Reference Manual

Table 3-5: Rotate/Shift Instructions
Assembly Syntax Description Words | Cycles NE;gbeer

ASR f {,weeg® Destination = arithmetic right shift f, LSb — C 1 10) 121
ASR Ve, Wi Wd = arithmetic right shift Ws, LSb — C 1 10) 123
ASR W, #l it 4, Wad Wnd = arithmetic right shift Wb by lit4 1 1 125
ASR Wb, Was, Whd Wnd = arithmetic right shift Wb by Wns 1 1 126
LSR f {,weeg® Destination = logical right shift f, LSb — C 1 10) 282
LSR Ve, Wi Wd = logical right shift Ws, LSb —» C 1 1) 284
LSR W, #lit4, Wwd Wnd = logical right shift Wb by lit4 1 1 286
LSR W, Was, Whd Wnd = logical right shift Wb by Wns 1 1 287
RLC f {,wReg @ Destination = rotate left through Carry f 1 1) 388
RLC Ws, Wi Wd = rotate left through Carry Ws 1 10 389
RINC f {,WREG WD Destination = rotate left (no Carry) f 1 10) 391
RLNC W, Wi Wd = rotate left (no Carry) Ws 1 1) 392
RRC f {, \REG @ Destination = rotate right through Carry f 1 10) 394
RRC Ws, Wi Wd = rotate right through Carry Ws 1 10 396
RRNC f {,WeeG @D Destination = rotate right (no Carry) 1 1) 398
RRNC Ws, Wi Wd = rotate right (no Carry) Ws 1 10 399
SL f {,weeg® Destination = left shift f, MSb — C 1 10) 412
SL Ve, Wi Wd = left shift Ws, MSb — C 1 1) 414
SL W, #lit4, Wwd Wnd = left shift Wb by lit4 1 1 416
SL W, Whs, Whd Wnd = left shift Wb by Wns 1 1 417
Note 1: When the optional {, WREG operand is specified, the destination of the instruction is WREG. When

{, WVREG is not specified, the destination of the instruction is the file register f.

2: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and

dsPIC33F devices.

DS70000157G-page 46

© 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-6: Bit Instructions
Assembly Syntax Description Words |Cycles® Page
Number
BCLR f,#bit4 Bit clear in f 1 1 127
BCLR W, #bit4 Bit clear in Ws 1 1 128
BFEXT #bi t 4, #wi d5, W, Wb Bit field extract from Ws to Wb 2 2 130
BFEXT #bi t 4, #wi d5, f, W@ Bit field extract from f to Wb 2 2 131
BFI NS #bi t 4, #wi d5, W, V@ Bit field insert from Wb into Ws 2 2 132
BFI NS #bi t 4, #wi d5, Wb, f @ Bit field insert from Wb into f 2 2 133
BFI NS #bi t 4, #wi d5, #1 i t 8, W@ | Bit field insert from #lit8 into Ws 2 2 134
BSET f,#bit4 Bit set in f 1 1 160
BSET W, #bit4 Bit set in Ws 1 1 161
BSW s, Wb Write C bit to Ws<Wb> 1 1 163
BTG f,#bit4 Bit toggle in f 1 1 165
BTG W, #bit4 Bit toggle in Ws 1 1 166
BTST f,#bit4 Bit test in f 1 1 175
BTST W, #bit4 Bit test in Ws 1 1 176
BTST Ws, Wb Bit test in Ws 1 1 178
BTSTS f,#bit4 Bit test f to Z, then set f 1 1 180
BTSTS W, #bit4 Bit test Ws to C, then set Ws 1 1 181
FBCL Ws, Wad Find bit change from left (MSb) side 1 1 255
FF1L W, Whd Find first one from left (MSb) side 1 1 257
FF1R W, Wid Find first one from right (LSb) side 1 1 259

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F
and PIC24H devices.

2: These instructions are only available in dsPIC33C devices.

2
o=
< c
® o
= e~
<_.
"ED:

7))
D
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 47

16-Bit MCU and DSC Programmer’s Reference Manual

Table 3-7: Compare/Skip and Compare/Branch Instructions

- Page

Assembly Syntax Description Words Cycles(l) Numgber
BTSC f, #bit4 Bit test f, skip if clear 1 1(2or3)®| 168
BTSC V6, #bi t 4 Bit test Ws, skip if clear 1 1@2or3)®| 170
BTSS f, #bit4 Bit test f, skip if set 1 12or3)®| 172
BTSS V6, #bi t 4 Bit test Ws, skip if set 1 1@2or3)®| 173
cP f Compare (f - WREG) 1 10) 200
CP Wb, #1 i t5@ |Compare (Wb — lit5) 1 1 201
cP Wb, #it83) |Compare (Wb — Iit8) 1 1 202
cP Wb, V6 Compare (Wb — Ws) 1 10) 203
CPO f Compare (f — 0x0000) 1 10) 204
CPO 3 Compare (Ws — 0x0000) 1 10) 205
CPB f Compare with Borrow (f —- WREG — C) 1 10 206
CPB Wb, # i t5@) |Compare with Borrow (Wb — Iit5 — C) 1 1 207
CPB Wb, #1 it 83 |Compare with Borrow (Wb — lit8 — C) 1 1 208
CPB Wb, W Compare with Borrow (Wb — Ws — C) 1 10) 209
CPBEQ Wb, W, Expr @ |Compare Wb with Wn, branch if = 1 1(5)@ 211
CPBGT Wb, Wi, Expr @ |Signed compare Wb with Wn, branch if > 1 1 (5 212
CPBLT Wb, W, Expr @ |Signed compare Wb with Wn, branch if < 1 1(5)* 213
CPBNE Wb, W, Expr @ |Compare Wb with Wn, branch if = 1 1(5)@ 212
CPSEQ W, wi® Compare (Wb — Wn), skip if = 1 1(2or3) | 215
CPSEQ b, wa®) Compare (Wb — Wn), skip if = 1 1(or3) | 216
CPSGT W, W@ Signed compare (Wb — Wn), skip if > 1 1(2or3) | 217
CPSGT b, wa®) Signed compare (Wb — Wn), skip if > 1 1(2or3) | 218
CPSLT W, W@ Signed compare (Wb — Wn), skip if < 1 1(2or3) | 219
CPSLT b, wa®) Signed compare (Wb — Wn), skip if < 1 1(or3) | 220
CPSNE Wb, wa@ Signed compare (Wb — Wn), skip if = 1 1(2or3) | 221
CPSNE b, wa®) Signed compare (Wb — Wn), skip if 1 1(2or3) | 222
Note 1: Conditional skip instructions execute in one cycle if the skip is not taken, two cycles if the skip is taken over
a one-word instruction and three cycles if the skip is taken over a two-word instruction.

2: This instruction is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

3: This instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: Compare/Branch instructions in PIC24E/dsPIC33E devices and in dsPIC33C Master cores execute in
one cycle if the branch is not taken, and five cycles if the branch is taken. Compare/Branch instructions in
dsPIC33C Slave cores execute in one cycle if the branch is not taken and two cycles if the branch is taken.

5: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU

Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and

dsPIC33F devices.

DS70000157G-page 48

© 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-8: Program Flow Instructions
. Page
Assembly Syntax Description Words Cycles Numgber
BRA Expr Branch unconditionally 1 26) 136
BRA w®) Computed branch 1 28) 137
BRA wi® Computed branch 1 2(8) 138
BRA C Expr Branch if Carry (no Borrow) 1 1 (2)18) 139
BRA GE Expr Branch if signed greater than or equal 1 1 (2)18) 141
BRA GEU Expr Branch if unsigned greater than or equal 1 1 (2)(1'8) 142
BRA GT Expr Branch if signed greater than 1 1 (2)18) 143
BRA GTU Expr Branch if unsigned greater than 1 1 (2)18) 144
BRA LE Expr Branch if signed less than or equal 1 1 (2)(1'8) 145
BRA LEU Expr Branch if unsigned less than or equal 1 1 (2)18) 146
BRA LT Expr Branch if signed less than 1 1 (2)18) 147
BRA LTU Expr Branch if unsigned less than 1 1 (2)(1'8) 148
BRA N Expr Branch if Negative 1 1 (2)18) 149
BRA NC Expr Branch if not Carry (Borrow) 1 1 (2)18) 150
BRA NN Expr Branch if not Negative 1 1 (2)%8) 151
BRA NOV Expr Branch if not Overflow 1 1 (2)18) 152
BRA NZ Expr Branch if not Zero 1 1 (2)18) 153
BRA QA Expr©® Branch if Accumulator A Overflow 1 1 (2)%8) 154
BRA OB Expr® Branch if Accumulator B Overflow 1 1 (2)18) 155
BRA OV Expr Branch if Overflow 1 1 (2)18) 156
BRA SA Expr® Branch if Accumulator A Saturate 1 1 (2)%8) 157
BRA SB Expr® Branch if Accumulator B Saturate 1 1 (2)18) 158
BRA Z Expr Branch if Zero 1 1 (2)18) 159
CALL Expr ©®) Call subroutine 2 2(8) 183
CALL Expr 4 Call subroutine 2 28) 185
CALL wi©®) Call indirect subroutine 1 2 187
CALL w@ Call indirect subroutine 1 28 189
CALL.L wh® Call indirect subroutine long (long address) 1 4 191
DO # it 14, Expr © | Do code through PC + Expr, (lit14 + 1) times 2 2 242
DO # it 15, Expr) | Do code through PC + Expr, (lit15 + 1) times 2 2 244
DO wi, Expr © Do code through PC + Expr, (Wn + 1) times 2 2 246
DO wi, Expr (1) Do code through PC + Expr, (Wn + 1) times 2 2 248
Note 1: Conditional branch instructions execute in one cycle if the branch is not taken or two cycles if the branch is taken.

2: RETURN instructions execute in three cycles, but if an exception is pending, they execute in two cycles.

3: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

4: This instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

5: This instruction is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction is only available in dsPIC30F and dsPIC33F devices.

7: This instruction is only available in dsPIC33E and dsPIC33C devices.

8: InPIC24E and dsPIC33E devices, and in dsPIC33C Master cores, these instructions require two additional
cycles (four cycles overall) when the branch is taken when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices, and dsPIC33C Slave cores.

9: In dsPIC33E and PIC24E devices, and in dsPIC33C Master cores, these instructions require three additional

cycles when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices, and dsPIC33C Slave cores.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 49

2
o=
< c
® o
= e~
<_.
(ED:

7))
D
~+

16-Bit MCU and DSC Programmer’s Reference Manual

Table 3-8: Program Flow Instructions (Continued)

Assembly Syntax Description Words Cycles Niagbeer
GoTO Expr Go to address 2 2(8) 263
GoTO wi® Go to address indirectly 1 2(8) 264
GoTO w® Go to address indirectly 1 28) 265
cotoL w®@ Go to indirect (long address) 1 4 266
RCALL Expr ©®) Relative call 1 28 367
RCALL Expr) Relative call 1 28) 369
RCALL w® Computed call 1 2(8) 371
RCALL w@ Computed call 1 2(8) 373
REPEAT #lit140®) Repeat next instruction (lit14 + 1) times 1 1 375
REPEAT #lit15®¥) Repeat next instruction (lit15 + 1) times 1 1 376
REPEAT w®) Repeat next instruction (Wn + 1) times 1 1 377
REPEAT W Repeat next instruction (Wn + 1) times 1 1 378
RETFI E®) Return from interrupt enable 1 3(2)@9 380
RETFI E®) Return from interrupt enable 1 3(2)@9 381
RETLW #lit10, w® Return with [it10 in Wn 1 3(2)@9 382
RETLW #lit10, wa® Return with lit10 in Wn 1 3(2)@9 384
RETURN®) Return from subroutine 1 3(2)@9) 386
RETURN® Return from subroutine 1 3(2)@9) 387
Note 1: Conditional branch instructions execute in one cycle if the branch is not taken or two cycles if the branch is taken.

2. RETURN instructions execute in three cycles, but if an exception is pending, they execute in two cycles.

3: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

4: This instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

5: This instruction is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction is only available in dsPIC30F and dsPIC33F devices.

7: This instruction is only available in dsPIC33E and dsPIC33C devices.

8: InPIC24E and dsPIC33E devices, and in dsPIC33C Master cores, these instructions require two additional

cycles (four cycles overall) when the branch is taken when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices, and dsPIC33C Slave cores.

9: In dsPIC33E and PIC24E devices, and in dsPIC33C Master cores, these instructions require three additional
cycles when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices, and dsPIC33C Slave cores.

DS70000157G-page 50 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-9: Shadow/Stack/Context Instructions
Assembly Syntax Description Words Cycles NLF:;gbeer
BoOTSWP(*) Swap the active and inactive program Flash spaces 1 2 135
CTXTSWP #1it3(23) |Switch CPU register context to context defined by #lit3 1 2 223
CTXTSWP w23 Switch CPU register context to context defined by Wn 1 2 224
LNK #it140) |Link Frame Pointer 1 1 280
LNK #it146) |Link Frame Pointer 1 1 281
POP f Pop TOS to f 1 1 357
POP 0 Pop TOS to Wd 1 1 358
POP. D Whd Double pop from TOS to Wnd:Wnd + 1 1 2 359
POP. S POP shadow registers 1 1 360
PUSH f Push f to TOS 1 10 361
PUSH Vé Push Ws to TOS 1 1) 362
PUSH. D Whs Push double Wns:Wns + 1 to TOS 1 2 364
PUSH. S Push shadow registers 1 1 365
ULNK®) Unlink Frame Pointer 1 1 448
ULNK®) Unlink Frame Pointer 1 1 449
Note 1: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices.
2: These instructions are only available in dsPIC33C and some dsPIC33E devices. Please see the specific
device data sheet for details.
3: IndsPIC33C devices, these instructions also switch the accumulator context in addition to the CPU register
context.
4: These instructions are only available in some PIC24F, dsPIC33E and dsPIC33C devices. Please see the
specific device data sheet for details.
5: These instructions are only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices. Please see
the specific device data sheet for details.
6: These instructions are only available in PIC24E, dsPIC33E and dsPIC33C devices. Please see the specific
device data sheet for details.
Table 3-10: Control Instructions
Assembly Syntax Description Words | Cycles Niagbeer
CLRWDT Clear Watchdog Timer 1 1 196
D Si #litl4d Disable interrupts for (lit14 + 1) instruction cycles 1 1 232
NOP No operation 1 1 354
NOPR No operation 1 1 355
PWRSAV #litl Enter Power-Saving mode lit1 1 1 366
RESET Software Device Reset 1 1 379

© 2005-2018 Microchip Technology Inc. DS70000157G-page 51

2
o=
< c
® o
= e~
<_.
"ED:

7))
D
~+

16-Bit MCU and DSC Programmer’s Reference Manual

Table 3-11: DSP Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
Assembly Syntax Description Words | Cycles NE%gbeer
ADD Acc Add accumulators 1 1 107
ADD V&, #Sl i t 4, Acc 16-bit signed add to accumulator 1 1@ 108
CLR Acc, [W], Wd, [W], Wd, AWB Clear accumulator, prefetch operands 1 1 194
ED Wit Wn Acc, [W], [W], Wkd Euclidean distance (no accumulate) 1 1 250
EDAC WirWn Acc, [W], [W], Wd Euclidean distance 1 1 252
LAC V&, #Slit4, Acc Load accumulator 1 1@ 276
LAC.D Wo, #Slit4, Acc®@ Load accumulator double word 1 1 278
MAC Wit WA, Acc, [W], Wd, [W], Wd, AWB |Multiply and accumulate 1 1 288
MAC Wit Wh Acc, [W], Wwd, [W], Wd Square and accumulate 1 1 290
MAX Acc® Force accumulator maximum data limit 1 1 292
MAX.V Acc, W@ Force accumulator maximum data limit 1 1 293
and store limit excess result
M N Acc® Force accumulator minimum data limit 1 1 294
M NV Acc, wi® Force accumulator minimum data limit 1 1 295
and store limit excess result
M Nz Acc® Conditionally force accumulator 1 1 296
minimum data limit if Z flag is set
M NZ.V Acc, W@ Conditionally force accumulator 1 1 297
minimum data limit and store limit
excess result if Z flag is set
MOVSAC Acc, [W], Wkd, [W], Wd, AWB Move Wx to Wxd and Wy to Wyd 1 1 313
MPY Wit Wh, Acc, [W], Wkd, [W], Wd Multiply Wm by Wn to accumulator 1 1 315
MPY Wit Wn Acc, [W], Wkd, [W], Wd Square to accumulator 1 1 317
MPY. N WirWh, Acc, [W], Wd, [W], Wd (Multiply -Wm by Wn) to accumulator 1 1 319
VBC Wit WA, Acc, [W], Wd, [W], Wd, AWB | Multiply and subtract from accumulator 1 1 321
NEG Acc Negate accumulator 1 1 350
NORM Acc, wi® Normalize accumulator 1 1 356
SAC Acc, #Slit4, W Store accumulator 1 1 401
SAC.D Acc,#Slit4, wid®@ Store accumulator double word 1 1 403
SAC.R Acc,#Slit4, W Store rounded accumulator 1 1 404
SFTAC Acc,#Slit6 Arithmetic shift accumulator by Slit6 1 1 410
SFTAC Acc, W Arithmetic shift accumulator by (Wb) 1 1 411
SUB Acc Subtract accumulators 1 1 418
Note 1: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU Special

2:

Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and dsPIC33F

devices.

These instructions are only available in dsPIC33C devices.

DS70000157G-page 52

© 2005-2018 Microchip Technology Inc.

MICROCHIP

Section 4. Instruction Set Details

HIGHLIGHTS
This

4.1
4.2
4.3
4.4
4.5
4.6
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
417

4.19

4.21

section of the manual contains the following major topics:

Data AdAressing MOAES..........cooiiii ittt e e e e e e e e e e e s e s nraeeeees 54
Program AddressSing MOUESccooeiiiiiiiiie ettt e e e e e e e e e e e e e e e e eee s enraenaees 63
INSTAUCHION STAIIS ...ttt e e e e e neeeeaenees 64
BYIE OPEIatiONScoimiiiiiiii e 66
WOrd MOVE OPEIatioNSueiiiiiiiiiiie ettt 68
Using 10-Bit Literal Operands...........cccuuiiieiiiiiiie et a e 71
Software Stack Pointer and Frame Pointer...........cccoiiiiiiiiiie e 72
Conditional Branch INSTrUCHONScccuuiiiiiie e 78
Z SEATUS Bit. ..o e e e e s 79
Assigned Working Register USAgeooiiiiiiiiiiiiiiie et 80
DSP Data Formats (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)............ 83
Accumulator Usage (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)............ 85
Accumulator Access (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 86
DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)......... 86
DSP Accumulator Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices).....90
Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C

DBVICES) ..ttt ettt e ettt e e et e e e e et eeae e e e neeeaeeana 90
Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E
AN ASPIC33C DEVICES).....eeiieeiiiiiiiie ettt ettt e ettt e e e et e e e e e nn e e e e e e aneeeeas 93

Extended Precision Arithmetic Using Mixed-Sign Multiplications (dsPIC33E and
dsPIC33C Only)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 53

s|relaq
18S uOoNoNIISU|

16-Bit MCU

and DSC Programmer’s Reference Manual

41 DATA ADDRESSING MODES

The 16-bit MCU and DSC devices support three native addressing modes for accessing data
memory, along with several forms of Immediate Addressing. Data accesses may be performed
using File Register Addressing, Register Direct or Indirect Addressing, and Immediate
Addressing, allowing a fixed value to be used by the instruction.

File Register Addressing provides the ability to operate on data stored in the lower 8K of data
memory (Near RAM), and also move data between the Working registers and the entire 64K data
space. Register Direct Addressing is used to access the 16 memory-mapped Working registers,
WO0:W15. Register Indirect Addressing is used to efficiently operate on data stored in the entire
64K data space (and also Extended Data Space in the case of dsPIC33E/dsPIC33C/PIC24E and
some PIC24F devices), using the contents of the Working registers as an Effective Address (EA).
Immediate Addressing does not access data memory, but provides the ability to use a constant
value as an instruction operand. The address range of each mode is summarized in Table 4-1.

Table 4-1: 16-Bit MCU and DSC Addressing Modes
Addressing Mode Address Range
File Register 0x0000-0x1FFF()
Register Direct 0x0000-0x001F (Working register array, W0:W15)
Register Indirect 0x0000-0xFFFF
Immediate N/A (constant value)

Note 1: The address range for the File Register MOV is 0x0000-OxFFFE.

4.1.1 File Register Addressing

File Register Addressing is used by instructions which use a predetermined data address as an
operand for the instruction. The majority of instructions that support File Register Addressing
provide access to the lower 8 Kbytes of data memory, which is called the Near RAM. However,
the MOV instruction provides access to all 64 Kbytes of memory using File Register Addressing.
This allows the loading of the data from any location in data memory to any Working register and
storing the contents of any Working register to any location in data memory. It should be noted
that File Register Addressing supports both byte and word accesses of data memory, with the
exception of the MOV instruction, which accesses all 64K of memory as words. Examples of File
Register Addressing are shown in Example 4-1.

Most instructions which support File Register Addressing perform an operation on the specified
file register and the default Working register, WREG (see Section 2.4 “Default Working Reg-
ister (WREG)"). If only one operand is supplied in the instruction, WREG is an implied operand
and the operation results are stored back to the file register. In these cases, the instruction is
effectively a Read-Modify-Write instruction. However, when both the file register and the WREG
register are specified in the instruction, the operation results are stored in the WREG register and
the contents of the file register are unchanged. Sample instructions that show the interaction
between the file register and the WREG register are shown in Example 4-2.

Note: Instructions which support File Register Addressing use ‘¥ as an operand in theI

instruction summary tables of Section 3. “Instruction Set Overview”.

DS70000157G-page 54

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-1: File Register Addressing
DEC 0x1000 ; decrenent data stored at 0x1000

Before Instruction:

Data Menory 0x1000 = 0x5555
After Instruction:

Data Menory 0x1000 = 0x5554

MoV OX27FE, W) ; nmove data stored at Ox27FE to W)
Before Instruction:

W = 0x5555

Data Menory Ox27FE = 0x1234

After Instruction:

W = 0x1234
Data Menory Ox27FE = 0x1234

Example 4-2: File Register Addressing and WREG

AND 0x1000 ; AND 0x1000 with WREG store to 0x1000
Before Instruction:

W (WREG) = 0x332C

Data Menory 0x1000 = 0x5555
After Instruction:

W (WREG) = 0x332C

Data Menory 0x1000 = 0x1104

AND 0x1000, WREG ; AND 0x1000 with WREG, store to WREG
Before Instruction:

W (WREG) = 0x332C

Data Menory 0x1000 = 0x5555

After Instruction:

W (WREG = 0x1104
Data Menory 0x1000 = 0x5555

4.1.2 Register Direct Addressing

Register Direct Addressing is used to access the contents of the 16 Working registers (W0:W15).
The Register Direct Addressing mode is fully orthogonal, which allows any Working register to
be specified for any instruction that uses Register Direct Addressing, and it supports both byte
and word accesses. Instructions which employ Register Direct Addressing use the contents of
the specified Working register as data to execute the instruction; therefore, this addressing mode
is useful only when data already resides in the Working register core. Sample instructions which
utilize Register Direct Addressing are shown in Example 4-3.

o
®
—t
=3
)

18S UO0N9NJISU|

Another feature of Register Direct Addressing is that it provides the ability for dynamic flow
control. Since variants of the DO and REPEAT instruction support Register Direct Addressing,
flexible looping constructs may be generated using these instructions.

Note: Instructions which must use Register Direct Addressing, use the symbols Wb, Wn,
Wns and Wnd in the summary tables of Section 3. “Instruction Set Overview”.
Commonly, Register Direct Addressing may also be used when Register Indirect
Addressing may be used. Instructions which use Register Indirect Addressing, use
the symbols Wd and Ws in the summary tables of Section 3. “Instruction Set
Overview”.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 55

16-Bit MCU and DSC Programmer’s Reference Manual

Example 4-3: Register Direct Addressing

EXCH W, W8 ; Exchange W2 and WB
Before Instruction:

W2 0x3499
B 0x003D

After Instruction:

W 0x003D
W8 0x3499

I OR #0x44, W) I ncl usi ve- OR 0x44 and W
Before Instruction:
W = 0x9C2E

After Instruction:

W = O0x9C6E

SL ws, W, W8 ; Shift left Wo by W, and store to W8
Before Instruction:

W6 = 0x000C

W = 0x0008

W8 = 0x1234
After Instruction:

W6 = 0x000C

W = 0x0008

W8 = 0x0C00
4.1.3 Register Indirect Addressing

Register Indirect Addressing is used to access any location in data memory by treating the
contents of a Working register as an Effective Address (EA) to data memory. Essentially, the
contents of the Working register become a pointer to the location in data memory which is to be
accessed by the instruction.

This addressing mode is powerful, because it also allows one to modify the contents of the Work-
ing register, either before or after the data access is made, by incrementing or decrementing the
EA. By modifying the EA in the same cycle that an operation is being performed, Register Indirect
Addressing allows for the efficient processing of data that is stored sequentially in memory. The
modes of Indirect Addressing supported by the 16-bit MCU and DSC devices are shown in
Table 4-2.

Table 4-2: Indirect Addressing Modes
. Function Function I
Indirect Mode | Syntax (Byte Instruction) | (Word Instruction) Description

No Modification |[Wh] EA = [Wh] EA = [Wh] The contents of Wn form the EA.

Pre-Increment | [++WA] EA = [Wh + = 1] |EA = [Wh + = 2] |Wn s pre-incremented to form the EA.

Pre-Decrement |[- - WA] EA = [Wh — = 1] |[EA = [Wh — = 2] |Wn s pre-decremented to form the EA.

Post-Increment | [Wh++] EA = [W]+ =1 |EA = [Wi]+ = 2 |The contents of Wn form the EA, then
Wnhn is post-incremented.

Post-Decrement |[Wh- -] EA = [Wh] — =1 |[EA = [W] — = 2 | The contents of Wn form the EA, then
Wnhn is post-decremented.

Register Offset |[[Wi+Wb] |EA = [Wh + W] EA = [Wh + W] The sum of Wn and Wb forms the EA.
Wn and Wb are not modified.

DS70000157G-page 56

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

Table 4-2 shows that four addressing modes modify the EA used in the instruction, and this allows
the following updates to be made to the Working register: post-increment, post-decrement,
pre-increment and pre-decrement. Since all EAs must be given as byte addresses, support is
provided for Word mode instructions by scaling the EA update by two. Namely, in Word mode,
pre/post-decrements subtract two from the EA stored in the Working register and
pre/post-increments add two to the EA. This feature ensures that after an EA modification is made,
the EA will point to the next adjacent word in memory. Example 4-4 shows how Indirect Addressing
may be used to update the EA.

Table 4-2 also shows that the Register Offset mode addresses data which is offset from a base
EA stored in a Working register. This mode uses the contents of a second Working register to
form the EA by adding the two specified Working registers. This mode does not scale for Word
mode instructions, but offers the complete offset range of 64 Kbytes. Note that neither of the
Working registers used to form the EA is modified. Example 4-5 shows how Register Offset
Indirect Addressing may be used to access data memory.

Note: The MOV with offset instructions (see pages 299 and 300) provides a literal
addressing offset ability to be used with Indirect Addressing. In these instructions,
the EA is formed by adding the contents of a Working register to a signed 10-bit
literal. Example 4-6 shows how these instructions may be used to move data to and
from the Working register array.
Example 4-4: Indirect Addressing with Effective Address Update
MOV.B [WO++], [WL3--] ; byte move [WO] to [WA3]
; post-inc W), post-dec W3
Before Instruction:
W = 0x2300
WL3 = 0x2708
Data Menory 0x2300 = 0x7783
Data Menory 0x2708 = 0x904E
After Instruction:
W = 0x2301
WL3 = 0x2707
Data Menory 0x2300 = 0x7783
Data Menory 0x2708 = 0x9083
ADD WL, [--Ws], [++W8] ; pre-dec Wb, pre-inc W8
add WL to [Ws], store in [W8]
Before Instruction:
W = 0x0800 =1
Wb = 0x2200 7
W8 = 0x2400 o =
Data Menory Ox21FE = 0x7783 dS
Data Menmory 0x2402 = OXAACC =1
. =0
After Instruction: " >
W = 0x0800 %
Wb = Ox21FE —
W8 = 0x2402
Data Menory Ox21FE = 0x7783
Data Menory 0x2402 = Ox7F83

© 2005-2018 Microchip Technology Inc. DS70000157G-page 57

16-Bit MCU and DSC Programmer’s Reference Manual

Example 4-5: Indirect Addressing with Register Offset

MOV. B [WO+WL], [W/++]
Before Instruction:

W = 0x2300
WL = OxO1FE
W = 0x1000
Data Menory Ox24FE = 0x7783
Data Menory 0x1000 = 0x11DC

After Instruction:

W = 0x2300
WL = OxO01FE
W = 0x1001

Data Menory Ox24FE = 0x7783
Data Menory 0x1000 = 0x1183

LAC [VO+WB], A

Before Instruction:

W 0x2344

W8 = 0x0008

ACCA = 0x00 7877 9321

Data Menory 0x234C = OxE290

After Instruction:

W 0x2344

W8 = 0x0008

ACCA = OxFF E290 0000

Data Menory 0x234C = OxE290

byte nove [W)+WL] to W/, post-inc W

; load ACCA with [W+W8]
(sign-extend and zero-backfill)

Example 4-6: Move with Literal Offset Instructions

MOV [W+0x20], WL
Before Instruction:

W 0x1200
WL = OxO01FE
Data Menory 0x1220 = OxFD27

After Instruction:

W 0x1200
WL = OxFD27
Data Menory 0x1220 = OxFD27

MOV Wi, [W8- 0x300]
Before Instruction:

W = 0x3411
W8 = 0x2944
Data Menory 0x2644 = 0xCB98

After Instruction:

W = 0x3411
W8 = 0x2944
Data Menory 0x2644 = 0x3411

; move [W+0x20] to WL

; move WA to [WB- 0x300]

DS70000157G-page 58

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

41.3.1 REGISTER INDIRECT ADDRESSING AND THE INSTRUCTION SET

The addressing modes presented in Table 4-2 demonstrate the Indirect Addressing mode
capability of the 16-bit MCU and DSC devices. Due to operation encoding and functional consid-
erations, not every instruction which supports Indirect Addressing supports all modes shown in
Table 4-2. The majority of instructions which use Indirect Addressing support the No Modify,
Pre-Increment, Pre-Decrement, Post-Increment and Post-Decrement Addressing modes. The
MOV instructions, and several accumulator-based DSP instructions (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C devices only), are also capable of using the Register Offset Addressing
mode.

Note: Instructions which use Register Indirect Addressing use the operand symbols, Wd
and Ws, in the summary tables of Section 3. “Instruction Set Overview”.

41.3.2 DSP MACINDIRECT ADDRESSING MODES (dsPIC30F, dsPIC33F,
dsPIC33E AND dsPIC33C DEVICES)

A special class of Indirect Addressing modes is utilized by the DSP MAC instructions. As is
described later in Section 4.15 “DSP NMAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C Devices)”, the DSP MAC class of instructions is capable of performing two fetches
from memory using Effective Addressing. Since DSP algorithms frequently demand a broader
range of address updates, the addressing modes offered by the DSP MAC instructions provide
greater range in the size of the Effective Address update which may be made. Table 4-3 shows
that both X and Y prefetches support Post-Increment and Post-Decrement Addressing modes,
with updates of two, four and six bytes. Since DSP instructions only execute in Word mode, no
provisions are made for odd-sized EA updates.

Table 4-3: DSP MAC Indirect Addressing Modes

Addressing Mode X Memory Y Memory
Indirect with No Modification EA =[WXx] EA = [Wy]
Indirect with Post-Increment by two EA=[Wx]+=2 EA=[Wy]+=2
Indirect with Post-Increment by four EA=[Wx]+=4 EA=[Wy]+=4
Indirect with Post-Increment by six EA=[Wx]+=6 EA=[Wy]+=6
Indirect with Post-Decrement by two EA=[Wx]-=2 EA=[Wy]-=2
Indirect with Post-Decrement by four EA=[Wx]-=4 EA=[Wy]-=4
Indirect with Post-Decrement by six EA=[Wx]-= EA = [Wy] - =
Indirect with Register Offset EA =[W9 + W12] EA = [W11 + W12]

Note: As described in Section 4.15 “DSP MAC Instructions (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)”, only W8 and W9 may be used to access
X memory, and only W10 and W11 may be used to access Y memory.

4.1.3.3 MODULO AND BIT-REVERSED ADDRESSING MODES (dsPIC30F,
dsPIC33F, dsPIC33E AND dsPIC33C DEVICES)

The 16-bit DSC architecture provides support for two special Register Indirect Addressing
modes, which are commonly used to implement DSP algorithms. Modulo (or circular) Addressing
provides an automated means to support circular data buffers in X and/or Y memory. Modulo
buffers remove the need for software to perform address boundary checks, which can improve
the performance of certain algorithms. Similarly, Bit-Reversed Addressing allows one to access
the elements of a buffer in a nonlinear fashion. This addressing mode simplifies data re-ordering
for radix-2 FFT algorithms and provides a significant reduction in FFT processing time.

Both of these addressing modes are powerful features of the dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C architectures, which can be exploited by any instruction that uses Indirect
Addressing. Refer to the specific device family reference manual for details on using Modulo and
Bit-Reversed Addressing.

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 59

16-Bit MCU

and DSC Programmer’s Reference Manual

4.1.4 Immediate Addressing

In Immediate Addressing, the instruction encoding contains a predefined constant operand, which
is used by the instruction. This addressing mode may be used independently, but it is more
frequently combined with the File Register, Direct and Indirect Addressing modes. The size of the
immediate operand which may be used varies with the instruction type. Constants of size 1-bit
(#lit1), 4-bit (#bit4, #lit4 and #Slit4), 5-bit (#lit5), 6-bit (#Slit6), 8-bit (#lit8), 10-bit (#lit10 and #Slit10),
14-bit (#lit14) and 16-bit (#lit16) may be used. Constants may be signed or unsigned and the
symbols, #Slit4, #Slit6 and #Slit10, designate a signed constant. All other immediate constants are
unsigned. Table 4-4 shows the usage of each immediate operand in the instruction set.

Note: The 6-bit (#Slit6) operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.

Table 4-4: Immediate Operands in the Instruction Set
Operand Instruction Usage
#litl PVWRSAV

#it3 CTXTSWP®)

#bit4 BCLR, BSET, BTG BTSC, BTSS, BTST, BTST.C, BTST.Z, BTSTS,
BTSTS. C, BTSTS. Z

#ita ASR LSR SL
#Slit4 |ADD, LAC, SAC, SAC. R
#wi d4 BFEXT, BFI Ns(®)

#its ADD, ADDC, AND, cP®), cPB®), |OR MJL.SU MJL.UU, SUB, SUBB,
SUBBR, SUBR XOR

#slite® |SFTAC
#it8 mov. B, cP@, cpe®
#lit10 ADD, ADDC, AND, CP, CPB, IOR RETLW SUB, SUBB, XOR
#Slit10 |MOV
#lit14 |DISI, DO?, LNK REPEAT®)
#it15 |DO®), REPEAT®
#lit16 MOV
Note 1: This operand or instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.
2: This operand or instruction is only available in dsPIC30F and dsPIC33F devices.
This operand or instruction is only available in dsPIC33E and dsPIC33C devices.

4: This operand or instruction is only available in dsPIC33E, dsPIC33C and PIC24E
devices.

5: This operand or instruction is only available in dsPIC30F, dsPIC33F, PIC24F and
PIC24H devices.

6: This operand or instruction is only available in dsPIC33C devices.

w

DS70000157G-page 60

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

The syntax for Immediate Addressing requires that the number sign (#) must immediately
precede the constant operand value. The “#” symbol indicates to the assembler that the quantity
is a constant. If an out-of-range constant is used with an instruction, the assembler will generate
an error. Several examples of Immediate Addressing are shown in Example 4-7.

Example 4-7: Immediate Addressing

PWRSAV #1 ; Enter |DLE node

ADD. B #0x10, W ; Add 0x10 to W) (byte node)
Before Instruction:
W = 0x12A9

After Instruction:
W = 0x12B9

XOR W, #1, [WL++] ; Exclusive-OR W and 0Ox1
; Store the result to [W]
; Post-increment W

Before Instruction:

W OxFFFF
W 0x0890
Data Menory 0x0890 = 0x0032

After Instruction:

W OxFFFF
WL 0x0892
Data Menory 0x0890 = OXFFFE

4.1.5 Data Addressing Mode Tree
The Data Addressing modes of the PIC24F, PIC24H and PIC24E families are summarized in

Figure 4-1.
Figure 4-1: Data Addressing Mode Tree (PIC24F, PIC24H, PIC24E)
Immediate
File Register No Modification
Data Addressing Modes Pre-Increment
Direct
Pre-Decrement
Indirect Post-Increment

Post-Decrement

o
®
—t
=3
)

Literal Offset

Register Offset

18S UO0N9NJISU|

© 2005-2018 Microchip Technology Inc. DS70000157G-page 61

16-Bit MCU and DSC Programmer’s Reference Manual

The Data Addressing modes of the dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C are summarized

in Figure 4-2.
Figure 4-2: Data Addressing Mode Tree (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
Immediate
File Register No Modification
Basic) Pre-Increment
Direct
Pre-Decrement
Indirect Post-Increment
Post-Decrement
Data Addressing Modes Literal Offset
Register Offset
Direct
DSP MAC No Modification
Post-Increment (2, 4 and 6)
Indirect Post-Decrement (2, 4 and 6)
Register Offset

DS70000157G-page 62 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.2 PROGRAM ADDRESSING MODES

The 16-bit MCU and DSC devices have a 24-bit Program Counter (PC). The PC addresses the
24-bit wide program memory to fetch instructions for execution and it may be loaded in several
ways. For byte compatibility with the table read and table write instructions, each instruction word
consumes two locations in program memory. This means that during serial execution, the PC is
loaded with PC + 2.

Several methods may be used to modify the PC in a non-sequential manner, and both absolute
and relative changes may be made to the PC. The change to the PC may be from an immediate
value encoded in the instruction or a dynamic value contained in a Working register. In dsPIC30F,
dsPIC33F and dsPIC33E devices, when DOlooping is active, the PC is loaded with the address
stored in the DOSTART register after the instruction at the DOEND address is executed. For
exception handling, the PC is loaded with the address of the exception handler, which is stored
in the Interrupt Vector Table (IVT). When required, the software stack is used to return scope to
the foreground process from where the change in program flow occurred.

Table 4-5 summarizes the instructions which modify the PC. When performing function calls, it is
recommended that RCALL be used instead of CALL, since RCALL only consumes one word of
program memory.

Table 4-5: Methods of Modifying Program Flow
Condition/Instruction PC Modification Software Stack Usage

Sequential Execution PC=PC+2 None

BRA Expr () PC = PC + 2 * Slit16 None

(Branch Unconditionally)

BRA Condi tion, Expr® PC = PC + 2 (condition false) None

(Branch Conditionally) PC = PC + 2 * Slit16 (condition true)

CALL Expr® PC = lit23 PC + 4 is PUSHed on the stack(®

(Call Subroutine)

CALL W PC = Wn PC + 2 is PUSHed on the stack(®

(Call Subroutine Indirect)

CALL. L w®) PC = {Wn+1:Wn} PC + 2 is PUSHed on the stack®

(Call Indirect Subroutine Long)

coro Expr PC = lit23 None

(Unconditional Jump)

GOro Wh PC=Wn None

(Unconditional Indirect Jump)

coro L w®) PC = {Wn+1:Wn} None

(Unconditional Indirect Long Jump) _
RCALL Expr® PC = PC + 2 * Slit16 PC + 2 is PUSHed on the stack® 2
(Relative Call) =
RCALL Wi PC=PC+2*Wn PC + 2 is PUSHed on the stack(® 5 S
(Computed Relative Call) g =
Exception Handling PC = Address of the exception handler | PC + 2 is PUSHed on the stack(®) " g

(read from vector table) wn

PC = Target REPEAT instruction PC not modified (if REPEAT active) None @
(REPEAT Looping)

PC = DOEND address®) PC = DOSTART (if DO active) None

(DOLooping)

Note 1. For BRA, CALL and GOTO, the Expr may be a label, absolute address or expression, which is resolved by
the linker to a 16-bit or 23-bit value (Slit16 or lit23). When representing an address offset value, Expr can
also be indicated by using a “.” and a sign, “+” or “-”. For example, the expression, “.+2”, means an
address offset of +2 (i.e., the next instruction address relative to the current position of the Program
Counter). See Section 5. “Instruction Descriptions” for details.

After CALL or RCALL is executed, RETURN or RETLWwill POP the Top-of-Stack (TOS) back into the PC.
After an exception is processed, RETFI E will POP the Top-of-Stack (TOS) back into the PC.

This condition/instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

This condition instruction is only available in dsPIC33E, dsPIC33C and PIC24E devices.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 63

16-Bit MCU and DSC Programmer’s Reference Manual

4.3

INSTRUCTION STALLS

In order to maximize the data space EA calculation and operand fetch time, the X data space
read and write accesses are partially pipelined. A consequence of this pipelining is that address
register data dependencies may arise between successive read and write operations using
common registers.

‘Read-After-Write’ (RAW) dependencies occur across instruction boundaries and are detected
by the hardware. An example of a RAW dependency would be a write operation that modifies
WS5, followed by a read operation that uses W5 as an Address Pointer. The contents of W5 will
not be valid for the read operation until the earlier write completes. This problem is resolved by
stalling the instruction execution for one instruction cycle, which allows the write to complete
before the next read is started.

4.3.1

During the instruction predecode, the core determines if any address register dependency is
imminent across an instruction boundary. The Stall detection logic compares the W register
(if any) used for the destination EA of the instruction currently being executed with the W register
to be used by the source EA (if any) of the prefetched instruction. When a match between the
destination and source registers is identified, a set of rules is applied to decide whether or not to
stall the instruction by one cycle. Table 4-6 lists various RAW conditions which cause an
instruction execution Stall.

RAW Dependency Detection

Table 4-6: Raw Dependency Rules (Detection By Hardware)
Destination Source @
Addressing Mode Addressing Mode Re S&?:Ldo E(wrrrfl\?vsz)
Using Wn Using Wn q ' -
Direct Direct No Stall |ADD. W W), W, W
MOV. W W, W3
Indirect Direct No Stall |ADD. W W), W, [W2]
MOV. W W, W3
Indirect Indirect No Stall [ADD.W WO, WL, [W2]
MOV. W [WV2], WB
Indirect Indirect with No Stall |[ADD.W WO, Wi, [W2]
Pre/Post-Modification MOV. W [V++], WB
Indirect with Direct No Stall [ADD.W WO, WL, [WR++]
Pre/Post-Modification MOV. W W2, WB
Direct Indirect Stal® |ADD.W WO, W, W
MOV. W [W2], WB
Direct Indirect with Stal® |ADD.W WO, W, W
Pre/Post-Modification MOV. W [W2++], WB
Indirect Indirect Stalll® |ADD. W W, WL, [W2](2)
MOV. W [WR], WB(2)
Indirect Indirect with Stall [ADD.W W, W, [W](2)
Pre/Post-Modification MOV. W [V2++], WB(2)
Indirect with Indirect Stall [ADD.W WO, WL, [W2++]
Pre/Post-Modification MOV. W [W], WB
Indirect with Indirect with Stall [ADD.W WO, WL, [W2++]
Pre/Post-Modification | Pre/Post-Modification MOV. W [V++], WB

Note 1:

When Stalls are detected, one cycle is added to the instruction execution time.

2: For these examples, the contents of W2 = the mapped address of W2 (0x0004).

Note: When Register Indirect with Offset Addressing is used to specify the destination for
an instruction, and Ws is the same register as Wd, the old value of Ws is used for

Wd (i.e., the address offset is ignored).

DS70000157G-page 64

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.3.2 Instruction Stalls and Exceptions

In order to maintain deterministic operation, instruction Stalls are allowed to happen, even if they
occur immediately prior to exception processing.

4.3.3 Instruction Stalls and Instructions that Change Program Flow

CALL and RCALL write to the stack using W15 and may, therefore, be subject to an instruction
Stall if the source read of the subsequent instruction uses W15.

GOTO, RETFI E and RETURN instructions are never subject to an instruction Stall because they
do not perform write operations to the Working registers.

434 Instruction Stalls and DO'REPEAT Loops

Instructions operating in a DO or REPEAT loop are subject to instruction Stalls, just like any other
instruction. Stalls may occur on loop entry, loop exit and also during loop processing.

Note: DO loops are only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33CI
devices.

4.3.5 Instruction Stalls and PSV

Instructions operating in PSV address space are subject to instruction Stalls, just like any other
instruction. Should a data dependency be detected in the instruction immediately following the
PSV data access, the second cycle of the instruction will initiate a Stall. Should a data
dependency be detected in the instruction immediately before the PSV data access, the last
cycle of the previous instruction will initiate a Stall.

about RAW instruction Stalls.

Note: Refer to the specific device family reference manual for more detailed information I

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 65

16-Bit MCU and DSC Programmer’s Reference Manual

44 BYTE OPERATIONS

Since the data memory is byte-addressable, most of the base instructions may operate in either

Byte mode or Word mode. When these instructions operate in Byte mode, the following rules

apply:

+ All direct Working register references use the Least Significant Byte of the 16-bit Working
register and leave the Most Significant Byte (MSB) unchanged

« All indirect Working register references use the data byte specified by the 16-bit address
stored in the Working register

« All file register references use the data byte specified by the byte address

» The STATUS Register is updated to reflect the result of the byte operation

It should be noted that data addresses are always represented as byte addresses. Additionally,
the native data format is little-endian, which means that words are stored with the Least
Significant Byte at the lower address and the Most Significant Byte at the adjacent, higher
address (as shown in Figure 4-3). Example 4-8 shows sample byte move operations and
Example 4-9 shows sample byte math operations.

“ “«

Note: Instructions that operate in Byte mode must use the “. b” or “ B’ instruction
extension to specify a byte instruction. For example, the following two instructions
are valid forms of a byte clear operation:

« CLRb W
+ CLRB W

Example 4-8: Sample Byte Move Operations
MOV. B #0x30, W ; move the literal byte 0x30 to W

Before Instruction:
W) = 0x5555

After Instruction:
W = 0x5530

MOV. B 0x1000, WO ; nmove the byte at 0x1000 to WO
Before Instruction:

W) = 0x5555
Data Menory 0x1000 = 0x1234

After Instruction:

W = 0x5534

Data Menory 0x1000 = 0x1234

MOV.B WD, 0x1001 ; byte nove W) to address 0x1001
Before Instruction:

W = 0x1234
Data Menory 0x1000 = 0x5555

After Instruction:

W = 0x1234
Data Menory 0x1000 = 0x3455

MOV. B WD, [WL++4] ; byte nove W to [W], then post-inc W
Before Instruction:

W 0x1234
W 0x1001
Data Menory 0x1000 = 0x5555

After Instruction:

W = 0x1234
WL = 0x1002
Data Menory 0x1000 = 0x3455

DS70000157G-page 66 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-9: Sample Byte Math Operations

CLR. B [W5--] byte clear [W], then post-dec W
Before Instruction:

Ws = 0x1001

Data Menory 0x1000

After Instruction:

Ws = 0x1000
Data Menory 0x1000

SUB.B W), #0x10, W

Before Instruction:

W = 0x1234
W = OxFFFF
After Instruction:
W = 0x1234
WL = OxFF24
ADD. B WD, WL, [WR++]

Before Instruction:

W = 0x1234
WL = 0x5678
W2 = 0x1000

Data Menory 0x1000 =
After Instruction:

W = 0x1234
WL = 0x5678
W2 = 0x1001

Data Menory 0x1000

0x5555

0x0055

; byte subtract literal 0x10 from W

and store to W

byte add W and W,
and post-inc W2

store to [W2]

0x5555

0x55AC

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 67

=
n
—
=
c
O
=
: O
5
n
D
~—+

16-Bit MCU

and DSC Programmer’s Reference Manual

45 WORD MOVE OPERATIONS

Even though the data space is byte-addressable, all move operations made in Word mode must
be word-aligned. This means that for all source and destination operands, the Least Significant
address bit must be ‘0’. If a word move is made to or from an odd address, an address error
exception is generated. Likewise, all double words must be word-aligned. Figure 4-3 shows how
bytes and words may be aligned in data memory. Example 4-10 contains several legal word
move operations.

When an exception is generated due to a misaligned access, the exception is taken after the
instruction executes. If the illegal access occurs from a data read, the operation will be allowed
to complete, but the Least Significant bit of the source address will be cleared to force word
alignment. If the illegal access occurs during a data write, the write will be inhibited. Example 4-11
contains several illegal word move operations.

Figure 4-3: Data Alignment in Memory

0x1001 b0 0x1000

0x1003 b1l 0x1002

0x1007 b5 b4 0x1006

0x1009 b7 b6 0x1008

0x100B b8 0x100A
Legend:

b0 — byte stored at 0x1000

b1 — byte stored at 0x1003

b3:b2 — word stored at 0x1005:1004 (b2 is LSB)

b7:b4 — double word stored at 0x1009:0x1006 (b4 is LSB)
b8 — byte stored at 0x100A

Note: Instructions that operate in Word mode are not required to use an instruction
extension. However, they may be specified with an optional “. w’ or “. W extension,
if desired. For example, the following instructions are valid forms of a word clear
operation:

e CLRW
e« CLRw W
e CLRW W

DS70000157G-page 68

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-10: Legal Word Move Operations
MoV #0x30, W ; move the literal word Ox30 to W

Before Instruction:
W = 0x5555

Atfter Instruction:
W = 0x0030

MOV 0x1000, WO ; nove the word at 0x1000 to WD
Before Instruction:
W = 0x5555

Data Menory 0x1000 = 0x1234
Atfter Instruction:
W = 0x1234
Data Menory 0x1000 = 0x1234
MoV [VWO], [Wi++] ; word nove [WD] to [W],

then post-inc W
Before Instruction:

W 0x1234
WL = 0x1000
Data Menory 0x1000 = 0x5555
Data Menory 0x1234 = OxAAAA

After Instruction:

W = 0x1234
WL = 0x1002
Data Menory 0x1000 = OxAAAA
Data Menory 0x1234 OxAAAA

=
n
—
=
c
O
=
: O
5
n
D
~—+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 69

16-Bit MCU and DSC Programmer’s Reference Manual

Example 4-11: lllegal Word Move Operations

MOV 0x1001, W ; move the word at 0x1001 to WO
Before Instruction:
W) = 0x5555
Data Menory 0x1000 = 0x1234
Data Menory 0x1002 = 0x5678
After Instruction:
W = 0x1234
Data Menory 0x1000 = 0x1234
Data Menory 0x1002 = 0x5678

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

MOV W0, 0x1001 ; nmove WD to the word at 0x1001
Before Instruction:
W = 0x1234

Data Menory 0x1000 = 0x5555
Data Menory 0x1002 = 0x6666
After Instruction:

W = 0x1234

Data Menory O0x1000 = 0x5555
Data Menory 0x1002 = 0x6666

ADDRESS ERROR TRAP GENERATED
(destination address is misaligned, so MOV is not performed)
MoV [VO], [WL++4] ; word nove [W)] to [W],
then post-inc W
Before Instruction:

W = 0x1235

WL = 0x1000

Data Menory 0x1000 = 0x1234
Data Menory 0x1234 = OxAAAA
Data Menory 0x1236 = OxBBBB
Atfter Instruction:

W = 0x1235

WL = 0x1002

Data Menory 0x1000 = OXAAAA
Data Menory 0x1234 = OxAAAA
Data Menory 0x1236 = OxBBBB

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

DS70000157G-page 70 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.6 USING 10-BIT LITERAL OPERANDS

Several instructions that support Byte and Word mode have 10-bit operands. For byte
instructions, a 10-bit literal is too large to use. So when 10-bit literals are used in Byte mode, the
range of the operand must be reduced to eight bits or the assembler will generate an error.
Table 4-7 shows that the range of a 10-bit literal is 0:1023 in Word mode and 0:255 in Byte mode.

Instructions which employ 10-bit literals in Byte and Word mode are: ADD, ADDC, AND, | OR,
RETLW SUB, SUBB and XOR. Example 4-12 shows how positive and negative literals are used in
Byte mode for the ADD instruction.

Table 4-7: 10-Bit Literal Coding
Literal Value Word Mode Byte Mode
kk kkkk kkkk kkkk kkkk
0 00 0000 0000 0000 0000
1 00 0000 0001 0000 0001
2 00 0000 0010 0000 0010
127 00 0111 1111 0111 1111
128 00 1000 0000 1000 0000
255 00 1111 1111 1111 1111
256 01 0000 0000 N/A
512 10 0000 0000 N/A
1023 11 1111 1111 N/A

Example 4-12: Using 10-Bit Literals for Byte Operands

ADD. B #0x80, W ; add 128 (or -128) to W

ADD. B #0x380, W ; ERROR. .. Illegal syntax for byte node
ADD. B #0xFF, W ; add 255 (or -1) to W

ADD. B #0x3FF, W ; ERROR. .. Illegal syntax for byte node
ADD. B #0xF, W ; add 15 to W

ADD. B #0x7F, WD ; add 127 to W

ADD. B #0x100, WO ; ERROR. .. Illegal syntax for byte node

Note: Using a literal value greater than 127 in Byte mode is functionally identical to using
the equivalent negative two’s complement value, since the Most Significant bit of
the byte is set. When operating in Byte mode, the assembler will accept either a
positive or negative literal value (i.e., #-10).

4.7 BIT FIELD INSERT/EXTRACT INSTRUCTIONS (dsPIC33C DEVICES ONLY)

The dsPIC33C family provides a set of instructions that operate on bit fields within a target word.

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

4.7.1 BFEXT

This instruction can extract multiple bits from a W register or data memory location into a
destination W register.

4.7.2 BFI NS

This instruction can insert multiple bits from a source W register, or 8-bit literal value into a
W register or data memory location.

In both instructions, the location and width of the bit field within the target word are defined as
literal values within the instruction.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 71

16-Bit MCU

and DSC Programmer’s Reference Manual

4.8 SOFTWARE STACK POINTER AND FRAME POINTER

48.1 Software Stack Pointer

The 16-bit MCU and DSC devices feature a software stack which facilitates function calls and
exception handling. W15 is the default Stack Pointer (SP) and after any Reset, it is initialized to
0x0800 (0x1000 for PIC24E, dsPIC33E and dsPIC33C devices). This ensures that the SP will
point to valid RAM and permits stack availability for exceptions, which may occur before the SP
is set by the user software. The user may reprogram the SP during initialization to any location
within data space.

The SP always points to the first available free word (Top-of-Stack) and fills the software stack,
working from lower addresses towards higher addresses. It pre-decrements for a stack POP
(read) and post-increments for a stack PUSH (write).

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 used as the destination pointer. For
example, the contents of WO can be PUSHed onto the Top-of-Stack (TOS) by:

PUSH VWO
This syntax is equivalent to:

MOV WO, [WL5++]
The contents of the TOS can be returned to WO by:

POP VO
This syntax is equivalent to:

MOV [--WL5], W
During any CALL instruction, the PC is PUSHed onto the stack, such that when the subroutine
completes execution, program flow may resume from the correct location. When the PC is
PUSHed onto the stack, PC<15:0> are PUSHed onto the first available stack word, then
PC<22:16> are PUSHed. When PC<22:16> are PUSHed, the Most Significant seven bits of the
PC are zero-extended before the PUSH is made, as shown in Figure 4-4. During exception
processing, the Most Significant seven bits of the PC are concatenated with the lower byte of the

STATUS Register (SRL) and IPL<3> (CORCON<3>). This allows the primary STATUS Register
contents and CPU Interrupt Priority Level to be automatically preserved during interrupts.

Note: In order to protect against misaligned stack accesses, W15<0> is always clear. I

Figure 4-4: Stack Operation for CALL Instruction

0x0000
15 0
(2]
°
@®
2
g
o Q2
3 3 PC<15:0> < W15 (before CALL)
S 0x0 PC<22:16>
[S]
% :%’ Top-of-Stack <«—— W15 (after CALL)
\J
OxFFFE
Note: For exceptions, the upper nine bits of the second PUSHed word contains
the SRL and IPL<3>.

DS70000157G-page 72

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

48.1.1 STACK POINTER EXAMPLE

Figure 4-5 through Figure 4-8 show how the software stack is modified for the code snippet
shown in Example 4-13. Figure 4-5 shows the software stack before the first PUSH has executed.
Note that the SP has the initialized value of 0x0800. Furthermore, the example loads 0x5A5A
and 0x3636 to W0 and W1, respectively. The stack is PUSHed for the first time in Figure 4-6 and
the value contained in WO is copied to TOS. W15 is automatically updated to point to the next
available stack location and the new TOS is 0x0802. In Figure 4-7, the contents of W1 are
PUSHed onto the stack and the new TOS becomes 0x0804. In Figure 4-8, the stack is POPped,
which copies the last PUSHed value (W1) to W3. The SP is decremented during the POP
operation and at the end of the example, the final TOS is 0x0802.

Example 4-13: Stack Pointer Usage

MoV #0x5A5A, W ; Load WO with Ox5A5A
MoV #0x3636, WL ; Load WL with 0x3636
PUSH W ; Push W) to TOS (see Figure 4-5)
PUSH WL ; Push WL to TOS (see Figure 4-7)
POP W8 ; Pop TOS to WB (see Figure 4-8)

Figure 4-5: Stack Pointer Before the First PUSH

0x0000

0x0800 <TOS> ~<—— W15 (SP)

OxFFFE

WO = Ox5A5A
W1 = 0x3636
W15 = 0x0800

Figure 4-6: Stack Pointer After “PUSH W)” Instruction

0x0000
0x0800 5A5A
0x0802 <TOS> ~<—— W15(SP)
=3
n
~—+
OXFFFE o3
® o
o~
WO = 0x5A5A L5
W1 = 0x3636 =
W15 = 0x0802 0
@
~—+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 73

16-Bit MCU and DSC Programmer’s Reference Manual

Figure 4-7: Stack Pointer After “PUSH WL” Instruction

0x0000
0x0800

0x0802
0x0804

OxFFFE

5A5A

3636

<TOS>

WO = Ox5A5A
W1 = 0x3636
W15 = 0x0804

~<—— W15 (SP)

Figure 4-8: Stack Pointer After “POP WB” Instruction

0x0000
0x0800

0x0802
0x0804

OxFFFE

5A5A

<TOS>
WO = 0x5A5A
W1 =0x3636
W3 = 0x3636
W15 = 0x0802

Note: The contents of 0x802, the new TOS, remain unchanged (0x3636).

<—— W15 (SP)

4.8.2 Software Stack Frame Pointer

A stack frame is a user-defined section of memory residing in the software stack. It is used to
allocate memory for temporary variables, which a function uses, and one stack frame may be
created for each function. W14 is the default Stack Frame Pointer (FP) and it is initialized to
0x0000 on any Reset. If the Stack Frame Pointer is not used, W14 may be used like any other

Working register.

The Link (LNK) and Unlink (ULNK) instructions provide stack frame functionality. The LNK
instruction is used to create a stack frame. It is used during a call sequence to adjust the SP, such
that the stack may be used to store temporary variables utilized by the called function. After the
function completes execution, the ULNK instruction is used to remove the stack frame created by
the LNK instruction. The LNK and ULNK instructions must always be used together to avoid stack

overflow.

DS70000157G-page 74

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

48.21 STACK FRAME POINTER EXAMPLE

Figure 4-9 through Figure 4-11 show how a stack frame is created and removed for the code
snippet shown in Example 4-14. This example demonstrates how a stack frame operates and is
not indicative of the code generated by the compiler. Figure 4-9 shows the stack condition at the
beginning of the example, before any registers are pushed to the stack. Here, W15 points to the
first free stack location (TOS) and W14 points to a portion of stack memory allocated for the
routine that is currently executing.

Before calling the function, “COMPUTE”, the parameters of the function (W0, W1 and W2) are
PUSHed on the stack. After the “CALL COMPUTE” instruction is executed, the PC changes to the
address of “COMPUTE” and the return address of the function, “TASKA”, is placed on the stack
(Figure 4-10). Function “COMPUTE” then uses the “LNK #4” instruction to PUSH the calling
routine’s Frame Pointer value onto the stack and the new Frame Pointer will be set to point to the
current Stack Pointer. Then, the literal 4 is added to the Stack Pointer address in W15, which
reserves memory for two words of temporary data (Figure 4-11).

Inside the function, “COMPUTE”, the FP is used to access the function parameters and temporary
(local) variables. [W14 + n] will access the temporary variables used by the routine and [W14 — n]
is used to access the parameters. At the end of the function, the ULNK instruction is used to copy
the Frame Pointer address to the Stack Pointer and then POP the calling subroutine’s Frame
Pointer back to the W14 register. The ULNK instruction returns the stack back to the state shown
in Figure 4-10.

A RETURN instruction will return to the code that called the subroutine. The calling code is
responsible for removing the parameters from the stack. The RETURN and POP instructions
restore the stack to the state shown in Figure 4-9.

Example 4-14: Frame Pointer Usage

TASKA:
PUSH W ; Push paraneter 1
PUSH WL ; Push paraneter 2
PUSH w2 ; Push paraneter 3
CALL COWPUTE ; Call COWPUTE function
POP w2 ; Pop paraneter 3
POP WL ; Pop paraneter 2
POP W ; Pop paraneter 1
COWPUTE:
LNK #4 ; Stack FP, allocate 4 bytes for local variables
ULNK ; Free allocated nmenory, restore original FP —
RETURN : Return to TASKA 7
=
Uc
Figure 4-9: Stack at the Beginning of Example 4-14 % Q
2.5
0x0000 w S
0x0800 %
~—+
Fri;“e <—— W14 (FP)
TASKA
<TOS> <«— W15 (SP)
OxFFFE

© 2005-2018 Microchip Technology Inc. DS70000157G-page 75

16-Bit MCU and DSC Programmer’s Reference Manual

Figure 4-10: Stack After “CALL COVPUTE" Executes

0x0000

0x0800

Frame
of
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>M
0:PC<22:16>

<TOS> <«—— W15 (SP)

~<—— W14 (FP)

OxFFFE

Note 1: In dsPIC33E/PIC24E devices, the SFA bit is stacked instead of PC<0>.

Figure 4-11: Stack After “LNK #4” Executes

0x0000

0x0800

Frame
of
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>D
0:PC<22:16>
FP of TASKA
Temp Word 1 <«— W14 (FP)
Temp Word 2

<TOS> <«—— W15 (SP)

OxFFFE

Note 1: In dsPIC33E/PIC24E devices, the SFA bit is stacked instead of PC<0>.

4.8.3 Stack Pointer Overflow

There is a Stack Limit register (SPLIM) associated with the Stack Pointer that is reset to 0x0000.
SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘0’, because all stack operations must be
word-aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs; after which time,
it can only be disabled by a device Reset. All Effective Addresses generated using W15 as a
source or destination are compared against the value in SPLIM. Should the Effective Address be
greater than the contents of SPLIM, then a stack error trap is generated.

If stack overflow checking has been enabled, a stack error trap will also occur if the W15 Effective
Address calculation wraps over the end of data space (OxFFFF).

Refer to the specific device family reference manual for more information on the stack error trap.

DS70000157G-page 76

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

48.4 Stack Pointer Underflow

The stack is initialized to 0x0800 during Reset (0x1000 for PIC24E, dsPIC33E and dsPIC33C
devices). A stack error trap will be initiated should the Stack Pointer address ever be less than
0x0800 (0x1000 for PIC24E, dsPIC33E and dsPIC33C devices).

Note: Locations in data space, between 0x0000 and OxO07FF (OxOFFF for PIC24E,
dsPIC33E and dsPIC33C devices), are in general, reserved for core and peripheral
Special Function Registers (SFRs).

4.8.5 Stack Frame Active (SFA) Control
(dsPIC33E, dsPIC33C and PIC24E Devices)

W15 is never subject to paging and is therefore restricted to address range, 0x000000 to
0x00FFFF. However, the Stack Frame Pointer (W14) for any user software function is only
dedicated to that function when a stack frame addressed by W14 is active (i.e., after a LNK
instruction). Therefore, it is desirable to have the ability to dynamically switch W14 between use
as a general purpose W register and use as a Stack Frame Pointer. The SFA Status bit
(CORCON<2>) achieves this function without additional software overhead.

When the SFA bit is clear, W14 may be used with any page register. When SFA is set, W14 is
not subject to paging and is locked into the same address range as W15 (0x000000 to
O0x00FFFF). Operation of the SFA register lock is as follows:

» The LNK instruction sets SFA (and creates a stack frame).

* The ULNK instruction clears SFA (and deletes the stack frame).

* The CALL, CALL. L and RCALL instructions also stack the SFA bit (placing it in the LSb of
the stacked PC), and clear the SFA bit after the stacking operation is complete. The called

procedure is now free to either use W14 as a general purpose register or create another
stack frame using the LNK instruction.

* The RETURN, RETLWand RETFI E instructions all restore the SFA bit from its previously
stacked value.

The SFA bit is a read-only bit. It can only be set by execution of the LNK instruction, and cleared
by the ULNK, CALL, CALL. L and RCALL instructions.

Note: In dsPIC33E, dsPIC33C and PIC24E devices, the SFA bit is stacked instead ofI
PC<0>.

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 77

16-Bit MCU

and DSC Programmer’s Reference Manual

4.9 CONDITIONAL BRANCH INSTRUCTIONS

Conditional branch instructions are used to direct program flow based on the contents of the STATUS
Register. These instructions are generally used in conjunction with a compare class instruction, but
they may be employed effectively after any operation that modifies the STATUS Register.

The compare instructions, CP, CP0 and CPB, perform a subtract operation (minuend — subtrahend),
but do not actually store the result of the subtraction. Instead, compare instructions just update
the flags in the STATUS Register, such that an ensuing conditional branch instruction may
change program flow by testing the contents of the updated STATUS Register. If the result of the
STATUS Register test is true, the branch is taken. If the result of the STATUS Register test is
false, the branch is not taken.

The conditional branch instructions supported by the dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices are shown in Table 4-8. This table identifies the condition in the STATUS
Register which must be true for the branch to be taken. In some cases, just a single bit is tested
(as in BRA C), while in other cases, a complex logic operation is performed (as in BRA GT). For
dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices, it is worth noting that both signed and
unsigned conditional tests are supported, and that support is provided for DSP algorithms with
the OA, OB, SA and SB condition mnemonics.

Table 4-8: Conditional Branch Instructions
Mcr’:l(()e:wdc;tr:?crzl) Description Status Test

C Carry (not Borrow) C

GE Signed Greater Than or Equal (N&&OV) || (N&&OV)
GEU® Unsigned Greater Than or Equal C

GT Signed Greater Than (Z&&N&&OV) || (Z&&N&&OV)
GTU Unsigned Greater Than c&&Z

LE Signed Less Than or Equal Z || (N&&OV) || (N&&OV)
LEU Unsigned Less Than or Equal Ccllz

LT Signed Less Than (N&&OV) || (N&&OV)
LTU®) Unsigned Less Than C

N Negative N

NC Not Carry (Borrow) C

NN Not Negative N

NOV Not Overflow ov

NZ Not Zero 4

OA® Accumulator A Overflow OA

oB® Accumulator B Overflow OB

ov Overflow oV

SA® Accumulator A Saturate SA

sB@ Accumulator B Saturate SB

4 Zero z

Note Instructions are of the form: BRA mnemonic, Expr.

1

2. GEUis identical to C and will reverse assemble to BRA C, Expr.
3: LTU s identical to NC and will reverse assemble to BRA NC, Expr.
4

This condition is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
devices.

Note: The “Compare and Skip” instructions (CPBEQ, CPBGI, CPBLT, CPBNE, CPSEQ,
CPSGT, CPSLT and CPSNE) do not modify the STATUS Register.

DS70000157G-page 78

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

410 Z STATUS BIT

The Z Status bit is a special Zero Status bit that is useful for extended precision arithmetic. The
Z bit functions like a normal Z flag for all instructions, except those that use the Carry/Borrow
input (ADDC, CPB, SUBB and SUBBR). For the ADDC, CPB, SUBB and SUBBR instructions, the Z bit
can only be cleared and never set. If the result of one of these instructions is non-zero, the Z bit
will be cleared and will remain cleared, regardless of the result of subsequent ADDC, CPB, SUBB
or SUBBR operations. This allows the Z bit to be used for performing a simple zero check on the
result of a series of extended precision operations.

A sequence of instructions working on multiprecision data (starting with an instruction with no
Carry/Borrow input) will automatically logically AND the successive results of the zero test. All
results must be zero for the Z flag to remain set at the end of the sequence of operations. If the
result of the ADDC, CPB, SUBB or SUBBR instruction is non-zero, the Z bit will be cleared and
remain cleared for all subsequent ADDC, CPB, SUBB or SUBBR instructions. Example 4-15 shows
how the Z bit operates for a 32-bit addition. It shows how the Z bit is affected for a 32-bit addition
implemented with an ADD/ ADDC instruction sequence. The first example generates a zero result
for only the most significant word, and the second example generates a zero result for both the
least significant word and most significant word.

Example 4-15: ‘Z’ Status Bit Operation for 32-Bit Addition

Add two doubles (W: WL and W2: V\B)

Store the result in W: WM
ADD w, W, w ; Add LSWord and store to W
ADDC W, VB, W ; Add MsWord and store to W

Before 32-Bit Addition (zero result for the most significant word):

0x2342
OxFFFO
0x39AA
0x0010
0x0000
0x0000
0x0000

2-Bit Addition:

0x2342
0XFFFO
0x39AA
0x0010
0x5CEC
0x0000
0x0201 (DC, C=1)

32-Bit Addition (zero result for the least significant word and most significant word):

0xB76E
OxFB7B
0x4892
0x0484
0x0000
0x0000
0x0000

After 32-Bit Addition:

0xB76E
0xFB7B
0x4892
0x0485
0x0000
0x0000
0x0103 (DC, Z, C=1)

$EEERES

After

w

PEEERES

Befor:

(]

=
%)
=
Oc
Do
=1
=0
=
wn
@
~+

PEEERES

$5EERKES

© 2005-2018 Microchip Technology Inc. DS70000157G-page 79

16-Bit MCU and DSC Programmer’s Reference Manual

4.11 ASSIGNED WORKING REGISTER USAGE

The 16 Working registers of the 16-bit MCU and DSC devices provide a large register set for effi-
cient code generation and algorithm implementation. In an effort to maintain an instruction set
that provides advanced capability, a stable run-time environment and backwards compatibility
with earlier Microchip processor cores, some Working registers have a preassigned usage.
Table 4-9 summarizes these Working register assignments. For the dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C, additional details are provided in subsections, Section 4.11.1
“Implied DSP Operands (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)” through
Section 4.11.3 “PIC® Microcontroller Compatibility”.

Table 4-9: Special Working Register Assignments
Register Special Assignment
w0 Default WREG, Divide Quotient for DI V instructions
W1 Divide Remainder for DI V instructions
W2 “MUL f” Product least significant word
W3 “MUL f” Product most significant word
W4 MAC Operand®
W5 MAC Operand®
W6 MAC Operand®
w7 MAC Operand®
ws MAC Prefetch Address (X Memory))
w9 MAC Prefetch Address (X Memory))
W10 MAC Prefetch Address (Y Memory)®d)
W11 MAC Prefetch Address (Y Memory)®d)
W12 MAC Prefetch Offset™®)
W13 MAC Write-Back Destination(*)
w14 Frame Pointer
w15 Stack Pointer

Note 1: This assignment is only applicable in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.

4.11.1 Implied DSP Operands (dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C Devices)

To assist instruction encoding and maintain uniformity among the DSP class of instructions,
some Working registers have preassigned functionality. For all DSP instructions which have
prefetch ability, the following ten register assignments must be adhered to:

* W4-W?7 are used for arithmetic operands

* W8-W11 are used for prefetch addresses (pointers)

* W12 is used for the prefetch register offset index

* W13 is used for the accumulator write-back destination

These restrictions only apply to the DSP MAC class of instructions, which utilize Working registers
and have prefetch ability (described in Section 4.16 “DSP Accumulator Instructions
(dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)”). These instructions are CLR, ED,
EDAC, MAC, MOVSAC, MPY, MPY. N and MSC.

In dsPIC33E devices, mixed-sign DSP multiplication operations are supported without the need
to dynamically modify the US<1:0> bits. In this mode (US<1:0> = 10), each input operand is
treated as unsigned or signed, based on which register is being used for that operand. W4 and
W6 are always unsigned operands, whereas W5 and W7 are always signed operands. This
feature can be used to efficiently execute extended precision DSP multiplications.

The DSP accumulator class of instructions (described in Section 4.16 “DSP Accumulator Instruc-
tions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)”) is not required to follow the
Working register assignments in Table 4-9 and may freely use any Working register when required.

DS70000157G-page 80

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.11.2 Implied Frame and Stack Pointer

To accommodate software stack usage, W14 is the implied Frame Pointer (used by the LNK and
ULNK instructions) and W15 is the implied Stack Pointer (used by the CALL, LNK, POP, PUSH,
RCALL, RETFI E, RETLW RETURN, TRAP and ULNK instructions). Even though W14 and W15
have this implied usage, they may still be used as generic operands in any instruction with the
exceptions outlined in Section 4.11.1 “Implied DSP Operands (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)”. If W14 and W15 must be used for other purposes (it is
strongly advised that they remain reserved for the Frame and Stack Pointers), extreme care must
be taken such that the run-time environment is not corrupted.

4.11.3 PIC® Microcontroller Compatibility

4.11.3.1 DEFAULT WORKING REGISTER (WREG)

To ease the migration path for users of the Microchip 8-bit PIC MCU families, the 16-bit MCU and
DSC devices have matched the functionality of the PIC MCU instruction sets as closely as
possible. One major difference between the 16-bit MCU and DSC, and the 8-bit PIC MCU
processors is the number of Working registers provided. The 8-bit PIC MCU families only provide
one 8-bit Working register, while the 16-bit MCU and DSC families provide sixteen, 16-bit Work-
ing registers. To accommodate for the one Working register of the 8-bit PIC MCU, the 16-bit MCU
and DSC device instruction set has designated one Working register to be the default Working
register for all legacy file register instructions. The default Working register is set to W0 and it is
used by all instructions which use File Register Addressing.

Additionally, the syntax used by the 16-bit MCU and DSC device assembler to specify the default
Working register is similar to that used by the 8-bit PIC MCU assembler. As shown in the detailed
instruction descriptions in Section 5. “Instruction Descriptions”, “WREG” must be used to
specify the default Working register. Example 4-16 shows several instructions that use WREG.

Example 4-16: Using the Default Working Register, WREG

ADD RAMLOO ; add RAMLOO and WREG, store in RAMLOO
ASR RAMLOO, WREG ; shift RAMLOO right, store in WREG
CLR B WREG ; clear the WREG LS Byte

DEC RAMLOO, WREG ; decrenment RAMLOO, store in WREG

MOV WREG, RAMLOO ; move WREG to RAMLOO

SETM WREG ; set all bits in the WREG

XOR RAMLOO ; XOR RAMLOO and WREG, store in RAMLOO

4.11.3.2 PRODH:PRODL REGISTER PAIR

Another significant difference between the Microchip 8-bit PIC MCU and 16-bit MCU and DSC
architectures is the multiplier. Some PIC MCU families support an 8-bit x 8-bit multiplier, which
places the multiply product in the PRODH:PRODL register pair. The 16-bit MCU and DSC
devices have a 17-bit x 17-bit multiplier, which may place the result into any two successive
Working registers (starting with an even register) or an accumulator.

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

Despite this architectural difference, the 16-bit MCU and DSC devices still support the legacy file
register multiply instruction (MULWF) with the “MUL{. B} f” instruction (described on page 323).
Supporting the legacy MULWF instruction has been accomplished by mapping the PRODH:PRODL
registers to the Working register pair W3:W2. This means that when “MUL{. B} f” is executed in
Word mode, the multiply generates a 32-bit product which is stored in W3:W2, where W3 has the
most significant word of the product and W2 has the least significant word of the product. When
“MUL{. B} f”isexecuted in Byte mode, the 16-bit product is stored in W2 and W3 is unaffected.
Examples of this instruction are shown in Example 4-17.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 81

16-Bit MCU

and DSC Programmer’s Reference Manual

Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)
MJL.B 0x100 (0x100) *VREG (byte node),

Before Instruction:

W (WREG = 0x7705
W2 = 0x1235

W8 = 0x1000

Data Menory 0x0100 =

After Instruction:

W (WREG = 0x7705
W2 = 0x01A9

W8 = 0x1000

Data Menory 0x0100 =

store to W2

0x1255

0x1255

MUL 0x100
Before Instruction:

W (WREG = 0x7705
W2 = 0x1235

W8 = 0x1000

Data Menory 0x0100 =

After Instruction:

W (WREG = 0x7705
W2 = OxDEA9

WB = 0x0885

Data Menory 0x0100 =

(0x100) *WREG (word node),

store to WB: W2

0x1255

0x1255

4.11.3.3 MOVING DATA WITH WREG

The “MOV{. B} f {, WREG ” instruction (described on page 299) and “MOV{. B} WREG f”
instruction (described on page 300) allow for byte or word data to be moved between file register
memory and the WREG (Working register, WO0). These instructions provide equivalent
functionality to the legacy Microchip PIC MCU MOVF and MOV instructions.

The “MOV{. B} f {, WREG "and “MOV{. B} WREG f ” instructions are the only MOV instructions
which support moves of byte data to and from file register memory. Example 4-18 shows several
MOV instruction examples using the WREG.

Note: When moving word data between file register memory and the Working register
array, the “MOV Whs, f”and “MOV f, Whd” instructions allow any Working register
(WO0:W15) to be used as the source or destination register, not just WREG.
Example 4-18: Moving Data with WREG
MOV. B 0x1001, WREG nove the byte stored at |ocati on 0x1001 to W
MoV 0x1000, WREG ; nove the word stored at |ocation 0x1000 to WO
MOV. B WREG TBLPAG ; nove the byte stored at WD to the TBLPAG register
MoV WREG, 0x804 nove the word stored at W) to | ocation 0x804

DS70000157G-page 82

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.12 DSP DATA FORMATS (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

4.12.1 Integer and Fractional Data

The dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices support both integer and fractional
data types. Integer data is inherently represented as a signed two’s complement value, where
the Most Significant bit is defined as a sign bit. Generally speaking, the range of an N-bit two’s
complement integer is -2N-" to 2N-1— 1. For a 16-bit integer, the data range is -32768 (0x8000)
to 32767 (Ox7FFF), including ‘0’. For a 32-bit integer, the data range is -2,147,483,648
(0x8000 0000) to 2,147,483,647 (OX7FFF FFFF).

Fractional data is represented as a two’s complement number, where the Most Significant bit is
defined as a sign bit and the radix point is implied to lie just after the sign bit. This format is
commonly referred to as 1.15 (or Q15) format, where 1 is the number of bits used to represent
the integer portion of the number and 15 is the number of bits used to represent the fractional
portion. The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to
(1 = 2"Ny. For a 16-bit fraction, the 1.15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF),
including 0.0 and it has a precision of 3.05176x10°°. In Normal Saturation mode, the 32-bit
accumulators use a 1.31 format, which enhances the precision to 4.6566x10710.

The dynamic range of the accumulators can be expanded by using the eight bits of the Upper
Accumulator register (ACCxU) as guard bits. Guard bits are used if the value stored in the accu-
mulator overflows beyond the 32" bit and they are useful for implementing DSP algorithms. This
mode is enabled when the ACCSAT bit (CORCON<4>) is set to ‘1’ and it expands the accumu-
lators to 40 bits. The guard bits are also used when the accumulator saturation is disabled. The
accumulators then support an integer range of -5.498x10" (0x80 0000 0000) to 5.498x10"
(Ox7F FFFF FFFF). In Fractional mode, the guard bits of the accumulator do not modify the
location of the radix point and the 40-bit accumulators use a 9.31 fractional format. Note that all
fractional operation results are stored in the 40-bit accumulator, justified with a 1.31 radix point.
As in Integer mode, the guard bits merely increase the dynamic range of the accumulator. 9.31
fractons have a range of -256.0 (0x80 0000 0000) to (256.0—4.65661x10710)
(0x7F FFFF FFFF). Table 4-10 identifies the range and precision of integers and fractions on the
dsPIC30F/33F/33E/33C devices for 16-bit, 32-bit and 40-bit registers.

It should be noted that, with the exception of DSP multiplies, the ALU operates identically on
integer and fractional data. Namely, an addition of two integers will yield the same result (binary
number) as the addition of two fractional numbers. The only difference is how the result is
interpreted by the user. However, multiplies performed by DSP operations are different. In these
instructions, data format selection is made by the IF bit (CORCON<0>) and it must be set
accordingly (‘0’ for Fractional mode, ‘1’ for Integer mode). This is required because of the implied
radix point used by dsPIC30F/33F/33E/33C fractional numbers. In Integer mode, multiplying two

16-bit integers produces a 32-bit integer result. However, multiplying two 1.15 values generates g
a 2.30 result. Since the dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices use a 1.31 for- =
mat for the accumulators, a DSP multiply in Fractional mode also includes a left shift of one bit g g
to keep the radix point properly aligned. This feature reduces the resolution of the DSP multiplier =1
to 230, put has no other effect on the computation (e.g., 0.5 x 0.5 = 0.25). =0
Table 4-10: dsPIC30F/33F/33E/33CData Ranges g
Register Size Integer Range Fraction Range Fraction Resolution

16-bit -32768 to 32767 -1.0to (1.0-2719) 3.052 x 10
32-bit -2,147,483,648 to -1.0to (1.0-23") 4657 x 10710

2,147,483,647
40-bit -549,755,813,888to |-256.0 to (256.0 — 231) |4.657 x 1010

549,755,813,887

© 2005-2018 Microchip Technology Inc. DS70000157G-page 83

16-Bit MCU

and DSC Programmer’s Reference Manual

4.12.2 Integer and Fractional Data Representation

Having a working knowledge of how integer and fractional data is represented on the dsPIC30F,
dsPIC33F, dsPIC33E and dsPIC33C is fundamental to working with the devices. Both integer
and fractional data treat the Most Significant bit as a sign bit, and the binary exponent decreases
by one as the bit position advances toward the Least Significant bit. The binary exponent for an
N-bit integer starts at (N-1) for the Most Significant bit and ends at ‘0’ for the Least Significant bit.
For an N-bit fraction, the binary exponent starts at ‘0’ for the Most Significant bit and ends at (1-N)
for the Least Significant bit (as shown in Figure 4-12 for a positive value and in Figure 4-13 for a
negative value).

Conversion between integer and fractional representations can be performed using simple
division and multiplication. To go from an N-bit integer to a fraction, divide the integer value by
2N-1, Similarly, to convert an N-bit fraction to an integer, multiply the fractional value by 2N,

Figure 4-12: Different Representations of 0x4001

Integer:

_215 214 213 212
0x4001 =214+ 20 = 16384 + 1 = 16385

1.15 Fractional:

20 ot 22 o3 215

Implied Radix Point

0x4001 = 271 + 2715 = 0.5 + .000030518 = 0.500030518

Figure 4-13: Different Representations of 0xC002

Integer:

_215 214 213 212

0xC002 = -215 + 214 4+ 21= _32768 + 16384 + 2 = -16382

1.15 Fractional:

Implied Radix Point

0xC002 = -20 + 271 + 2714 = 1.0 + 0.5 + 0.000061035 = -0.499938965

DS70000157G-page 84

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.13 ACCUMULATOR USAGE (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

Accumulators A and B are utilized by DSP instructions to perform mathematical and shifting
operations. Since the accumulators are 40 bits wide, and the X and Y data paths are only 16 bits,
the method to load and store the accumulators must be understood.

Item A in Figure 4-14 shows that each 40-bit accumulator (ACCA and ACCB) consists of an 8-bit
upper register (ACCxU), a 16-bit high register (ACCxH) and a 16-bit low register (ACCxL). To
address the bus alignment requirement and provide the ability for 1.31 math, ACCxH is used as
a destination register for loading the accumulator (with the LACinstruction), and also as a source
register for storing the accumulator (with the SAC. Rinstruction). This is represented by ltem B in
Figure 4-14, where the upper and lower portions of the accumulator are shaded. In reality, during
accumulator loads, ACCxL is zero backfilled and ACCxU is sign-extended to represent the sign
of the value loaded in ACCxH.

Note: dsPIC33C devices provide double-word LAC. D and SAC. D instructions, which
allow both ACCxH and ACCxL to be loaded or stored in a single instruction.

When normal (31-bit) saturation is enabled, DSP operations (such as ADD, MAC, MSC, etc.) solely
utilize ACCxH:ACCxL (Item C in Figure 4-14) and ACCxU is only used to maintain the sign of the
value stored in ACCxH:ACCXxL. For instance, when an MPY instruction is executed, the result is
stored in ACCxH:ACCxL and the sign of the result is extended through ACCxU.

When super saturation is enabled, or when saturation is disabled, all registers of the accumulator
may be used (Item D in Figure 4-14) and the results of DSP operations are stored in
ACCxU:ACCxH:ACCxL. The benefit of ACCxU is that it increases the dynamic range of the
accumulator, as described in Section 4.12.1 “Integer and Fractional Data”. Refer to Table 4-10
to see the range of values which may be stored in the accumulator when in Normal and Super
Saturation modes.

Figure 4-14: Accumulator Alignment and Usage

A) ACCxU ACCxH ACCxL
39 32]31.30 16] 15 0

\ Implied Radix Point (between bits 31 and 30)

A) 40-bit accumulator consists of ACCxU:ACCxH:ACCxL

B) Load and store operations

C) Operations in Normal Saturation mode

D) Operations in Super Saturation mode or with saturation disabled

© 2005-2018 Microchip Technology Inc. DS70000157G-page 85

16-Bit MCU and DSC Programmer’s Reference Manual

4.14 ACCUMULATOR ACCESS (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The six registers of Accumulator A and Accumulator B are memory-mapped like any other
Special Function Register. This feature allows them to be accessed with File Register or Indirect
Addressing, using any instruction which supports such addressing. However, it is recommended
that the DSP instructions, LAC, SAC and SAC. R, be used to load and store the accumulators,
since they provide sign-extension, shifting and rounding capabilities. LAC, SAC and SAC. R
instruction details are provided in Section 5. “Instruction Descriptions”.

Note 1: For convenience, ACCAU and ACCBU are sign-extended to 16 bits. This provides
the flexibility to access these registers using either Byte or Word mode (when File
Register or Indirect Addressing is used).
2: The OA, OB, SA or SB bit cannot be set by writing overflowed values to the
memory-mapped accumulators using MOV instructions, as these Status bits are
only affected by DSP operations.

3: dsPIC33C devices provide double-word LAC. D and SAC. D instructions, which

allow both ACCxH and ACCXxL to be loaded or stored in a single instruction.

4.15 DSP MAC INSTRUCTIONS (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The DSP Multiply and Accumulate (MAC) operations are a special suite of instructions which
provide the most efficient use of the dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C architec-
tures. The DSP MAC instructions, shown in Table 4-11, utilize both the X and Y data paths of the
CPU core, which enables these instructions to perform the following operations all in one cycle:

» Two reads from data memory using prefetch Working registers (MAC Prefetches)

» Two updates to prefetch Working registers (MAC Prefetch Register Updates)

» One mathematical operation with an accumulator (MAC Operations)

In addition, four of the ten DSP MAC instructions are also capable of performing an operation with
one accumulator, while storing out the rounded contents of the alternate accumulator. This
feature is called accumulator Write-Back (WB) and it provides flexibility for the software

developer. For instance, the Accumulator WB may be used to run two algorithms concurrently,
or efficiently process complex numbers, among other things.

Table 4-11: DSP MAC Instructions
Instruction Description Accumulator WB?

CLR Clear Accumulator Yes
ED Euclidean Distance (no accumulate) No
EDAC Euclidean Distance No
MAC Multiply and Accumulate Yes
MAC Square and Accumulate No
MOVSAC Move from X and Y Bus Yes
MPY Multiply to Accumulator No
MPY Square to Accumulator No
MPY. N Negative Multiply to Accumulator No
MsC Multiply and Subtract Yes

DS70000157G-page 86

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4151 MACPrefetches

Prefetches (or data reads) are made using the Effective Address stored in the Working register.
The two prefetches from data memory must be specified using the Working register assignments
shown in Table 4-9. One read must occur from the X data bus using W8 or W9, and one read
must occur from the Y data bus using W10 or W11. The allowed destination registers for both
prefetches are W4-W7.

As shown in Table 4-3, one special addressing mode exists for the MAC class of instructions. This
mode is the Register Offset Addressing mode and utilizes W12. In this mode, the prefetch is
made using the Effective Address of the specified Working register, plus the 16-bit signed value
stored in W12. Register Offset Addressing may only be used in the X space with W9 and in the
Y space with W11.

4.15.2 MAC Prefetch Register Updates

After the MAC prefetches are made, the Effective Address stored in each prefetch Working register
may be modified. This feature enables efficient single-cycle processing for data stored sequentially
in X and Y memory. Since all DSP instructions execute in Word mode, only even numbered
updates may be made to the Effective Address stored in the Working register. Allowable address
modifications to each prefetch register are -6, -4, -2, 0 (no update), +2, +4 and +6. This means that
Effective Address updates may be made up to three words in either direction.

When the Register Offset Addressing mode is used, no update is made to the base prefetch
register (W9 or W11) or the offset register (W12).

4.15.3 MACOperations

The mathematical operations performed by the MAC class of DSP instructions center around
multiplying the contents of two Working registers and either adding or storing the result to either
Accumulator A or Accumulator B. This is the operation of the MAC, MPY, MPY. N and MSC
instructions. Table 4-9 shows that W4-W7 must be used for data source operands in the MAC
class of instructions. W4-W7 may be combined in any fashion, and when the same Working
register is specified for both operands, a square or square and accumulate operation is
performed.

For the ED and EDAC instructions, the same multiplicand operand must be specified by the
instruction, because this is the definition of the euclidean distance operation. Another unique
feature about this instruction is that the values prefetched from X and Y memory are not actually
stored in W4-W?7. Instead, only the difference of the prefetched data words is stored in W4-W?7.

The two remaining MACclass instructions, CLRand MOVSAC, are useful for initiating or completing
a series of MAC or EDAC instructions and do not use the multiplier. CLR has the ability to clear
Accumulator A or B, prefetch two values from data memory and store the contents of the other
accumulator. Similarly, MOVSAC has the ability to prefetch two values from data memory and store
the contents of either accumulator.

4154 MACWrite-Back

The Write-Back ability of the MAC class of DSP instructions facilitates efficient processing of
algorithms. This feature allows one mathematical operation to be performed with one
accumulator and the rounded contents of the other accumulator to be stored in the same cycle.
As indicated in Table 4-9, register W13 is assigned for performing the Write-Back and two
addressing modes are supported: Direct and Indirect with Post-Increment.

The CLR, MOVSAC and MSC instructions support accumulator Write-Back, while the ED, EDAC,
MPY and MPY. Ninstructions do not support accumulator Write-Back. The MAC instruction, which
multiplies two Working registers which are not the same, also supports accumulator Write-Back.
However, the square and accumulate MAC instruction does not support accumulator Write-Back
(see Table 4-11).

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 87

16-Bit MCU and DSC Programmer’s Reference Manual

4155 MAC Syntax

The syntax of the MAC class of instructions can have several formats, which depend on the
instruction type and the operation it is performing, with respect to prefetches and accumulator
Write-Back. With the exception of the CLR and MOVSAC instructions, all MAC class instructions
must specify a target accumulator along with two multiplicands, as shown in Example 4-19.

Example 4-19: Base MAC Syntax

; MAC with no prefetch
MAC WA*Wh, A

; MAC with no prefetch
MAC W*W7, B

» Multiply W*Wr, Accunulate to ACCB

If a prefetch is used in the instruction, the assembler is capable of discriminating between the X
or Y data prefetch based on the register used for the Effective Address. [W8] or [W9] specifies
the X prefetch and [W10] or [W11] specifies the Y prefetch. Brackets around the Working register
are required in the syntax and they designate that Indirect Addressing is used to perform the
prefetch. When address modification is used, it must be specified using a minus-equals or
plus-equals “C’-like syntax (i.e., “[W8] — = 2” or “[W8] + = 6”). When Register Offset Addressing
is used for the prefetch, W12 is placed inside the brackets (W9 + W12] for X prefetches and
[W11 + W12] for Y prefetches). Each prefetch operation must also specify a prefetch destination
register (W4-W?7). In the instruction syntax, the destination register appears before the prefetch
register. Legal forms of prefetch are shown in Example 4-20.

Example 4-20: MAC Prefetch Syntax

;7 MMACwith X only prefetch
MAC WB*W6, A, [WB] +=2, Wb

» ACCA=ACCA+WE* 6

» X([V8] +=2) - Vb

; MMCwith Y only prefetch
MAC WB*W5, B, [WL1+WL2], W&

- ACCB=ACCB+W6* Wb

» Y([WL1+W12]) > Wb

; MACwith XY prefetch
MAC W*W7, B, [W9], W5, [WLO0]+=4, W

» ACCB=ACCB+W6* W

- X([VO]) > V6

3 Y([W0] +=4) > W

DS70000157G-page 88 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

If an accumulator Write-Back is used in the instruction, it is specified last. The Write-Back must
use the W13 register, and allowable forms for the Write-Back are “W13” for Direct Addressing
and “[W13] + = 2” for Indirect Addressing with Post-Increment. By definition, the accumulator not
used in the mathematical operation is stored, so the Write-Back accumulator is not specified in
the instruction. Legal forms of accumulator Write-Back (WB) are shown in Example 4-21.

Example 4-21: MAC Accumulator WB Syntax

: CLRwith direct WB of ACCB
CLR A W3

» 0 - ACCA

» ACCB—»> W3

: MAC with indirect WB of ACCB
MAC WA*VB, A [WL3] +=2

» ACCA=ACCA+W* VB

» ACCB — [WL3] +=2

; MACwith Y prefetch, direct WB of ACCA
MAC WI*W6, B, [WL0]+=2, Wi, W3

» ACCB=ACCB+WM* b

» Y([WLO0] +=2) > WM

» ACCA — W3

Putting it all together, an MSC instruction which performs two prefetches and a Write-Back is
shown in Example 4-22.

Example 4-22: MBCInstruction with Two Prefetches and Accumulator Write-Back

; MSC with XY prefetch, indirect WB of ACCA
MSC W6*Wr, B, [WB] +=2, W5, [WLO0]-=6, W [WL3]+=2

| B ACCB=ACCB- W6* W7
- X([W8] +=2) ->W6
B Y([WLO] - =6) W
g ACCA—>[W3] +=2

o
®
—t
=3
)

18S UO0N9NJISU|

© 2005-2018 Microchip Technology Inc. DS70000157G-page 89

16-Bit MCU and DSC Programmer’s Reference Manual

4.16 DSP ACCUMULATOR INSTRUCTIONS (dsPIC30F, dsPIC33F, dsPIC33E
AND dsPIC33C DEVICES)

The DSP accumulator instructions do not have prefetch or accumulator WB ability, but they do
provide the ability to add, negate, shift, load and store the contents of either 40-bit accumulator.
In addition, the ADD and SUB instructions allow the two accumulators to be added or subtracted
from each other. DSP accumulator instructions are shown in Table 4-12 and instruction details
are provided in Section 5. “Instruction Descriptions”.

Table 4-12: DSP Accumulator Instructions
Instruction Description Accumulator WB?

ADD Add Accumulators No
ADD 16-Bit Signed Accumulator Add No
LAC Load Accumulator No
LAC. D Load Accumulator Double Word No
NEG Negate Accumulator No
SAC Store Accumulator No
SAC. D Store Accumulator Double Word No
SAC. R Store Rounded Accumulator No
SFTAC Arithmetic Shift Accumulator by Literal No
SFTAC Arithmetic Shift Accumulator by (Wn) No
SUB Subtract Accumulators No

4.17 SCALING DATA WITH THE FBCL INSTRUCTION (dsPIC30F, dsPIC33F,
dsPIC33E AND dsPIC33C DEVICES)

To minimize quantization errors that are associated with data processing using DSP instructions,
it is important to utilize the complete numerical result of the operations. This may require scaling
data up to avoid underflow (i.e., when processing data from a 12-bit ADC) or scaling data down
to avoid overflow (i.e., when sending data to a 10-bit DAC). The scaling, which must be
performed to minimize quantization error, depends on the dynamic range of the input data which
is operated on and the required dynamic range of the output data. At times, these conditions may
be known beforehand and fixed scaling may be employed. In other cases, scaling conditions may
not be fixed or known and then dynamic scaling must be used to process data.

The FBCL instruction (Find First Bit Change Left) can efficiently be used to perform dynamic
scaling, because it determines the exponent of a value. A fixed point or integer value’s exponent
represents the amount which the value may be shifted before overflowing. This information is
valuable, because it may be used to bring the data value to “full scale”, meaning that its numeric
representation utilizes all the bits of the register it is stored in.

The FBCL instruction determines the exponent of a word by detecting the first bit change, starting
from the value’s sign bit and working towards the LSB. Since the dsPIC DSC device’s barrel
shifter uses negative values to specify a left shift, the FBCL instruction returns the negated
exponent of a value. If the value is being scaled up, this allows the ensuing shift to be performed
immediately with the value returned by FBCL. Additionally, since the FBCL instruction only
operates on signed quantities, FBCL produces results in the range of -15:0. When the FBCL
instruction returns 0, it indicates that the value is already at full scale. When the instruction
returns -15, it indicates that the value cannot be scaled (as is the case with 0x0 and OxFFFF).
Table 4-13 shows word data with various dynamic ranges, their exponents and the value after
scaling each data to maximize the dynamic range. Example 4-23 shows how the FBCL
instruction may be used for block processing.

DS70000157G-page 90

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

Table 4-13: Scaling Examples

Word Value Exponent (Wor(lj:L\j/lz;ﬁZali \é?(lssnent)
0x0001 14 0x4000
0x0002 13 0x4000
0x0004 12 0x4000
0x0100 6 0x4000
O0x01FF 6 0x7FCO
0x0806 3 0x4030
0x2007 1 0x400E
0x4800 0 0x4800
0x7000 0 0x7000
0x8000 0 0x8000
0x900A 0 0x900A
0xEO001 2 0x8004
OxFFO7 7 0x8380

Note: For the word values, 0x0000 and OxFFFF, the FBCL instruction returns -15. I

As a practical example, assume that block processing is performed on a sequence of data with
very low dynamic range stored in 1.15 fractional format. To minimize quantization errors, the data
may be scaled up to prevent any quantization loss which may occur as it is processed. The FBCL
instruction can be executed on the sample with the largest magnitude to determine the optimal
scaling value for processing the data. Note that scaling the data up is performed by left shifting
the data. This is demonstrated with the code snippet below.

Example 4-23: Scaling with FBCL

assune W) contains the | argest absolute value of the data bl ock
; assume WA points to the beginning of the data bl ock
assume the bl ock of data contains BLOCK S| ZE words

; determ ne the exponent to use for scaling
FBCL w, w ; store exponent in W

; scale the entire data bl ock before processing

DO #(BLOCK_SI ZE-1), SCALE
LAC [Wi], A ; nove the next data sanple to ACCA
SFTAC A W ; shift ACCA by W2 bits
SCALE:
SAC A [W++] ; store scaled input (overwite original)

now process the data
(processi ng bl ock goes here)

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

© 2005-2018 Microchip Technology Inc. DS70000157G-page 91

16-Bit MCU

and DSC Programmer’s Reference Manual

4.18 DATA RANGE LIMIT INSTRUCTIONS (dsPIC33C DEVICES ONLY)

The dsPIC33C family provides special instructions that automatically limit the data in a W register
or an accumulator to lie within a user-specified numerical range. These include the FLI M MAX,
M Nand M NZ instructions.

4.18.1 FLIMFLIMV

The FLI Minstruction simultaneously compares a maximum and a minimum data limit value with
the specified W register (or data pointed to by the W register), and clamps the target data to the
user-specified limit if the limit is exceeded. SR Status bits are set accordingly for subsequent
signed branching. In the FLI M V instruction, an additional W register is specified, in which the
limit test result (known as “limit excess”) value is loaded.

4.18.2 MNMAX/MAX. V

The MAX instruction compares a maximum data limit value (stored in a W register or the other
accumulator) with the target accumulator and clamps the target accumulator to the user-specified
limit if this upper limit is exceeded. SR Status bits are set accordingly for subsequent signed
branching. In the MAX. V instruction, an additional W register (or W register in Indirect Addressing
mode) is specified, in which the limit excess value is loaded.

4183 M NM N. VIM Nz

The M N instruction compares a minimum data limit value (stored in a W register or the other
accumulator) with the target accumulator and clamps the target accumulator to the user-specified
limit if the data is smaller than this minimum limit. SR Status bits are set accordingly for subsequent
signed branching. In the M N. V instruction, an additional W register (or W register in Indirect
Addressing mode) is specified, in which the limit excess value is loaded. The M NZ instruction is
simply a conditional version of the M Ninstruction, which is executed only when Z = 1.

DS70000157G-page 92

© 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details

4.19 NORMALIZING THE ACCUMULATOR WITH THE FBCL INSTRUCTION
(dsPIC30F, dsPIC33F, dsPIC33E AND dsPIC33C DEVICES)

The process of scaling a quantized value for its maximum dynamic range is known as
normalization (the data in the third column in Table 4-13 contains normalized data). Accumulator
normalization is a technique used to ensure that the accumulator is properly aligned before
storing data from the accumulator and the FBCL instruction facilitates this function.

The two 40-bit accumulators each have eight guard bits from the ACCxU register, which expands
the dynamic range of the accumulators from 1.31 to 9.31 when operating in Super Saturation
mode (see Section 4.12.1 “Integer and Fractional Data”). However, even in Super Saturation
mode, the Store Rounded Accumulator (SAC. R) instruction only stores 16-bit data (in 1.15 for-
mat) from ACCxH, as described in Section Figure 4-13: “Different Representations of
0xC002”. Under certain conditions, this may pose a problem.

Proper data alignment for storing the contents of the accumulator may be achieved by scaling
the accumulator down if ACCxU is in use or scaling the accumulator up if all of the ACCxH bits
are not being used. To perform such scaling, the FBCL instruction must operate on the ACCxU
byte and it must operate on the ACCxH word. If a shift is required, the ALU’s 40-bit shifter is
employed using the SFTAC instruction to perform the scaling. Example 4-24 contains a code
snippet for accumulator normalization.

Note: dsPIC33C devices provide a special NORM (normalize accumulator) instruction,
which allows an accumulator to be normalized in a single instruction, eliminating the
need to use the FBCL and SFTAC instructions for this purpose.

Example 4-24: Normalizing with FBCL

; assune an operation in ACCA has just conpleted (SR intact)
assunme the processor is in super saturation node
assume ACCAH is defined to be the address of ACCAH (0x24)
MoV #ACCAH, Wb ; Wb points to ACCAH
BRA OA, FBCL_GUARD ; if overflow we right shift
FBCL_HI :
FBCL [WB], WO ; extract exponent for left shift
BRA SHI FT_ACC ; branch to the shift
FBCL_GUARD:
FBCL [++W5], WO ; extract exponent for right shift
ADD.B W, #15, W ; adjust the sign for right shift
SHI FT_ACC:
SFTAC A W ; shift ACCA to nornalize

4.20 NORMALIZING THE ACCUMULATOR WITH THE NORMINSTRUCTION
(dsPIC33C DEVICES ONLY)

The NORM instruction automatically normalizes the target accumulator to obtain the largest
fractional value possible without overflow. The target accumulator must contain signed fractional
data for the instruction result to be valid. It will shift the target accumulator right or left by as many
bits as required to normalize the data, keeping the sign consistent. The shift value is stored in a
destination address. The N Status bit reflects the direction of the accumulator shift.

=
%)
=
Oc
® o
=1
=0
n >
wn
@
~+

If the accumulator cannot be normalized, the accumulator contents will not be affected.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 93

16-Bit MCU and DSC Programmer’s Reference Manual

4.21 EXTENDED PRECISION ARITHMETIC USING MIXED-SIGN
MULTIPLICATIONS (dsPIC33E AND dsPIC33C ONLY)

Many DSP algorithms utilize extended precision arithmetic operations (operations with 32-bit or
64-bit operands and results) to enhance the resolution and accuracy of computations. These can
be implemented using 16-bit signed or unsigned multiplications; however, this would require
some additional processing and shifting of the data to obtain the correct results. To enable such
extended precision algorithms to be computed faster, dsPIC33E devices support an
optional implicit Mixed-Sign Multiplication mode, which is selected by setting US<1:0>
(CORCON<13:12>) = 10.

In this mode, mixed-sign (unsigned x signed and signed x unsigned) multiplications can be
performed without the need to dynamically reconfigure the US<1:0> bits and shift data to account
for the difference in operand formats. Moreover, signed x signed and unsigned x unsigned mul-
tiplications can also be performed without changing the multiplication mode. Each input operand
is implicitly treated as an unsigned number if the Working register being used to specify the
operand is either W4 or W6. Similarly, an operand is treated as a signed number if the register
used is either W5 or W7. The DSP engine selects the type of multiplication to be performed
based on the operand registers used, thereby eliminating the need for the user software to
modify the US<1:0> bits.

The execution time reductions provided by the implicit mixed-sign multiplication feature is
illustrated in the following code example, where the instruction cycle count for performing a 32-bit
multiplication is reduced from seven cycles to four cycles when the Mixed-Sign Multiplication
mode is enabled.

Example 4-25: 32-Bit Signed Multiplication Using Implicit Mixed-Sign Mode
Case A: Mixed-Sign Multiplication Mode Not Enabled

MJUL. SU Wb, W5, W ; Wordl (signed) x Wrd2 (unsigned)
MIL.US W, W, W2 ; WordO (unsigned) x Word3 (signed)
CLR B ; Clear Accunul ator B

ADD W, B

ADD W3, B

SFTAC B, #15 ; Shift right by 15 bits to align for Q@1 fornat
MAC Wo*Wr, B ; Wordl (signed) x Word 3 (signed)

Case B: Mixed-Sign Multiplication Mode Enabled

MPY Wo* W6, B ; Wordl (signed) x Wrd2 (unsigned)

MAC WHW7, B ; WordO (unsigned) x Word3 (signed)

SFTAC B, #15 ; Shift right by 15 bits to align for Q31 fornat

MAC Wo*Wr, B ; Wordl (signed) x Wird 3 (signed)

Besides DSP instructions, MCU Multiplication (MUL) instructions can also utilize Accumulator A
or Accumulator B as a result destination, which enables faster extended precision arithmetic,
even when not using DSP multiplication instructions such as MPY or MAC.

DS70000157G-page 94

© 2005-2018 Microchip Technology Inc.

MICROCHIP
Section 5. Instruction Descriptions

HIGHLIGHTS

This section of the manual contains the following major topics:

5.1 INStrUCHON SYMDOIS.....coiiiiiiiiiiie et e e e e e e e e e e eanaes 96
5.2 Instruction Encoding Field Descriptors Introduction.............ceeeevieeeieiieiiiis e 96
5.3 Instruction Description EXampPleooiiiiiiiii s 101
5.4 INStruction DESCIIPONS.ciiiiiiii e 102

O _
D>
0w wn

~—+
=S
O o
= s
wn

© 2005-2018 Microchip Technology Inc. DS70000157G-page 95

16-Bit MCU and DSC Programmer’s Reference Manual

5.1 INSTRUCTION SYMBOLS
All the symbols used in Section 5.4 “Instruction Descriptions” are listed in Table 1-2.
5.2 INSTRUCTION ENCODING FIELD DESCRIPTORS INTRODUCTION
All instruction encoding field descriptors used in Section 5.4 “Instruction Descriptions” are
shown in Table 5-2 through Table 5-15.
Table 5-1: Instruction Encoding Field Descriptors
Field Description
AL | Accumulator selection bit: 0 = ACCA; 1 = ACCB
aa® | Accumulator Write-Back mode (see Table 5-13)
B |Byte mode selection bit: 0 = word operation; 1 = byte operation
bbbb 4-bit bit position select: 0000 = LSB; 1111 = MSB
D |Destination address bit: O = result stored in WREG; 1 = result stored in file register
dddd Wd Destination register select: 0000 = W0; 1111 = W15

f ffff ffff ffff

13-bit register file address (0x0000 to Ox1FFF)

fff ffff ffFF fFF 7

15-bit register file word address — implied 0 LSB (0x0000 to OxFFFE)

fEff ffff fFFF P77

16-bit register file byte address (0x0000 to OxFFFF)

g9 Register Offset Addressing mode for Ws Source register (see Table 5-5)
hhh Register Offset Addressing mode for Wd Destination register (see Table 5-6)
iiii @ |Prefetch X operation (see Table 5-7)
ijijij @ |Prefetch Y operation (see Table 5-9)
k 1-bit literal field, constant data or expression
kkkk 4-bit literal field, constant data or expression
kk kkkk 6-bit literal field, constant data or expression
kkkk kkkk 8-bit literal field, constant data or expression

kk kkkk kkkk

10-bit literal field, constant data or expression

kk kkkk kkkk kkkk

14-bit literal field, constant data or expression

kkkk kkkk kkkk kkkk

16-bit literal field, constant data or expression

mm | Multiplier source select with same Working registers (see Table 5-11)
nmm | Multiplier source select with different Working registers (see Table 5-12)
nnnn nnnn nnnn nnn0 | 23-bit program address for CALL and GOTO instructions
nnn nnnn
nnnNnN nnnn nnnn nnnn 16-bit program offset field for relative branch/call instructions
ppp |Addressing mode for Ws Source register (see Table 5-2)
gqq |Addressing mode for Wd Destination register (see Table 5-3)
rrrr Barrel shift count
SSSS Ws Source register select: 0000 = W0; 1111 = W15
tttt Dividend select, most significant word
VVVV Dividend select, least significant word
W | Double-Word mode selection bit:
0 = word operation;
1 = double-word operation
www | Wb Base register select: 0000 = W0; 1111 = W15
xx® | Prefetch X destination (see Table 5-8)
XXXX XXXX XXXX XXXX 16-bit unused field (don’t care)
yy® | Prefetch Y destination (see Table 5-10)
z Bit test destination: 0 = C flag bit; 1 = Z flag bit

Note 1:

This field is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

DS70000157G-page 96

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-2: Addressing Modes for Ws Source Register
ppp Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Unused
Table 5-3: Addressing Modes for Wd Destination Register
qqq Addressing Mode Destination Operand
000 Register Direct Wd
001 Indirect [wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--Wd]
101 Indirect with Pre-Increment [++Wd]
11x Unused (an attempt to use this addressing mode will force a RESET instruction)
Table 5-4: Destination Addressing Modes for MCU Multiplications
dddd Destination
0000 |W1:WO0
0001 |WO
0010 |W3:W2
0011 |W2
0100 |wbs:W4
0101 |WwW4
0110 |W7:W6
0111 |W6
1000 |W9:W8
1001 |W8
1010 [W11:w10
1011 |W10
1100 |W13:W12
1101 (W12
1110 |ACCA<39:0>
1111 |ACCB<39:0>

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 97

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

Table 5-5: Offset Addressing Modes for Ws Source Register (with Register Offset)

ggg Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Indirect with Register Offset [Ws+Whb]

Table 5-6: Offset Addressing Modes for Wd Destination Register

(with Register Offset)
hhh Addressing Mode Source Operand
000 Register Direct wd
001 Indirect [Wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--Wd]
101 Indirect with Pre-Increment [++Wd]
11x Indirect with Register Offset [Wd+Whb]

Table 5-7: X Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
iiii Operation

0000 |Wxd =[W8]
0001 |Wxd =[W8], W8 =W8 +2
0010 |Wxd=[W8], W8 =W8 + 4
0011 |Wxd=[wW8], W8 =W8 +6
0100 No Prefetch for X Data Space
0101 |Wxd=[W8], W8 =W8 -6
0110 |Wxd =[W8], W8 =W8 -4
0111 |Wxd = [W8], W8 =W8 -2
1000 |Wxd =[W9]
1001 |[Wxd =[W9], W9 =W9 + 2
1010 |[Wxd =[W9], W9 =W9 + 4
1011 |Wxd =[W9], W9 =W9 +6
1100 |Wxd =[W9 +W12]
1101 |Wxd =[W9], W9 =W9 -6
1110 |Wxd =[W9], W9 =W9 -4
1111 |Wxd =[W9], W9 =W9 -2
Table 5-8: X Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E,
dsPIC33C)

XX Wxd

00 W4

01 W5

10 W6

11 W7

DS70000157G-page 98

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-9: Y Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E,
dsPIC33C)

INRN Operation

0000 |Wyd =[W10]

0001 |Wyd=[W10], W10=W10 +2

0010 |Wyd =[W10], W10=W10 +4

0011 |Wyd =[W10], W10=W10 +6

0100 No Prefetch for Y Data Space

0101 |Wyd =[W10], W10=W10-6

0110 |Wyd =[W10], W10=W10-4

0111 |Wyd =[W10], W10=W10-2

1000 |Wyd =[W11]

1001 |Wyd = [W11], W11 = W11 + 2

1010 |Wyd =[W11], W11 =W11 +4

1011 |Wyd = [W11], W11 =W11 +6

1100 | Wyd = [W11 + W12]

Table 5-10: Y Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E,
dsPIC33C)
yy Wyd
00 W4
01 W5
10 W6
11 w7
Table 5-11: MAC or MPY Source Operands — Same Working Register (dsPIC30F,
dsPIC33F, dsPIC33E, dsPIC33C)
nm Multiplicands

00 W4 * w4
01 W5 * W5
10 W6 * W6
11 W7 * W7

Table 5-12: MAC or MPY Source Operands — Different Working Register (dsPIC30F,
dsPIC33F, dsPIC33E, dsPIC33C)
nmm Multiplicands

000 W4 * W5
001 W4 * W6
010 W4 * W7
011 Invalid

100 W5 * W6
101 W5 * W7
110 W6 * W7
111 Invalid

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 99

16-Bit MCU and DSC Programmer’s Reference Manual

Table 5-13: MAC Accumulator Write-Back Selection (dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C)
aa Write-Back Selection
00 W13 = Other Accumulator (Direct Addressing)
01 [W13] + = 2 = Other Accumulator (Indirect Addressing with Post-Increment)
10 No Write-Back
11 Invalid
Table 5-14: MOVPAG Destination Selection (dsPIC33E, dsPIC33C and PIC24E)
PP Target Page Register
00 DSRPAG
01 DSWPAG
10 TBLPAG
11 Invalid (results in lllegal Opcode Reset) — do not use
Table 5-15: Accumulator Selection (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C)
A Target Accumulator
0 Accumulator A
1 Accumulator B

DS70000157G-page 100

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

5.3 INSTRUCTION DESCRIPTION EXAMPLE

The example description below is for the fictitious instruction, FOO. The following example
instruction was created to demonstrate how the table fields (syntax, operands, operation, etc.)
are used to describe the instructions presented in Section 5.4 “Instruction Descriptions”.

FOO The Header field summarizes what the instruction does

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X X

Cells marked with an ‘X’ indicate the instruction is implemented for that device family.

Syntax: The Syntax field consists of an optional label, the instruction mnemonic, any optional
extensions which exist for the instruction and the operands for the instruction. Most
instructions support more than one operand variant to support the various addressing
modes. In these circumstances, all possible instruction operands are listed beneath each
other and are enclosed in braces.

Operands: The Operands field describes the set of values which each of the operands may take.
Operands may be accumulator registers, file registers, literal constants (signed or
unsigned) or Working registers.

Operation: The Operation field summarizes the operation performed by the instruction.

Status Affected: =~ The Status Affected field describes which bits of the STATUS Register are affected by the
instruction. Status bits are listed by bit position in descending order.

Encoding: The Encoding field shows how the instruction is bit encoded. Individual bit fields are
explained in the Description field and complete encoding details are provided in
Table 5.2.

Description: The Description field describes in detail the operation performed by the instruction. A key

for the encoding bits is also provided.

Words: The Words field contains the number of program words that are used to store the
instruction in memory.

Cycles: The Cycles field contains the number of instruction cycles that are required to execute the
instruction.
Examples: The Examples field contains examples that demonstrate how the instruction operates.

“Before” and “After” register snapshots are provided, which allow the user to clearly
understand what operation the instruction performs.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 101

16-Bit MCU and DSC Programmer’s Reference Manual

5.4 INSTRUCTION DESCRIPTIONS

ADD Add f to WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} ADD{.B} f {,WREG}

Operands: fel0..8191]

Operation: (f) + (WREG) — destination designated by D

Status Affected: DC,N,QV,Z,C

Encoding: | 1011 | o100 | oBDf fFEff fFrff frff

Description: Add the contents of the default Working register WREG to the contents of the file

register and place the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is stored in
WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register, WO0.
Words: 1
Cycles: 1D

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADD. B RAMLOO ; Add WREG to RAMLOO (Byte node)
Before After
Instruction Instruction
WREG| CC80 WREG| CC80
RAM100| FFCO RAM100| FF40
SR| 0000 SR| 0005 |(QV,C=1)
Example 2: ADD RAMP00, VWREG ; Add RAMROO to WREG (Word node)
Before After
Instruction Instruction
WREG| CC80 WREG | CC40
RAM200| FFCO RAM200| FFCO
SR| 0000 SR| 0001 [(C=1)

DS70000157G-page 102 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

A D D Add Literal to Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X X X X X

Syntax: {label:} ADD{.B} #lit10, Whn

Operands: lit10 < [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: lit10 + (Wn) > Wn

Status Affected: DC,N,0V,Z, C

Encoding: | 1011 | 0000 OBkk | kkkk | kkkk | dddd |
Description: Add the 10-bit unsigned literal operand to the contents of the Working register Wn and

place the result back into the Working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1. The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but it
is not required.

2: For byte operations, the literal must be specified as an unsigned value [0:255].
See Section 4.6 “Using 10-Bit Literal Operands” for information on using
10-bit literal operands in Byte mode.

Words: 1
Cycles: 1
Example 1: ADD. B #OxXFF, W ; Add -1 to W (Byte node)
Before After
Instruction Instruction
W7| 12CO0 W7 | 12BF
SR| 0000 SR| 0009 [(N,C=1)
Example 2: ADD #OxXFF, W ; Add 255 to W (Word node)
Before After
Instruction Instruction
W1| 12CO0 W1 | 13BF
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 103

16-Bit MCU and DSC Programmer’s Reference Manual

ADD

Add Wb to Short Literal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X X X X X
{label} ~ ADD{B} Wb, #lit5, wd
[Wd]
[Wd++]
[Wd-]
[++Wd]
[--Wd]
Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
(Wb) + Iit5 — Wd
DC,N, OV, Z,C
| 0100 | oww | wBqq qddd d11k kkkk

Add the contents of the base register Wb to the 5-bit unsigned short literal operand and
place the result in the destination register Wd. Register Direct Addressing must be used
for Wb. Either Register Direct or Indirect Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

1
1
ADD. B W), #Ox1F, W ; Add W and 31 (Byte npde)
Store the result in W
Before Atfter
Instruction Instruction
W0 | 2290 W0 | 2290
W7| 12CO0 W7 | 12AF
SR| 0000 SR| 0008 |[(N=1)
ADD WB, #0x6, [--W] ; Add WB and 6 (Word node)
Store the result in [--W]
Before After
Instruction Instruction
W3| 6006 W3| 6006
Ww4| 1000 W4 | OFFE
Data OFFE | DDEE Data OFFE | 600C
Data 1000 | DDEE Data 1000 | DDEE
SR| 0000 SR| 0000

DS70000157G-page 104

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD Add Wb to Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} ADD{.B} Whb, Ws, Wd

[Ws], [wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--wd]
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd € [WO ... W15]

Operation: (Wb) + (Ws) > Wd

Status Affected: DC,N, 0V, Z,C

Encoding: ‘ 0100 | Owww | wBqq gddd dppp SSSS
Description: Add the contents of the source register Ws and the contents of the base register Wb,

and place the result in the destination register Wd. Register Direct Addressing must be
used for Wb. Either Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADD. B W, W6, W ; Add Wb to W5, store result in W
(Byte node)
Before After
Instruction Instruction
W5| ABOO W5| ABO0O
W6 0030 W6 0030
W7| FFFF W7 FF30
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 105

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: ADD W, W6, W ; Add Wb to W5, store result in W
(Word node)
Before After
Instruction Instruction
W5| ABOO W5| ABOO
W6 0030 W6 0030
W7 | FFFF W7 | AB30
SR 0000 SR 0008 | (N=1)

DS70000157G-page 106 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD Add Accumulators
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} ADD Acc
Operands: Acc € [A,B]
Operation: If (Acc =A):
(ACCA) + (ACCB) - ACCA
Else:
(ACCA) + (ACCB) —» ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 11200 | 1011 | A000 0000 0000 0000
Description: Add the contents of Accumulator A to the contents of Accumulator B and place the
result in the selected accumulator. This instruction performs a 40-bit addition.
The ‘A’ bit specifies the destination accumulator.
Words: 1
Cycles: 1

A

Before
Instruction

00 0022 3300

00 1833 4558

0000

Before
Instruction

00 E111 2222

00 7654 3210

Example 1: ADD
ACCA

ACCB

SR

Example 2: ADD
ACCA

ACCB

SR

0000

; Add ACCB to ACCA

After
Instruction

ACCA

00 1855 7858

ACCB

00 1833 4558

SR

0000

; Add ACCA to ACCB
; Assune Super Saturation node enabl ed
(ACCSAT = 1, SATA = 1, SATB = 1)

After
Instruction

ACCA

00 E111 2222

ACCB

01 5765 5432

SR

4800

(OB, OAB = 1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 107

o
D
0
9]
=.
©
=
)
)
)

=
n
—
S
c
O
st
o
)

16-Bit MCU and DSC Programmer’s Reference Manual

ADD

16-Bit Signed Add to Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X
Syntax: {label:} ADD Ws, {#Slit4,} Acc
[Ws],
[Ws++4],
[Ws-],
[--Ws],
[++Ws],
[Ws+Whb],
Operands: Ws € [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]
Acc e [AB]
Operation: Shiftgyia(Extend(Ws)) + (Acc) — Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 | 1001 ‘ Aww | Wrr rgag | SSSS
Description: Add a 16-bit value specified by the source Working register to the most significant word of
the selected accumulator. The source operand may specify the direct contents of a
Working register or an Effective Address. The value specified is added to the most
significant word of the accumulator by sign-extending and zero backfilling the source
operand prior to the operation. The value added to the accumulator may also be shifted
by a 4-bit signed literal before the addition is made.
The ‘A bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional shift.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits specify the source register Ws.

Note: Positive values of operand Slit4 represent an arithmetic shift right and negative
values of operand Slit4 represent an arithmetic shift left. The contents of the
source register are not affected by Slit4.

Words: 1
Cycles: 1M
Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1:

Wo
ACCA
SR

ADD W, #2, A

Before
Instruction

8000

00 7000 0000

0000

Wo
ACCA
SR

; Add WD right-shifted by

After
Instruction

8000

00 5000 0000

0000

2 to ACCA

DS70000157G-page 108

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2:

ADD

W5
ACCA

Data 2000

SR

[VB++], A

Before
Instruction

2000

00 0067 2345

5000

0000

; Add the effective val ue

Post -i ncrement Wb

of Wb to ACCA

After
Instruction
w5 2002
ACCA| 005067 2345
Data 2000 5000
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 109

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

ADDC

Add f to WREG with Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} ADDC{.B} f {WREG}

Operands: fel0...8191]

Operation: (f) + (WREG) + (C) — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | o100 | 18D fEff ffff ffff

Description: Add the contents of the default Working register WREG, the contents of the file
register and the Carry bit, and place the result in the destination register. The optional

WREG operand determines the destination register. If WREG is specified, the result

is stored in WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2. The WREG is set to Working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.
Words: 1
Cycles: 1)
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADDC. B RAMLOO ; Add WREG and C bit to RAMLOO
(Byte node)
Before After
Instruction Instruction
WREG| CC60 WREG | CC60
RAM100| 8006 RAM100| 8067
SR| 0001 [(C=1) SR| 0000
Example 2: ADDC RAM200, WREG ; Add RAMROO and C bit to the WREG
(Word node)
Before After
Instruction Instruction
WREG| 5600 WREG| 8A01
RAM200| 3400 RAM200| 3400
SR| 0001 [(C=1) SR| 000C [(N,QV =1)

DS70000157G-page 110

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

A DDC Add Literal to Wn with Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} ADDC{.B} #lit10, Wn

Operands: lit10 < [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: lit10 + (Wn) + (C) > Wn

Status Affected: DC,N,0V, Z, C

Encoding: | 1011 | 0000 | 1Bkk | kkkk | kkkk | dddd |
Description: Add the 10-bit unsigned literal operand, the contents of the Working register Wn and

the Carry bit, and place the result back into the Working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The Kk’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for information
on using 10-bit literal operands in Byte mode.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1
Cycles: 1
Example 1: ADDC. B #0OxFF, W ; Add -1 and C bit to W (Byte node)
Before After
Instruction Instruction
W7 | 12CO0 W7 | 12BF
SR| 0000 [(C=0) SR| 0009 [(N,C=1)
Example 2: ADDC #OxFF, W ; Add 255 and C bit to W (Wrd node)
Before After
Instruction Instruction
W1| 12CO0 W1| 13CO

SR| 0001 |(C=1) SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 111

16-Bit MCU and DSC Programmer’s Reference Manual

ADDC

Add Wb to Short Literal with Carry

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label:} ADDC{.B} Wb, #lit5, Wwd
(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]

Wb € [WO ... W15]
it € [0 ... 31]
Wd € [WO ... W15]

(Wb) + it5 + (C) — Wd
DC,N, OV, Z,C
| 0100 | 1ww | wBqq qddd d11k kkkk

Add the contents of the base register Wb, the 5-bit unsigned short literal operand and the
Carry bit, and place the result in the destination register Wd. Register Direct Addressing
must be used for Wb. Register Direct or Indirect Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Example 1: ADDC. B W0, #Ox1F, [W] ; Add W), 31 and C bit (Byte node)
Store the result in [W]
Before After
Instruction Instruction

Ww0| CC80 w0 | CC80
W7| 12CO0 W7| 12CO0
Data 12C0| BO000 Data 12C0| BO9F

SR 0000 | (C =0) SR| 0008 |(N=1)

DS70000157G-page 112

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: ADDC WB, #0x6, [--W{] ; Add WB, 6 and C bit (Wrd node)
Store the result in [--W]
Before After
Instruction Instruction
W3| 6006 W3 6006
Ww4| 1000 w4 OFFE
Data OFFE | DDEE Data OFFE 600D
Data 1000 | DDEE Data 1000 DDEE
SR| 0001 [(C=1) SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 113

16-Bit MCU and DSC Programmer’s Reference Manual

ADDC

Add Wb to Ws with Carry

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F |dsPIC33F |dsPIC33E| dsPIC33C

X X X X X X X
{label:} ADDC{.B} Wb, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Wb e [WO ... W15]

Ws e [WO ... W15]

Wd e [WO ... W15]

(Wb) + (Ws) + (C) »> Wd

DC,N,0V,Z,C

‘ 0100 ‘ Tvww | wBqq gddd
Add the contents of the source register Ws, the contents of the base register Wb and
the Carry bit, and place the result in the destination register Wd. Register Direct

Addressing must be used for Wb. Either Register Direct or Indirect Addressing may be
used for Ws and Wd.

dppp SSSS

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

1
1D

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 114

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: ADDC. B WO, [WL++] , [V2 ++] ; Add W, [W] and C bit (Byte node)
Store the result in [W]
Post-increnent WL, W2

Before After
Instruction Instruction
W0 | CC20 W0 | CC20
W1 | 0800 W1| 0801
w2| 1000 w2 1001
Data 0800 | AB25 Data 0800 | AB25
Data 1000 | FFFF Data 1000| FF46
SR| 0001 |[(C=1) SR| 0000
Example 2: ADDC WB, [V2++] , [WL++] ; Add VB, [W] and C bit (Word node)

Store the result in [W]
Post-increment WL, W2

Before After
Instruction Instruction

W1| 1000 W1| 1002

Ww2| 2000 w2 | 2002

W3 | 0180 Ww3| 0180

Data 1000 | 8000 Data 1000 | 2681
Data 2000 | 2500 Data 2000 | 2500
SR| 0001 [(C=1) SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 115

16-Bit MCU and DSC Programmer’s Reference Manual

AND AND f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} AND{.B} f {WREG}

Operands: fel0..8191]

Operation: (f).AND.(WREG) — destination designated by D

Status Affected: N, Z

Encoding: | 1011 | o110 | oBDf frff ffff frff

Description: Compute the logical AND operation of the contents of the default Working register

WREG and the contents of the file register, and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored

in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note 1. The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,

but it is not required.
2: The WREG is set to Working register WO.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in

Section 3.2.1 “Multicycle Instructions”.

Example 1: AND. B RAMLOO : AND WREG to RAMLOO (Byte node)
Before After
Instruction Instruction
WREG| CC80 WREG | CC80
RAM100| FFCO RAM100| FF80
SR| 0000 SR| 0008 [(N=1)
Examgle 2: AND RAM20OO, WREG ; AND RAM200 to WREG (Word node)
Before After
Instruction Instruction
WREG| CC80 WREG| 0080
RAM200| 12CO0 RAM200| 12CO0
SR| 0000 SR| 0000

DS70000157G-page 116 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

A N D AND Literal and Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} AND{.B} #lit10, Whn

Operands: lit10 < [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: lit10.AND.(Wn) —> Wn

Status Affected: N, Z

Encoding: | 1011 | 0010 | oOBkk | kkkk | kkkk | dddd |
Description: Compute the logical AND operation of the 10-bit literal operand and the contents of

the Working register Wn, and place the result back into the Working register Wn.
Register Direct Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for information
on using 10-bit literal operands in Byte mode.

Words: 1
Cycles: 1
Example 1: AND. B #0x83, W ; AND 0x83 to W (Byte node)
Before After
Instruction Instruction
W7| 12CO0 W7| 1280
SR| 0000 SR| 0008 |[(N=1)
Example 2: AND #0x333, W ; AND 0x333 to W (Word node)
Before After
Instruction Instruction
W1| 12DO0 W1 0210
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=2
oo
55
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 117

16-Bit MCU and DSC Programmer’s Reference Manual

AND

AND Wb and Short Literal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label:} AND{.B} Wb, #lit5, Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Wb e [WO ... W15]

lit5 < [0 ... 31]
Wd e [WO ... W15]

(Wb).AND.Iit5 — Wd
N, Z
| 0110 | Ovwwy | wBqq qddd d11k kkkk

Compute the logical AND operation of the contents of the base register Wb and the
5-bit literal, and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1

Example 1: AND. B WO, #0x3, [WL++] ; AND W and 0x3 (Byte node)

Store to [W]
Post -i ncrement WL

Before After
Instruction Instruction
W0 | 23A5 WO | 23A5
W1| 2211 W1| 2212
Data 2210| 9999 Data 2210 | 0199
SR| 0000 SR| 0000
Example 2: AND W, #0x1F, W ; AND W and Ox1F (Word node)
Store to W
Before After
Instruction Instruction
W0| 6723 W0 | 6723
W1| 7878 W1| 0003
SR| 0000 SR| 0000

DS70000157G-page 118

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

AND AND Wb and Ws

Implemented in: PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label} AND{B} Wb, Ws, Wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb).AND.(Ws) — Wd

Status Affected: N, Z

Encoding: ‘ 0110 ‘ Owww ‘ wBqq gddd dppp SSSS

Description: Compute the logical AND operation of the contents of the source register Ws and the

contents of the base register Wb, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1D

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: AND. B W, W [We++] ; AND W and W, and
; store to [W2] (Byte nopde)
Post -i ncrement W2

Before After
Instruction Instruction
WO0| AA55 WO0| AA55
w1| 221 Ww1| 2211
w2| 1001 Ww2| 1002
Data 1000| FFFF Data 1000 11FF
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 119

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: AND

WO
W1
W2
Data 1000
SR

Before
Instruction

AAS55

1000

55AA

2634

0000

[VL++], W

WO
W1
w2
Data 1000
SR

store

; AND W and [W], and

to W2 (Word node)

Post -i ncrement WL

After

AAS55

1002

2214

2634

0000

Instruction

DS70000157G-page 120

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} ASR{.B} f {WREG}

Operands: fel0..8191]

Operation: For Byte Operation:

(f<7>) — Dest<7>
(f<7>) — Dest<6>
(f<6:1>) — Dest<5:0>
(f<0>) > C

For Word Operation:
(f<15>) — Dest<15>
(fF<15>) — Dest<14>
(f<14:1>) — Dest<13:0>

(f<0>) > C
N
Status Affected: N,Z, C
Encoding: | 1101 [o101 | 1BOf fEff fEff fFEff
Description: Shift the contents of the file register one bit to the right and place the result in the

destination register. The Least Significant bit of the file register is shifted into the Carry
bit of the STATUS Register. After the shift is performed, the result is sign-extended. The
optional WREG operand determines the destination register. If WREG is specified, the
result is stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.
Words: 1
Cycles: 1@

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Examgle 1: ASR B RAMA00, WREG ; ASR RAMAOO and store to WREG
(Byte node)
Before After
Instruction Instruction
WREG 0600 WREG 0611
RAM400 0823 RAM400 0823
SR| 0000 SR| 0001|{(C=1)

suonduosag
uononNIIsu|

© 2005-2018 Microchip Technology Inc. DS70000157G-page 121

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2:

ASR RAMR2OO

RAM200
SR

Before
Instruction

8009
0000

RAM200
SR

; ASR RAM200 (Word node)

After
Instruction

C004
0009

(N,C=1)

DS70000157G-page 122

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label} ASR{.B} Ws, Wd

[Ws], [wd]

[Ws++], [Wd++]

[Ws--], [wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]
Operands: Ws e [WO ... W15]

Wd e [WO0 ... W15]
Operation: For Byte Operation:
(Ws<7>) > Wd<7>

(Ws<7>) > Wd<6>
(Ws<6:1>) »> Wd<5:0>
(Ws<0>) > C

For Word Operation:
(Ws<15>) » Wd<15>
(Ws<15>) » Wd<14>
(Ws<14:1>) - Wd<13:0>
(Ws<0>) > C

e

Status Affected: N, Z C
Encoding: ‘ 1101 | 0001 ‘ 1Bqq qddd dppp SSSS

Description: Shift the contents of the source register Ws one bit to the right and place the result in
the destination register Wd. The Least Significant bit of Ws is shifted into the Carry bit
of the STATUS Register. After the shift is performed, the result is sign-extended. Either
Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

Words: 1
Cycles: 1D
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 123

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: ASR. B [W++], [WL++] ; ASR [W] and store to [W] (Byte node)
Post -i ncrement WO and WL
Before After
Instruction Instruction
WO 0600 W0 | 0601
W1 0801 W1 0802
Data 600 2366 Data 600| 2366
Data 800 FFCO Data 800| 33CO
SR 0000 SR| 0000
Example 2: ASR W2, W3 ; ASR WL2 and store to W3 (Wrd node)
Before After
Instruction Instruction
W12 | ABO1 W12 | ABO1
W13 | 0322 W13 | D580
SR| 0000 SR| 0009 | (N,C=1)

DS70000157G-page 124 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right by Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} ASR Wh, #lit4, Wnd
Operands: Wb € [WO ... W15]
lit4 € [0 ... 15]
Wnd e [WO ... W15]
Operation: lit4<3:0> — Shift_Val

Wb<15> — Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> — Wnd<15-Shift_Val:0>

Status Affected: N, Z
Encoding: 1101 1110 Tvww wddd d100 kkkk
Description: Arithmetic shift right the contents of the source register Wb by the 4-bit unsigned

literal and store the result in the destination register Wnd. After the shift is performed,
the result is sign-extended. Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1
Cycles: 1
Example 1: ASR W), #0x4, WL ; ASRW by 4 and store to W
Before After
Instruction Instruction
WO 060F WO0| O060F
WA1 1234 W1 | 0060
SR 0000 SR| 0000
Example 2: ASR W), #0x6, WL ; ASRW) by 6 and store to W
Before After
Instruction Instruction
WO0| 80FF WO0| 80FF
WA1 0060 W1| FEO3
SR 0000 SR| 0008 |(N=1)
Example 3: ASR W), #O0xF, W ; ASR WD by 15 and store to W
Before After
Instruction Instruction
WO | 70FF WO | 70FF
W1| CC26 W1 0000
SR 0000 SR 0002|(z=1)

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 125

16-Bit MCU and DSC Programmer’s Reference Manual

ASR

Arithmetic Shift Right by Wns

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1: ASR W, W5, W6

Example 2: ASR W, W5, W6

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C

X X X X X X X

{label:} ASR Wb, Wns, Wnd

Wb e [WO ... W15]
Wns e [WO ...W15]
Wnd e [WO ... W15]

Wns<3:0> — Shift_Val
Wb<15> - Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> — Wnd<15-Shift_Val:0>
N, Z
1101 | 1110 | 1Tvwwy \ wddd dooo SSSs

Arithmetic shift right the contents of the source register Wb by the 4 Least Significant
bits of Wns (up to 15 positions) and store the result in the destination register Wnd.
After the shift is performed, the result is sign-extended. Direct Addressing must be used
for Wb, Wns and Wnd.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the destination register.

The ‘s’ bits select the source register.

Note 1. This instruction operates in Word mode only.

2. If Wns is greater than 15, Wnd = 0x0 if Wb is positive and Wnd = OxFFFF if
Wb is negative.

; ASRW) by Wb and store to W6

Before After
Instruction Instruction
WO0| 80FF WO0| 80FF
W5 0004 W5 0004
W6| 2633 W6| F80F
SR| 0000 SR| 0000

; ASR W by Wb and store to W6

Before After
Instruction Instruction
WO 6688 WO0| 6688
W5| 000A W5| 000A
W6| FFOO0 w6 0019
SR 0000 SR 0000
Example 3: ASR W1, W2, W3 ; ASR W1 by W2 and store to W3
Before After
Instruction Instruction
W11 8765 W11 8765
W12| 88E4 W12| 88E4
W13| A5AS5 W13 F876
SR| 0000 SR| 0008 |(N=1)

DS70000157G-page 126

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BCLR Bit Clear in f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} BCLR{.B} f, #bit4

Operands: f e [0 ... 8191] for byte operation

f e [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for byte operation

Operation: 0 — f<bit4>

Status Affected: None

Encoding: | 1010 | 1001 | bbbf tiif | fiif | fffb
Description: Clear the bit in the file register f specified by ‘bit4’. Bit numbering begins with the Least

Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte operations,
bit 15 for word operations).

The ‘b’ bits select value bit 4 of the bit position to be cleared.
The ‘f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0
and 7.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BCLR. B 0x800, #0x7 ; Clear bit 7 in 0x800
Before After
Instruction Instruction
Data 0800| 66EF Data 0800 666F
SR 0000 SR 0000
Example 2: BCLR 0x400, #0x9 ; Clear bit 9 in 0x400
Before After
Instruction Instruction
Data 0400 AA55 Data 0400 A855
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 127

16-Bit MCU and DSC Programmer’s Reference Manual

BCLR

Bit Clear in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label} BCLR{.B} Ws, #bit4
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Ws e [WO0 ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
0 — Ws<bit4>
None
| 1010 | 0001 | bbbb | 0BOO Oppp | ssss

Clear the bit in register Ws specified by ‘bit4’. Bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte
operations, bit 15 for word operations). Register Direct or Indirect Addressing may be
used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.

The ‘p’ bits select the source addressing mode.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the source register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0
and 7.

4: In dsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for Indirect Addressing generation in Extended Data
Space (EDS).

1
1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 128

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: BCLR. B W2, #0x2 ; Clear bit 3in W
Before After
Instruction Instruction
W2 F234 W2 F230
SR 0000 SR 0000
Example 2: BCLR [WD++], #0x0 ; Clear bit 0 in [W]
Post -i ncrenent W
Before After
Instruction Instruction
WO 2300 WO 2302
Data 2300 5607 Data 2300 5606
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 129

16-Bit MCU and DSC Programmer’s Reference Manual

BFEXT

Bit Field Extract from Ws into Wnd

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

1st word
2nd word

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

{label:} BFEXT #bit4, #wid5, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[-Ws],

bit4 < [0 ... 15]; wid5 < [1 ... 16];
Ws e [WO ... W15]; Wnd e [WO ... W15]

See text

None
0000 1010 1000 VWY MVIVWM LLLL
0000 0000 0000 0000 Oppp SSSS

A bit field is extracted (copied) from (Ws) and written into Wnd. The bit field data loaded
into Wnd starts at Wnd<0>, and all MSbs within Wnd that are beyond the defined bit
field width, will be cleared.

The bit location within Ws of the LSb of the bit field to be extracted is defined by operand
bit4. The width of the bit field may be up to 16 bits and is defined by operand wid5.

The ‘w’ bits select the address of the bit field destination register.

The ‘s’ bits select the address of the data source register.

The ‘p’ bits select the source addressing mode.

The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

2
2

DS70000157G-page 130

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B FEXT Bit Field Extract from f into Wnd
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X
Syntax: {label:} BFEXT #bit4, #widb, f, Wnd
Operands: bit4 € [0 ... 15]; wid5 € [1 ... 16];
Wnd e [WO ... W15]; f € [0 ... 65534]

Operation: See text
Status Affected: None
Encoding: 1stword| 0000 1010 1010 VWY MW LLLL

2nd word| 0000 0000 ffff ffff ffff fffo
Description: A bit field is extracted (copied) from the file register address and written into Wnd. The

bit field data loaded into Wnd starts at Wnd<0> and all MSbs within Wnd, that are
beyond the defined bit field width, will be cleared.

The bit location within Ws of the LSb of the bit field to be extracted is defined by operand
bit4. The width of the bit field may be up to 16 bits and is defined by operand wid5.

The ‘w’ bits select the address of the bit field destination register.

The f’ bits select the (word) address of the source file register.

The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2
Cycles: 2

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 131

16-Bit MCU and DSC Programmer’s Reference Manual

BFINS

Bit Field Insert from Wb into Wd

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

1st word
2nd word

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X
{label:} BFINS #bit4 #wid5, Whs, wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
bit4 € [0 ... 15]; wid5 < [1 ... 16];
Whns e [WO ... W15]; Wd < [WO ... W15]
See text
None
0000 1010 0000 VWWWY MW LLLL
0000 0000 0000 0000 Oppp dddd

A bit field is read from (Wb) and inserted (copied) into Wd. The bit field data sourced
from Whns starts at Wns<0>. All MSbs within Wns, that are beyond the defined bit field
width, are ignored and may be set to any value.

The bit location within Wd of the LSb of the bit field to be inserted is defined by operand bit4.
The width of the bit field may be up to 16 bits and is defined by operand wid5. The insert
operation overwrites the existing bits within the insert range (i.e., it does not shift the existing
bits to accommaodate the inserted bits).

The ‘W’ bits select the address of the bit field source register.

The ‘d’ bits select the address of the data destination register.

The ‘p’ bits select Source Addressing Mode 1.

The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

2
2

DS70000157G-page 132

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B FI NS Bit Field Insert from Wns into f
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X
Syntax: {label:} BFINS #bit4, #wid5, Whs, f
Operands: bit4 € [0 ... 15]; wid5 € [1 ... 16];
Wns e [WO ... W15]; f € [0 ... 65534]

Operation: See text
Status Affected: None
Encoding: 1stword| 0000 1010 0010 VWY MVIVWM LLLL

2nd word| 0000 0000 ffff ffff ffff fffo
Description: A bit field is read from (Wns) and inserted (copied) into the file register address. The bit

field data sourced from Wns starts at Wns<0>. All MSbs within Wns, that are beyond
the defined bit field width, are ignored and may be set to any value.

The bit location within f of the LSb of the bit field to be inserted is defined by operand bit4.
The width of the bit field may be up to 16 bits and is defined by operand wid5. The insert
operation overwrites the existing bits within the insert range (i.e., it does not shift the existing
bits to accommaodate the inserted bits).

The ‘f bits select the (word) address of the destination file register.
The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2
Cycles: 2

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 133

16-Bit MCU and DSC Programmer’s Reference Manual

BFINS

Bit Field Insert Literal into Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

1st word
2nd word

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

{label:} BFINS #bit4, #wid5, #lit8, Ws
[Ws]
[Ws++]
[Ws--]
[++Ws]
[--Ws]

bit4 < [0 ... 15]; wid5 < [1 ... 16];
lit8< [0 ... 255]; Ws e [WO ... W15]

See text

None
0000 1010 0100 0000 MVIVWM LLLL
0000 0000 kkkk kkkk Oppp SSSS

A bit field literal value is inserted (copied) into Ws. The bit field data sourced from the
literal starts at the LSb of the literal. All MSbs within the literal value, that are beyond
the defined bit field width, are ignored and may be set to any value.

The bit location within Ws of the LSb of the bit field to be inserted is defined by operand bit4.
The width of the bit field may be up to 16 bits and is defined by operand wid5.

The ‘K’ bits contain the bit field source value.

The ‘s’ bits select the address of the source/destination register.

The ‘p’ bits select Source Addressing Mode 1.

The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

2
2

DS70000157G-page 134

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B OOTSWP(l) Swap Active and Inactive Flash Address Panel

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X

Syntax: {label:} BOOTSWP

Operands: None

Operation: If

(Dual Boot Operating mode and the BOOTSWP instruction are enabled
(via device-specific Configuration bits))
Then
(P2ACTIV (NVMCON<10>) —» P2ACTIV
1 — SFTSWP (NVMCON<11>))

Else
Execute as NOP
Status Affected: None
Encoding: 1111 | 1110 | 0010 | 0000 | 0000 | 0000 |
Description: If the BOOTSWP instruction is enabled (via device-specific Configuration bit) and the

device is operating in a Dual Boot mode, and the NVMKEY software interlock sequence
has been satisfied, the BOOTSWP instruction will:

1. Toggle the state of the P2ACTIV (NVMCON<10>) status bit, which will swap the
Active and Inactive Flash address space within the program space address map.

Set SFTSWP (NVMCON<11>), indicating a successful panel swap.

N

Words:
Cycles: 2

Note 1: This instruction is present only in some devices of the device families listed above. Please see the specific
device data sheet to ensure that this instruction is supported on a specific device.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 135

16-Bit MCU and DSC Programmer’s Reference Manual

BRA

Branch Unconditionally

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X X X X X
{label:} BRA Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... +32767].
(PC+2)+2*8lit16 » PC
NOP — Instruction Register

None

| o011

0111

nnnn

nnnn

nnnn

nnnn

The program will branch unconditionally, relative to the next PC. The offset of the branch is the
two’s complement number, ‘2 * Slit16’, which supports branches of up to
32K instructions, forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression. After the branch is taken, the new address will
be (PC + 2) + 2 * Slit16, since the PC will have incremented to fetch the next instruction.

The ‘n’ bits are a signed literal that specifies the number of program words offset from (PC + 2).

1

2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
4 (PIC24E, dsPIC33E, dsPIC33C)

Example 1:

Example 2:

Example 3:

002

000 HERE:

002002
002004
002006
002008
00200A THERE:
00200C

PC
SR

Before
Instruction

BRA THERE

00 2000

0000

002000 HERE:
002002
002004
002006
002008
00200A THERE:
00200C

Before
Instruction

PC

00 2000

SR

0000

002000 HERE:
002002
002004

Before
Instruction

PC

00 2000

SR

0000

Branch to THERE

BRA THERE+0x2

BRA 0x1366

Branch to THERE+0x2

Branch to 0x1366

After
Instruction
PC 00 200A
SR 0000
After
Instruction
PC 00 200C
SR 0000
After
Instruction
PC 00 1366
SR 0000

DS70000157G-page 136

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA Computed Branch

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} BRA Wn
Operands: Wn € [WO ... W15]
Operation: (PC+2)+(2*Wn)—> PC
NOP — Instruction Register
Status Affected: None
Encoding: | o000 | 0001 | 0110 | 0000 | 0000 ssss
Description: The program branches unconditionally, relative to the next PC. The offset of the

branch is the sign-extended 17-bit value (2 * Wn), which supports branches up to 32K
instructions, forward or backward. After this instruction executes, the new PC will be
(PC + 2) + 2 * Wn, since the PC will have incremented to fetch the next instruction.

The ‘s’ bits select the source register.

Words: 1
Cycles: 2
Example 1: 002000 HERE: BRA W/ ; Branch forward (2 + 2 * W)
002002 L.
002108
00210A TABLET7:
00210C
Before After
Instruction Instruction
PC 00 2000 PC 00 210A
w7 0084 w7 0084
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 137

16-Bit MCU and DSC Programmer’s Reference Manual

BRA

Computed Branch

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X
{label:} BRA Whn
Wn e [WO ... W15]
(PC +2) + (2 * Wn) — PC
NOP — Instruction Register
None
| o000 | 0001 | 0000 | 0110 | 0000 ssss

The program branches unconditionally, relative to the next PC. The offset of the
branch is the sign-extended 17-bit value (2 * Wn), which supports branches up to 32K
instructions, forward or backward. After this instruction executes, the new PC will be
(PC + 2) + 2 * Wn, since the PC will have incremented to fetch the next instruction.

The ‘s’ bits select the source register.
1

4
Example 1: 002000 HERE: BRA W Branch forward (2 + 2 * W)
002002 L.
002108
00210A TABLE7:
00210C
Before After
Instruction Instruction
PC 00 2000 PC 00 210A
w7 0084 w7 0084
SR 0000 SR 0000

DS70000157G-page 138

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA C

Branch if Carry

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
{label:} BRA C, Expr

Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where Slit16 [-32768 ... +32767].

Condition = C

If (Condition)
(PC+2)+2*8Iit16 —> PC
NOP — Instruction Register

None

| 0011 | 0001

nnnn

nnnn

nnnn

nnnn

If the Carry flag bit is 1’, then the program will branch relative to the next PC. The offset
of the branch is the two’s complement number, ‘2 * Slit16’, which supports branches up
to 32K instructions, forward or backward. The Slit16 value is resolved by the linker from
the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in instruction words.

1

1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_C:
002004
002006
002008 CARRY:
00200A
00200C THERE:
00200E

Example 1:

Before
Instruction

PC 00 2000

SR 0001

002000 HERE:
002002 NO_C
002004
002006
002008 CARRY:
00200A
00200C THERE:
00200E

Example 2:

Before
Instruction

PC 00 2000
SR 0000

BRA C, CARRY

GOTO THERE

(€=1)

If Cis set,
O herwi se. ..

After
Instruction

PC

00 2008

SR

0001

BRA C, CARRY

GOTO THERE

If Cis set,
O herw se. ..

After

Instruction

PC

00 2002

SR

0000

(€=1)

branch to CARRY
conti nue

branch to CARRY

continue

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 139

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

16-Bit MCU and DSC Programmer’s Reference Manual

Example 3: 006230 HERE: BRA C, CARRY ; If Cis set, branch to CARRY
006232 NO_C: R ; Otherwi se... continue
006234 ..

006236 GOTO THERE
006238 CARRY:
00623A
00623C THERE:
00623E
Before After

Instruction Instruction
PC 00 6230 PC 00 6238
SR 0001 {(C=1) SR 0001 [(C=1)

Example 4: 006230 START:

006232
006234 CARRY:
006236
006238
00623A A
00623C HERE: BRA C, CARRY ; If Cis set, branch to CARRY
00623E L. ; Otherwi se... continue
Before After
Instruction Instruction
PC 00 623C PC 00 6234
SR 0001{(C=1) SR 0001|{(C=1)

DS70000157G-page 140 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA GE

Branch if Signed Greater Than or Equal

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} BRA GE, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = (N&&OV)||(IN&&!OV)
If (Condition)
(PC +2)+2*8lit16 -» PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0011 | 1101 | nnnn | nnnn ‘ nnnn nnnn
Description: If the logical expression, (N&&OV)||(IN&&!OV), is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement number,
‘2 * Slit16’, which supports branches up to 32K instructions, forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute address or
expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.
The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in instruction
words.
Note: The assembler will convert the specified label into the offset to be used.
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 141

Example 1: 007600 LOOP:
007602
007604
007606 P
007608 HERE: BRA GE, LOOP If GE, branch to LOOP
00760A NO_GE: O herwi se... continue
Before After
Instruction Instruction
PC 00 7608 PC 00 7600
SR 0000 SR 0000
Example 2: 007600 LOOP:
007602
007604
007606 Lo
007608 HERE: BRA GE, LOOP If GE, branch to LOOP
00760A NO_GE: O herwi se... continue
Before After (.? =1
Instruction Instruction g %}
PC 00 7608 PC 00 760A i
SR 0008 |(N = 1) SR 0008 |(N = 1) 29
oo
S5 5
wn

16-Bit MCU and DSC Programmer’s Reference Manual

BRA GEU

Branch if Unsigned Greater Than or Equal

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E [dsPIC33C
X X X X X X X
{label} BRA GEU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16 offset that supports an offset range of
[-32768 ... +32767] program words.

Condition =C

If (Condition)
(PC+2)+2*8Iit16 > PC
NOP — Instruction Register

None

| oo11 | o001

If the Carry flag is ‘1’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved
by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC
will have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in
instruction words.

Note:

| nnnn nnnn nnnn nnnn

This instruction is identical to the BRA C, Expr (Branch if Carry) instruction
and has the same encoding. It will reverse assemble as BRA C, Sl i t 16.

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_GEU:
002004

002006

002008

00200A
00200C BYPASS:
00200E

BRA CGEU, BYPASS If Cis set,
; to BYPASS

O herwi se. ..

branch

conti nue

GOTO THERE

After
Instruction

00 200C
0001 |(C = 1)

Before
Instruction

PC[002000 PC
SR 0001 |(C = 1) SR

DS70000157G-page 142

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA GT

Branch if Signed Greater Than

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

{label:} BRA GT, Expr
Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Condition = (IZ&&N&&OV)||(1Z&&IN&&!OV)
If (Condition)

(PC +2)+2*S8Iit16 » PC

NOP — Instruction Register
None
| 0011 | 1100 | nnnn | nnnn | nnnn | nnnn

If the logical expression, (IZ&&N&&OV)||(IZ&&IN&&!OV), is true, then the program
will branch relative to the next PC. The offset of the branch is the two’s complement
number, ‘2 * Slit16’, which supports branches up to 32K instructions, forward or
backward. The Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a

two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in instruction

words.
1

1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000
002002
002004
002006
002008

00200A

HERE:
NO_GT:

00200C BYPASS:

00200E

Before

Instruction

BRA GTI, BYPASS

GOTO THERE

PC

00 2000

SR

0001

(C=1)

If GI, branch to BYPASS

O herwi se. ..

After

Instruction

PC

00 200C

SR

0001 |(C

continue

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 143

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

BRA GTU

Branch if Unsigned Greater Than

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E [dsPIC33C
X X X X X X X
{label} BRA GTU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Condition = (C&&!Z)
If (Condition)

(PC +2)+2*8lit16 » PC

NOP — Instruction Register

None
| 0011 \ 1110 \

If the logical expression, (C&&!Z), is true, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the nextinstruction. The instruction then becomes atwo-cycle
instruction, with a NOP executed in the second cycle.

nnnn | nnnn nnnn nnnn

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_GrTU:
002004

002006

002008

00200A

00200C BYPASS:
00200E

BRA GTU, BYPASS If GTU, branch to BYPASS

O herwi se... continue

GOTO THERE

PC
SR

Before
Instruction

00 2000

0001

PC
SR

After
Instruction

00 200C
0001

DS70000157G-page 144

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA LE

Branch if Signed Less Than or Equal

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} BRA LE, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = Z||(N&&!OV)||(IN&&OV)
If (Condition)
(PC +2)+2*S8Iit16 » PC
NOP — Instruction Register
Status Affected: None
Encoding: | 0011 | 0100 | nnnn ‘ nnnn ‘ nnnn nnnn
Description: If the logical expression, Z||(N&&!OV)||(IN&&QOV), is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement number,
‘2 * Slit16’, which supports branches up to 32K instructions, forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute address or
expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_LE:
002004

002006

002008

00200A
00200C BYPASS:
00200E

BRA LE, BYPASS If LE, branch to BYPASS

O herwi se... continue

Example 1:

GOTO THERE

Before
Instruction

PC

00 2000

SR

0001

After
Instruction

PC

00 2002

SR

0001

(C=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 145

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

BRA LEU

Branch if Unsigned Less Than or Equal

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1: 002000 HERE: BRA LEU, BYPASS

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label} BRA LEU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Condition = IC||Z

If (Condition)
(PC+2)+2*38lit16 -> PC
NOP — Instruction Register

None

‘ 0011 ‘ 0110 ‘ nnnn ‘ nnnn nnnn nnnn

If the logical expression, !C||Z, is true, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC +2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

If LEU, branch to BYPASS
002002 NO_LEU: L. ; Otherwi se... continue
002004

002006

002008 R

00200A GOTO THERE

00200C BYPASS:

00200E

Before After
Instruction Instruction

PC[002000 PC[00200C
SR 0001 |(C = 1) SR 0001 |(C = 1)

DS70000157G-page 146

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA LT

Branch if Signed Less Than

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} BRA LT, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = (N&&!OV)||(IN&&OV)
If (Condition)
(PC +2)+2*8lit16 > PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0011 ‘ 0101 ‘ nnnn ‘ nnnn | nnnn nnnn
Description: If the logical expression, (N&&!OV)||(IN&&OV), is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement number,
‘2 * Slit16’, which supports branches up to 32K instructions, forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute address or
expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

If LT, branch to BYPASS
O herwi se... continue

002000 HERE:
002002 NO_LT:
002004

002006

002008

00200A
00200C BYPASS:
00200E

Example 1: BRA LT, BYPASS

GOTO THERE

PC
SR

Before
Instruction

00 2000

0001

After
Instruction

PC

00 2002

SR

0001

(C=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 147

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

BRA LTU

Branch if Unsigned Less Than

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
{label} BRA LTU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Condition = IC

If (Condition)
(PC+2)+2*8lit16 -> PC
NOP — Instruction Register

None

‘ 0011 ‘ 1001 nnnn nnnn nnnn nnnn

If the Carry flag is ‘0’, then the program will branch relative to the next PC. The offset
of the branch is the two’s complement number, ‘2 * Slit16’, which supports branches
up to 32K instructions, forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Note : This instruction is identical to the BRA NC, Expr (Branch if Not Carry)
instruction and has the same encoding. It will reverse assemble as
BRA NC, Slitl6.

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE
002002 NO_LTU:
002004
002006
002008
00200A
00200C BYPASS
00200E

BRA LTU, BYPASS If LTU, branch to BYPASS

O herwi se... continue

GOTO THERE

Before
Instruction

PC

00 2000

SR

0001

(€=1)

PC
SR

After
Instruction

00 2002

0001

(€=1)

DS70000157G-page 148

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA N Branch if Negative

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} BRA N, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = N
If (Condition)
(PC +2)+2*8lit16 -» PC
NOP — Instruction Register.

Status Affected: None
Encoding: ‘ 0011 ‘ 0011 nnnn nnnn nnnn nnnn
Description: If the Negative flag is ‘1’, then the program will branch relative to the next PC. The

offset of the branch is the two’s complement number, 2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from

(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA N, BYPASS ; If N, branch to BYPASS
002002 NO_N: A ; Otherwi se... continue
002004
002006
002008 R
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC[002000 PC[00200C
SR 0008 |(N = 1) SR 0008 |(N = 1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 149

16-Bit MCU and DSC Programmer’s Reference Manual

BRA NC

Branch if Not Carry

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
{label} BRA NC, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Condition = IC

If (Condition)
(PC+2)+2*8Iit16 —> PC
NOP — Instruction Register

None
| 0011 \ 1001

If the Carry flag is ‘0, then the program will branch relative to the next PC. The offset
of the branch is the two’s complement number, ‘2 * Slit16’, which supports branches
up to 32K instructions, forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

nnnn nnnn nnnn nnnn

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_NC:
002004

002006

002008

00200A
00200C BYPASS:
00200E

BRA NC, BYPASS If NC, branch to BYPASS

O herwi se... continue

GOTO THERE

PC
SR

Before
Instruction

00 2000

0001

PC
SR

After
Instruction

00 2002
0001

DS70000157G-page 150

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA NN

Branch if Not Negative

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} BRA NN, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Operation: Condition = IN
If (Condition)
(PC +2)+2*S8Iit16 » PC
NOP — Instruction Register
Status Affected: None
Encoding: | 0011 ‘ 1011 nnnn nnnn nnnn nnnn
Description: If the Negative flag is ‘0’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

If NN, branch to BYPASS
O herwi se... continue

002000 HERE:
002002 NO_NN:
002004

002006

002008

00200A
00200C BYPASS:
00200E

Example 1: BRA NN, BYPASS

GOTO THERE

Before
Instruction

PC

00 2000

SR

0000

PC
SR

After
Instruction

00 200C

0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 151

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

BRA NOV

Branch if Not Overflow

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X X X X X
{label} BRA NOV, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Condition = IOV

If (Condition)
(PC+2)+2*8Iit16 —> PC
NOP — Instruction Register

None
| 0011 | 1000

If the Overflow flag is ‘0’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, 2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

nnnn nnnn nnnn nnnn

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC +2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_NOv:
002004

002006

002008

00200A
00200C BYPASS:
00200E

BRA NOV, BYPASS If NOV, branch to BYPASS

O herwi se... continue

GOTO THERE

PC
SR

Before
Instruction

00 2000

0008

After
Instruction

PC 00 200C

SR 0008

(N=1)

DS70000157G-page 152

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Branch if Not Zero

BRA NZ

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} BRA NZ, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = 1Z
If (Condition)
(PC +2)+2*8lit16 > PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0011 ‘ 1010 nnnn nnnn nnnn nnnn
Description: If the Z flag is ‘0’, then the program will branch relative to the next PC. The offset of
the branch is the two’s complement number, ‘2 * Slit16’, which supports branches up
to 32K instructions, forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.
If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_NZ:
002004

002006

002008

00200A
00200C BYPASS:
00200E

If NZ, branch to BYPASS
O herwi se... continue

Example 1: BRA NZ, BYPASS

GOTO THERE

PC
SR

Before
Instruction

00 2000

0002

(2=1)

PC

After
Instruction

00 2002

SR

0002

(2=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 153

16-Bit MCU and DSC Programmer’s Reference Manual

BRA OA

Branch if Overflow Accumulator A

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1: 002000 HERE: BRA OA, BYPASS

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X

{label} BRA OA, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].

Condition = OA

If (Condition)
(PC+2)+2*38lit16 -> PC
NOP — Instruction Register

None

‘ 0000 | 1100 nnnn nnnn nnnn nnnn

If the Overflow Accumulator A flag is ‘1’, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will

have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC +2).

Note: The assembler will convert the specified label into the offset to be used.
1
1 (2 if branch taken) — dsPIC30F, dsPIC33F
1 (4 if branch taken) — dsPIC33E, dsPIC33C

If OA branch to BYPASS
002002 NO_QA: Lo ; Otherwi se... continue
002004

002006

002008 L

00200A GOTrO THERE

00200C BYPASS:

00200E

Before After
Instruction Instruction

PC 00 2000 PC 00 200C
SR 8800 [(OA, OAB =1) SR 8800 |(OA, OAB =1)

DS70000157G-page 154

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA OB Branch if Overflow Accumulator B

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

Syntax: {label:} BRA OB, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = OB
If (Condition)
(PC +2)+2*8Iit16 » PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0000 | 1101 nnnn nnnn nnnn nnnn
Description: If the Overflow Accumulator B flag is ‘1’, then the program will branch relative to the

next PC. The offset of the branch is the two’s complement number, 2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from

(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — dsPIC30F, dsPIC33F

1 (4 if branch taken) — dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA OB, BYPASS ; If OB, branch to BYPASS
002002 NO_OB: L. ; Otherwi se... continue
002004
002006
002008 R
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC[002000 PC[002002
SR 8800 |(OA, OAB = 1) SR 8800 |(OA, OAB = 1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 155

16-Bit MCU and DSC Programmer’s Reference Manual

BRA OV

Branch if Overflow

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
{label:} BRA oV, Expr
Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Condition = OV
If (Condition)
(PC +2)+2*8lit16 » PC
NOP — Instruction Register
None
| 0011 | 0000 nnnn nnnn nnnn nnnn

If the Overflow flag is ‘1’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, 2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC +2).

1
1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F
1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

002000 HERE:
002002 NO_OV
002004

002006

002008

00200A
00200C BYPASS:
00200E

BRA OV, BYPASS If OV, branch to BYPASS

O herwi se... continue

GOTO THERE

Before After
Instruction Instruction

PC[002000 PC[002002
SR 0002 |(Z = 1) SR 0002 |(Z = 1)

DS70000157G-page 156

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA SA Branch if Saturation Accumulator A

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

Syntax: {label:} BRA SA, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Operation: Condition = SA
If (Condition)
(PC +2)+2*8lit16 > PC
NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0000 | 1110 nnnn nnnn nnnn nnnn
Description: If the Saturation Accumulator A flag is ‘1’, then the program will branch relative to the

next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from

(PC + 2).
Words: 1
Cycles: 1 (2 if branch taken) — dsPIC30F, dsPIC33F

1 (4 if branch taken) — dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA SA, BYPASS ; If SA branch to BYPASS
002002 NO_SA: L. ; Otherwi se... continue
002004
002006
002008 R
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC[002000 PC[00200C
SR 2400 |(SA, SAB=1) SR 2400 |(SA, SAB = 1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 157

16-Bit MCU and DSC Programmer’s Reference Manual

BRA SB

Branch if Saturation Accumulator B

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1: 002000 HERE: BRA SB, BYPASS

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X

{label} BRA SB, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 e [-32768 ... +32767].
Condition = SB
if (Condition)

(PC +2)+2*8lit16—» PC

NOP — Instruction Register

None

| 0000 | 1111 nnnn nnnn nnnn nnnn

If the Saturation Accumulator B flag is ‘1’, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, 2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC +2).

1
1 (2 if branch taken) — dsPIC30F, dsPIC33F
1 (4 if branch taken) — dsPIC33E, dsPIC33C

If SB, branch to BYPASS
002002 NO_SB: A ; Otherwi se... continue
002004

002006

002008 P

00200A GOTO THERE

00200C BYPASS:

00200E

Before After
Instruction Instruction

PC 00 2000 PC 00 2002
SR 0000 SR 0000

DS70000157G-page 158

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA Z Branch if Zero

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} BRA Z, Expr

Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Operation: Condition =Z
if (Condition)
(PC+2)+2*8lit16 —» PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0011 | 0010 nnnn nnnn nnnn nnnn
Description: If the Zero flag is ‘1’, then the program will branch relative to the next PC. The offset of

the branch is the two’s complement number, ‘2 * Slit16’, which supports branches up to
32K instructions, forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a two-cycle
instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from

(PC +2).
Words: 1
Cycles: 1 (2 if branch taken) — PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) — PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA Z, BYPASS ; If Z, branch to BYPASS
002002 NO_Zz: L. ; Otherwise... continue
002004
002006
002008 R
00200A GOTO THERE
00200C BYPASS:
00200E

Before After
Instruction Instruction

PC[002000 PC|[00200C
SR 0002|(Z = 1) SR 0002 |(Z = 1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 159

16-Bit MCU and DSC Programmer’s Reference Manual

BSET Bit Set in f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} BSET{B} f, #bit4

Operands: f € [0 ... 8191] for byte operation

f € [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: 1 — f<bit4>

Status Affected: None

Encoding: | 1010 | 1000 | bbbf | ffff tiif | fifb
Description: Set the bit in the file register ‘' specified by ‘bit4’. Bit numbering begins with the Least

Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte

operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be set.

The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be between 0
and 7.
Words: 1
Cycles: 1@
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Examgle 1: BSET. B 0x601, #0x3 ; Set bit 3 in 0x601
Before After
Instruction Instruction
Data 0600 F234 Data 0600| FA34
SR 0000 SR| 0000
Examgle 2: BSET 0x444, #OxF ; Set bit 15 in 0x444
Before After
Instruction Instruction
Data 0444 5604 Data 0444 | D604
SR 0000 SR| 0000

DS70000157G-page 160 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BSET Bit Set in Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} BSET{.B} Ws, #bit4
[Ws],
[Ws++],
(Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: 1 —> Ws<bit4>
Status Affected: None
Encoding: | 1010 | 0000 | bbbb 0B00 | Oppp | ssss
Description: Set the bit in register Ws specified by ‘bit4’. Bit numbering begins with the Least

Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte operations,

bit 15 for word operations). Register Direct or Indirect Addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source/destination register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the source register address
must be word-aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.
4: IndsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended Data Space.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 161

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

Set bit 7 in W

Example 1: BSET. B W8, #0x7
Before
Instruction
w3 0026
SR 0000
Example 2: BSET [WA++] ,
Before
Instruction
w4 6700
Data 6700 1734
SR 0000

After
Instruction
W3| 00A6
SR| 0000
#0x0 Set bit 0 in [W]
Post -i ncrement W
After
Instruction
W4 | 6702
Data 6700| 1735
SR| 0000

DS70000157G-page 162

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BSW Bit Write in Ws
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} BSW.C Ws, Wb
BSW.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Operation: For “. C’ Operation:
C - Ws<(Wb)>
For *. Z” Operation (default):
Z — Ws<(Wb)>
Status Affected: None
Encoding: ‘ 1010 ‘ 1101 ZWW ‘ w000 ‘ Oppp ‘ SSSS |
Description: The (Wb) bit in register Ws is written with the value of the C or z flag from the STATUS
Register. Bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 15) of the Working register. Only the four Least Significant
bits of Wb are used to determine the destination bit number. Register Direct Address-
ing must be used for Wb, and either Register Direct or Indirect Addressing may be
used for Ws.
The ‘Z' bit selects the C or Z flag as source.
The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note: This instruction only operates in Word mode. If no extension is provided, the
“. Z” operation is assumed.
Words: 1
Cycles: 1D
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1:
w2
w3
SR

BSWC W, W

Set bit WB in W to the val ue

of the C bit
Before After
Instruction Instruction
F234 W2| 7234
111F W3| 111F
0002{(z=1,C=0) SR| 0002|(z=1,C=0)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 163

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: BSWzZ W, W8

Set bit WB in W2 to the conpl ement

; of the Z bit
Before After
Instruction Instruction
W2| E235 W2| E234
w3 0550 W3| 0550
SR 0002|(Z=1,C=0) SR| 0002|(z=1,C=0)
Example 3: BSWC [++W], W ; Set bit Wb in [W++] to the val ue
; of the Cbhit
Before After
Instruction Instruction
WO 1000 WO0| 1002
W6 | 34A3 W6 | 34A3
Data 1002 2380 Data 1002| 2388
SR 0001|(Zz=0,C=1) SR| 0001|(z=0,C=1)

Example 4: BSWZ [W--], W

Before After
Instruction Instruction
W1 1000 W1| OFFE
W5| 888B W5| 888B
Data 1000| C4DD Data 1000 | CCDD
SR| 0001|(C=1) SR| 0001

; Set bit Wo in [W] to the
; conmplenent of the Z bit
Post - decrenent W

(C=1)

DS70000157G-page 164

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTG Bit Togglein f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} BTG{.B} f, #bit4

Operands: f € [0 ... 8191] for byte operation

f € [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: (f)<bitd> — (f)<bit4d>

Status Affected: None

Encoding: | 1010 | 1010 | bbbt | ffff | ffff | fifb
Description: Bit ‘bit4’ in file register f' is toggled (complemented). For the bit4 operand, bit

numbering begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operation, bit 15 for word operation) of the byte.

The ‘b’ bits select value bit4, the bit position to toggle.
The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3. When this instruction operates in Byte mode, ‘bit4’ must be between
Oand7.

Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BTG B 0x1001, #0x4 ; Toggle bit 4 in 0x1001
Before After
Instruction Instruction
Data 1000 F234 Data 1000| E234
SR 0000 SR| 0000
Example 2: BTG 0x1660, #0x8 ; Toggle bit 8 in RAMG60
Before After
Instruction Instruction
Data 1660 5606 Data 1660| 5706
SR 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 165

16-Bit MCU and DSC Programmer’s Reference Manual

BTG

Bit Toggle in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label:} BTG{.B} Ws, #bit4
[Ws],
[Ws++],
Ws-],
[++Ws],
[--Ws],
Ws e [WO0 ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
(Ws)<bit4> — Ws<bits>
None
| 1010 | 0010 | bbbb | 0BOO | Oppp ssss |

Bit ‘bit4’ in register Ws is toggled (complemented). For the bit4 operand, bit numbering
begins with the Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations). Register Direct or Indirect Addressing
may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.

The ‘p’ bits select the source addressing mode.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

2: When this instruction operates in Word mode, the source register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.
4: In dsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended Data Space.
1

1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 166

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: BTG W2, #0x0 ; Toggle bit 0in W
Before After
Instruction Instruction
W2 F234 W2 | F235
SR 0000 SR| 0000
Example 2: BTG [VWO++], #0x0 ; Toggle bit 0 in [W]
; Post-increment W
Before After
Instruction Instruction
WO 2300 WO | 2302
Data 2300 5606 Data 2300| 5607
SR 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 167

16-Bit MCU and DSC Programmer’s Reference Manual

BTSC Bit Test f, Skip if Clear

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} BTSC{.B} f, #bit4

Operands: f € [0 ... 8191] for byte operation

f € [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 < [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if clear

Status Affected: None

Encoding: | 1010 | 1111 | bbbf | fff [ffff fiib |
Description: Bit ‘bit4’ in the file register is tested. If the tested bit is ‘0, the next instruction (fetched

during the current instruction execution) is discarded and on the next cycle, a NOP is
executed instead. If the tested bit is ‘1’, the next instruction is executed as normal. In
either case, the contents of the file register are not changed. For the bit4 operand, bit
numbering begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between
Oand?7.

Words: 1
Cycles: 1(20or3)®

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Examgle 1: 002000 HERE: BTSC. B 0x1201, #2 o If bit 2 of 0x1201 is O,
002002 GOoro BYPASS ; skip the GOTO
002004 L.

002006
002008 BYPASS:
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
Data 1200 264F Data 1200 264F
SR 0000 SR 0000

DS70000157G-page 168 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Examgle 2: 002000 HERE: BTSC 0x804, #14 ; If bit 14 of 0x804 is O,
002002 GOro BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A

Before After
Instruction Instruction
PC 00 2000 PC 00 2006
Data 0804 2647 Data 0804 2647
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 169

16-Bit MCU and DSC Programmer’s Reference Manual

BTSC

Bit Test Ws, Skip if Clear

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label} ~ BTSC W, #bit4
[Ws],
[Ws++],
(Ws-],
[++Ws],
[--Ws],
Ws e [WO ... W15]
bit4 [0 ... 15]
Test (Ws)<bit4>, skip if clear
None
| 1000 | 0111 [bbbb | 0000 oppp | ssss |

Bit ‘bit4’ in Ws is tested. If the tested bit is ‘0’, the next instruction (fetched during the
current instruction execution) is discarded and on the next cycle, a NOP is executed
instead. If the tested bit is ‘1’, the next instruction is executed as normal. In either
case, the contents of Ws are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either Register Direct or Indirect Addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
1

1 (2 or 3 if the next instruction is skipped)™®

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Examgle 1: 002000 HERE: BTSC W), #0x0 If bit O of W is O,
002002 GOoro BYPASS ; skip the GOTO
002004 Lo
002006
002008 BYPASS:
00200A

Before After
Instruction Instruction
PC 00 2000 PC 00 2002
WO 264F WO 264F
SR 0000 SR 0000

DS70000157G-page 170

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2:

Example 3:

BTSC
GOoro

002000 HERE:
002002

002004

002006

002008 BYPASS:
00200A

Before
Instruction

PC 00 2000
W6 264F
SR 0000

BTSC
GOro

003400 HERE:
003402

003404

003406

003408 BYPASS:
00340A

Before
Instruction

PC
W6
Data 1800
SR

00 3400

1800

1000

0000

W6, #OxF If bit 15 of W is O,
BYPASS skip the GOTO
After
Instruction
PC 00 2006
W6 264F
SR 0000
[VB++], #OXC If bit 12 of [We] is O,
BYPASS skip the GOTO
Post -i ncrenment W
After
Instruction
PC 00 3402
W6 1802
Data 1800 1000
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 171

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

BTSS

Bit Test f, Skip if Set

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Note 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
{label:} BTSS{.B} f, #bit4
f e [0 ... 8191] for byte operation
f e [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 < [0 ... 15] for word operation
Test (f)<bit4>, skip if set
None
| 1000 | 1120 | bbbf | ffff | ffff fiib |

Bit ‘bit4’ in file register f is tested. If the tested bit is ‘1’, the next instruction (fetched
during the current instruction execution) is discarded and on the next cycle, a NOP is
executed instead. If the tested bit is ‘0’, the next instruction is executed as

normal. In either case, the contents of the file register are not changed. For the bit4

operand, bit numbering begins with the Least Significant bit (bit 0) and advances to

the Most Significant bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a

word operation. You may use a . Wextension to denote a word operation,

but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.
1

1 (2 or 3 if the next instruction is skipped)™®

In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Examgle 1: 007100 HERE: BTSS. B 0x1401, #0Ox1 If bit 1 of 0x1401 is 1,
007102 CLR WREG don’t clear WREG
007104
Before After
Instruction Instruction
PC 00 7100 PC 00 7104
Data 1400 0280 Data 1400 0280
SR 0000 SR 0000
Example 2: 007100 HERE: BTSS 0x890, #0x9 : If bit 9 of 0x890 is 1,
007102 GOoro BYPASS skip the GOTO
007104
007106 BYPASS:
Before After
Instruction Instruction
PC 00 7100 PC 007102
Data 0890 00FE Data 0890 00FE
SR 0000 SR 0000

DS70000157G-page 172

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSS Bit Test Ws, Skip if Set

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} BTSS Ws, #bit4

[Ws],

[Ws++],

Ws-],

[++Ws],

[--Ws],
Operands: Ws e [WO ... W15]

bit4 € [0 ... 15]

Operation: Test (Ws)<bit4>, skip if set.
Status Affected: None
Encoding: | 1000 | 0120 | bbbb | 0000 Oppp | ssss |
Description: Bit ‘bit4’ in Ws is tested. If the tested bit is ‘1’, the next instruction (fetched during the

current instruction execution) is discarded and on the next cycle, a NOP is executed
instead. If the tested bit is ‘0’, the next instruction is executed as normal. In either
case, the contents of Ws are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either Register Direct or Indirect Addressing may be used for Ws.

The ‘b’ bits select the value bit4, the bit position to test.
The ‘s’ bits select the source register.
The ‘p’ bits select the source addressing mode.

Note: This instruction operates in Word mode only.
Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)™®

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Examgle 1: 002000 HERE: BTSS W), #0x0 o If bit 0 of W is 1,
002002 GOoro BYPASS ; skip the GOTO
002004 L.

002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2006
el 264F WO 264F
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 173

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2:

002000 HERE:
002002

002004

002006

002008 BYPASS:
00200A

Example 3:

PC
W6
SR

Before
Instruction

00 2000

264F

0000

003400 HERE:
003402

003404

003406

003408 BYPASS:
00340A

Before
Instruction

PC
W6

00 3400

1800

Data 1800 1000
SR 0000

BTSS
GOro

BTSS
GOro

W6, #OXF If bit 15 of Wb is 1,
BYPASS skip the GOTO
After
Instruction
PC 00 2002
W6 264F
SR 0000
[We++], OxC If bit 12 of [Ws]
BYPASS skip the GOTO
Post -i ncrenment W
After
Instruction
PC 00 3406
W6 1802
Data 1800 1000
SR 0000

is

1,

DS70000157G-page 174

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST Bit Test in f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} BTST{B} f, #bit4

Operands: f € [0 ... 8191] for byte operation

f € [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 < [0 ... 15] for word operation

Operation: (f)<bitd> - Z

Status Affected: 4

Encoding: | 1010 | 1011 | bbbf [ffff tiif | fifb |
Description: Bit ‘bit4’ in file register f is tested and the complement of the tested bit is stored to

the Z flag in the STATUS Register. The contents of the file register are not changed.
For the bit4 operand, bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to be tested.
The f bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between
Oand?7.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BTST. B 0x1201, #0x3 ; Set Z = conpl enent of
bit 3 in 0x1201
Before After
Instruction Instruction
Data 1200 F7FF Data 1200 F7FF
SR 0000 SR| 0002|(z=1)
Example 2: BTST 0x1302, #0x7 ; Set Z = conpl enent of

bit 7 in 0x1302

Before After
Instruction Instruction
Data 1302| F7FF Data 1302| F7FF
SR| 0002|(Zz=1) SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 175

16-Bit MCU and DSC Programmer’s Reference Manual

BTST

Bit Test in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label:} BTST.C Ws, #bitd
BTST.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
bit4 [0 ... 15]

For “. C’ Operation:
(Ws)<bit4> - C
For “. Z” Operation (default):
(Ws)<bitd> - Z
ZorC
| 1010 | 0011 | bbbb | Z0OO Oppp ssss

Bit ‘bit4’ in register Ws is tested. If the “. Z” option of the instruction is specified, the
complement of the tested bit is stored to the Zero flag in the STATUS Register. If the
“. C option of the instruction is specified, the value of the tested bit is stored to the
Carry flag in the STATUS Register. In either case, the contents of Ws are not changed.

For the bit4 operand, bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 15) of the word. Either Register Direct or Indirect
Addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note: This instruction only operates in Word mode. If no extension is provided, the
“. Z” operation is assumed.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 176

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: BTST.C [W++], #0x3 ; Set C=bit 3 in [W]
Post -i ncrenment W)
Before After
Instruction Instruction
WO 1200 WO 1202
Data 1200| FFF7 Data 1200 FFF7
SR 0001 |(C=1) SR| 0000
Example 2: BTST.Z WD, #O0x7 ; Set Z = conplenment of bit 7 in W
Before After
Instruction Instruction
WO F234 WO0| F234
SR 0000 SR| 0002|(Zz=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 177

16-Bit MCU and DSC Programmer’s Reference Manual

BTST

Bit Test in Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label:} BTST.C Ws, Wb
BTST.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wb € [WO ... W15]

For “. C’ Operation:
(Ws)<(Wb)> > C

For “. Z" Operation (default):
(Ws)<(Wb)> - Z

ZorC

| 1000 | 0101 | Zww | w000 Oppp ssss

The (Wb) bit in register Ws is tested. If the “. C’ option of the instruction is specified,
the value of the tested bit is stored to the Carry flag in the STATUS Register. If the
“. Z” option of the instruction is specified, the complement of the tested bit is stored to
the Zero flag in the STATUS Register. In either case, the contents of Ws are not
changed.

Only the four Least Significant bits of Wb are used to determine the bit number. Bit
numbering begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 15) of the Working register. Register Direct or Indirect Addressing
may be used for Ws.

The ‘Z’ bit selects the C or Z flag as destination.

The ‘W’ bits select the address of the bit select register.
The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is provided,
the “. Z” operation is assumed.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 178

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: BTST.C W2, W8 ; Set C=bhit WB of W
Before After
Instruction Instruction
W2 F234 W2| F234
w3 2368 W3| 2368

SR| 0001|(C=1) SR| 0000

Example 2: BTST.Z [W++], W ; Set Z = conpl enent of
;o bit W in [W],
Post -i ncrement W)

Before After
Instruction Instruction
WO 1200 WO | 1202
Ww1| CCCO W1 | CCCO
Data 1200| 6243 Data 1200 | 6243
SR 0002|(z2=1) SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 179

16-Bit MCU and DSC Programmer’s Reference Manual

BTSTS Bit Test/Set in f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} BTSTS{.B} f, #bit4

Operands: f € [0 ... 8191] for byte operation

Operation:

f € [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

(f)<bitd> - Z
1 — (f)<bit4>

Status Affected: Z

Encoding:

\ 1010 \ 1100 bbbf \ FEff | frff fffb

Description: Bit ‘bit4’ in file register f is tested and the complement of the tested bit is stored to

Words:
Cycles:

Note 1:

the Zero flag in the STATUS Register. The tested bit is then set to ‘1’ in the file
register. For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 7 for byte operations, bit 15 for
word operations).

The ‘b’ bits select value bit4, the bit position to test/set.
The ‘f’ bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.
4: The file register ‘f’ must not be the CPU STATUS Register (SR).
1

1D

In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BTSTS. B 0x1201, #0x3 ; Set Z = conplenent of bit 3 in 0x1201,
; then set bit 3 of 0x1201 = 1

Before After
Instruction Instruction
Data 1200| F7FF Data 1200| FFFF
SR 0000 SR| 0002|(Zz=1)
Example 2: BTSTS 0x808, #15 ; Set Z = conplenent of bit 15 in 0x808,

; then set bit 15 of 0x808 =1

Before After
Instruction Instruction
RAM300 8050 RAM300| 8050

SR| 0002|(Z=1) SR| 0000

DS70000157G-page 180 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSTS Bit Test/Set in Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} BTSTS.C Ws, #bit4
BTSTS.Z [Ws],
[Ws++],
Ws-],
[++Ws],
[--Ws],
Operands: Ws € [WO ... W15]
bit4 € [0 ... 15]
Operation: For “. C’ Operation:
(Ws)<bit4> —» C
1 —» Ws<bit4>
For “. Z" Operation (default):
(Ws)<bitd> - Z
1 — Ws<bit4>
Status Affected: ZorC
Encoding: | 1oi0 | o100 bbbb Z000 Oppp SSSS
Description: Bit ‘bit4’ in register Ws is tested. If the “. Z” option of the instruction is specified, the

complement of the tested bit is stored to the Zero flag in the STATUS Register. If the
“. C’ option of the instruction is specified, the value of the tested bit is stored to the
Carry flag in the STATUS Register. In both cases, the tested bit in Ws is set to ‘1’
The ‘b’ bits select the value bit4, the bit position to test/set.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note 1: This instruction only operates in Word mode. If no extension is provided,
the “. Z” operation is assumed.
2. If Wsis used as a pointer, it must not contain the address of the CPU
STATUS Register (SR).
3: IndsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended Data Space.
Words: 1

Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 181

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: ~ BTSTS.C [W++],
Before
Instruction
WO 1200
Data 1200 FFF7
SR| 0001|{(C=1)

Example 2: BTSTS.Z W), #O0x7

WO
SR

Before

Instruction

F234

0000

Instruction

#0x3
WO
Data 1200
SR
WO
SR

Set C=bit 3 in [W]
Set bit 3 in [W] =1
Post -i ncrement W)

After

Instruction

1202

FFFF

0000

; Set Z

in W,

After

F2BC
0002

= conpl ement of bit 7
and set bit 7in W =1

(Z=1)

DS70000157G-page 182

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL Call Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X
Syntax: {label:} CALL Expr
Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 < [0 ... 8388606].
Operation: (PC)+4 > PC

(PC<15:0>) —> (TOS)
(W15) + 2 - W15
(PC<23:16>) - (TOS)
(W15) + 2 - W15

lit23 - PC
NOP — Instruction Register
Status Affected: None
Encoding: 1stword| 0000 0010 nnnn nnnn nnnn nnn0
2nd word| 0000 0000 0000 0000 Onnn nnnn
Description: Direct subroutine call over the entire 4-Mbyte instruction program memory range. Before

the CALL is made, the 24-bit return address (PC + 4) is PUSHed onto the stack. After
the return address is stacked, the 23-bit value, ‘it23’, is loaded into the PC.

The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the 1it23 to be used.

Words:
Cycles:
Example 1: 026000 CALL _FIR ; Call _FIR subroutine
026004 MoV W, W
026544 _FIR I\/D\/ #0x400, W2 ; _FIR subroutine start
026846
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
W15 A268 W15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 183

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: 072000

072004
077A28 _(66:
077A2A
077A2C
Before
Instruction
PC 07 2000
W15 9004
Data 9004 FFFF
Data 9006 FFFF
SR 0000

CALL G866
MOV w, W

I NC W5, [W/++]

PC

W15

Data 9004
Data 9006
SR

call routine _G66

routine start

After
Instruction

07 7A28

9008

2004

0007

0000

DS70000157G-page 184

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL Call Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X
Syntax: {label:} CALL Expr
Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 < [0 ... 8388606].
Operation: (PC)+4 - PC

(PC<15:1>) —» TOS<15:1>, SFA Status bit —» TOS<0>
(W15) + 2 > W15

(PC<23:16>) —» TOS

(W15) + 2 > W15

0 — SFA Status bit

lit23 - PC
NOP — Instruction Register
Status Affected: SFA
Encoding: 1stword| 0000 0010 nnnn nnnn nnnn nnnO
2nd word| 0000 0000 0000 0000 onnn nnnn
Description: Direct subroutine call over the entire 4-Mbyte instruction program memory range. Before

the CALL is made, the 24-bit return address (PC + 4) is PUSHed onto the stack. After
the return address is stacked, the 23-bit value, ‘it23’, is loaded into the PC.

The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the lit23 to be used.

Words:
Cycles:
Example 1: 026000 CALL _FIR ; Call _FIR subroutine
026004 MoV W, W
026.844 _FIR I\/D\/ #0x400, W ; _FIR subroutine start
026846 ..
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
W15 A268 W15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 185

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: 072000

072004
077A28 _(66:
077A2A
077A2C
Before
Instruction
PC 07 2000
W15 9004
Data 9004 FFFF
Data 9006 FFFF
SR 0000

CALL G866
MOV w, W

I NC W5, [W/++]

PC

W15

Data 9004
Data 9006
SR

call routine _G66

routine start

After
Instruction

07 7A28

9008

2004

0007

0000

DS70000157G-page 186

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL Call Indirect Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

Syntax: {label:} CALL Wn

Operands: Wn € [WO ... W15]

Operation: PC)+2 > PC

(

(PC<15:0>) > TOS

(W15) + 2 > W15
(PC<23:16>) —» TOS
(W15) + 2 > W15

0 —» PC<22:16>
(Wn<15:1>) —» PC<15:1>
NOP — Instruction Register

Status Affected: None
Encoding: | oooo | 0001 0000 | 0000 | 0000 ssss
Description: Indirect subroutine call over the first 32K instructions of program memory. Before the

CALL is made, the 24-bit return address (PC + 2) is PUSHed onto the stack. After the
return address is stacked, Wn<15:1> is loaded into PC<15:1> and PC<22:16> is
cleared. Since PC<0> is always ‘0’, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1
Cycles: 2
Example 1: 001002 CALL WO ; Call BOOT subroutine indirectly
001004 L ; using W
001600 _BOOT: MOV #0x400, W ; _BOOT starts here
001602 MOV #0x300, W6
Before After
Instruction Instruction
PC 00 1002 PC 00 1600
e 1600 WO 1600
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 1004
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 187

16-Bit MCU and DSC Programmer’s Reference Manual

CALL

I NC
DEC

Example 2: 004200
004202
005500 _TEST:
005502
Before
Instruction
PC 00 4200
w7 5500
W15 6F00
Data 6F00 FFFF
Data 6F02 FFFF
SR 0000

=

PC

w7

W15

Data 6F00
Data 6F02
SR

Cal | TEST subroutine indirectly
using W

; _TEST starts here

After
Instruction

00 5500

5500

6F04

4202

0000

0000

DS70000157G-page 188

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL Call Indirect Subroutine

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X

Syntax: {label:} CALL Wn

Operands: Wn e [WO ... W15]

Operation: (PC)+2—>PC

(PC<15:1>) —» TOS, SFA Status bit - TOS<0>
(W15) + 2 - W15

(PC<23:16>) —» TOS

(W15) + 2 > W15

0 — SFA Status bit

0 —» PC<22:16>

(Wn<15:1>) —» PC<15:1>

NOP — Instruction Register

Status Affected: SFA
Encoding: | 0000 | 0001 0000 | 0000 | 0000 ssss
Description: Indirect subroutine call over the first 32K instructions of program memory. Before the

CALL is made, the 24-bit return address (PC + 2) is PUSHed onto the stack. After the
return address is stacked, Wn<15:1> is loaded into PC<15:1> and PC<22:16> is
cleared. Since PC<0> is always ‘0’, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1
Cycles: 4
Example 1: 001002 CALL W ; Call BOOT subroutine indirectly
001004 S ; using W
001600 _BOOT: MOV #0x400, W ; _BOOT starts here
001602 MoV #0x300, W6
Before Atfter
Instruction Instruction
PC 00 1002 PC 00 1600
WO 1600 WO 1600
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 1004
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 189

16-Bit MCU and DSC Programmer’s Reference Manual

CALL

I NC
DEC

Example 2: 004200
004202
005500 _TEST:
005502
Before
Instruction
PC 00 4200
W7 5500
W15 6F00
Data 6F00 FFFF
Data 6F02 FFFF
SR 0000

S

RS

PC

w7

W15

Data 6F00
Data 6F02
SR

Cal | TEST subroutine indirectly
usi ng W

; _TEST starts here

After
Instruction

00 5500

5500

6F04

4202

0000

0000

DS70000157G-page 190

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALLL Call Indirect Subroutine Long

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X

Syntax: {label:} CALL.L Wn

Operands: Wn e [WO0, W2, W4, W6, W8, W10, W12]

Operation: (PC)+2 > PC

(PC<15:1>) —» TOS<15:1>, SFA Status bit > TOS<0>

(W15) +2 > W15

(PC<23:16>) » TOS

(W15) +2 > W15

0 — SFA Status bit

PC<23> — PC<23> (see text); (Wn+1)<6:0> —» PC<22:16>; (Wn) —>

PC<15:0>

NOP — Instruction Register
Status Affected: SFA
Encoding: | 0000 | 0001 | 1ww | w000 | 0000 | ssss |
Description: Indirect subroutine call to any user program memory address. First, the return address

(PC+2) and the state of the Stack Frame Active bit (SFA) are pushed onto the system
stack, after which, the SFA bit is cleared.

Then, the Least Significant 7 bits of (Wn+1) are loaded in PC<22:16> and the 16-bit
value (Wn) is loaded into PC<15:0>.
PC<23> is not modified by this instruction.

The contents of (Wn+1)<15:7> are ignored.

The value of Wn<0> is also ignored and PC<0> is always set to ‘0’
The ‘s’ bits specify the address of the Wn source register.

The ‘W’ bits specify the address of the Wn+1 source register.

Words: 1
Cycles: 4
Example 1: 026000 CALL.L W ; Call _FIR subroutine
026004 MoV W, W
026844 _FIR MoV #0x400, W ; _FIR subroutine start
026846 ..
Before After
Instruction Instruction
PC 02 6000 PC 02 6844
W4 6844 W4 6844
W5 0002 W5 0002
W15 A268 w15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 191

16-Bit MCU and DSC Programmer’s Reference Manual

CLR Clear f or WREG
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} CLR{.B} f
WREG
Operands: fel0..8191]
Operation: 0 — destination designated by D
Status Affected: None
Encoding: | 1110 | 1111 | oBof | ffff [ffff | fRfF |
Description: Clear the contents of a file register or the default Working register WREG. If WREG is

specified, the WREG is cleared. Otherwise, the specified file register 'f' is cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The f’ bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.

Words: 1
Cycles: 1
Example 1: CLR B RAM200 ; Clear RAM200 (Byte node)
Before After
Instruction Instruction
RAM200| 8009 RAM200| 8000
SR| 0000 SR| 0000
Example 2: CLR WREG ; Clear WREG (Word node)
Before After
Instruction Instruction
WREG| 0600 WREG| 0000
SR| 0000 SR| 0000

DS70000157G-page 192 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CL R Clear Wd

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} CLR{.B} Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
Operation: 0—->Wd
Status Affected: None
Encoding: | 1220 | 1012 | OBqg | qddd | dooo [0000 |
Description: Clear the contents of register Wd. Either Register Direct or Indirect Addressing may

be used for Wd.

The ‘B’ bit select byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1
Example 1: CLRB W . Clear W2 (Byte node)
Before After
Instruction Instruction
W2 | 3333 W2 | 3300
SR| 0000 SR| 0000
Example 2: CLR [WWD++] ; Clear [W]
Post -i ncrement W)
Before After
Instruction Instruction
WO0| 2300 WO | 2302
Data 2300| 5607 Data 2300 0000
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 193

16-Bit MCU and DSC Programmer’s Reference Manual

CLR

Clear Accumulator, Prefetch Operands

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F dsPIC33F | dsPIC33E |dsPIC33C

X X X X

{label} CLR Acc {,[Wx],Wxd} {,[Wy],Wyd} {,AWB}
{[Wx] +=kx,Wxd} {,[Wy] + = ky,Wyd}
{[Wx] —=kxWxd} {[Wy] - = ky,Wyd}
{[W9 + W12, Wxd} {,[W11 + W12],Wyd}

Acc € [AB]

Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... WT7]

Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd e [W4 ... W7]

AWB e [W13, [W13] + = 2]

0 — Acc(A or B)

(IWx]) > Wxd; (Wx) +/— kx - Wx

([Wy]) > Wyd; (Wy) +/—ky > Wy

(Acc(B or A)) rounded —» AWB

OA, OB, SA, SB

| 1100 | o011 AOXX yyii 0] ijaa
Clear all 40 bits of the specified accumulator. Optionally prefetch operands in preparation for

a MAC type instruction and optionally store the non-specified accumulator results. This
instruction clears the respective overflow and saturate flags (either OA, SA or OB, SB).

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.
Operand AWB specifies the optional register direct or indirect store of the convergently
rounded contents of the “other” accumulator, as described in Section 4.15.4 “MAC
Write-Back”.

The ‘A bit selects the other accumulator used for Write-Back.
The X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The I’ bits select the Wx prefetch operation.

The ‘j bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write-Back destination.

1
1

DS70000157G-page 194

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: CLR A, [W8]+=2, W, W3 Cl ear ACCA

Load WA with [WB], post-inc W8

Store ACCB to W3

Before After
Instruction Instruction

W4 FOO01 w4 1221

w8 2000 w8 2002

W13 C623 W13 5420

ACCA| 000067 2345 ACCA| 00 0000 0000

ACCB| 005420 3BDD ACCB| 005420 3BDD

Data 2000 1221 Data 2000 1221

SR 0000 SR 0000

; Clear ACCB
Load W with [W]
Load W with [WO0]
Save ACCA to [WL3]
Post -i nc W8, WL.0O, WL3

Example 2: CLR B, [W8]+=2, W, [WO0]+=2, W, [W3]+=2

Before After

Instruction Instruction
W6 FO001 W6 1221
w7 C783 w7 FF80
w8 2000 w8 2002
W10 3000 w10 3002
W13 4000 W13 4002
ACCA 00 0067 2345 ACCA| 000067 2345
ACCB| 005420 ABDD ACCB| 00 0000 0000
Data 2000 1221 Data 2000 1221
Data 3000 FF80 Data 3000 FF80
Data 4000 FFC3 Data 4000 0067
SR 0000 SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 195

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

CL RWDT Clear Watchdog Timer

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} CLRWDT

Operands: None

Operation: 0 - WDT Count register

0 — WDT Prescaler A count
0 — WDT Prescaler B count

Status Affected: None
Encoding: 1111 1110 0110 0000 0000 0000
Description: Clear the contents of the Watchdog Timer Count register and the Prescaler Count

registers. The Watchdog Prescaler A and Prescaler B settings, set by Configuration
fuses in the FWDT, are not changed.

Words: 1
Cycles: 1
Example 1: CLRWDT ; O ear Watchdog Ti ner
Before After
Instruction Instruction

DS70000157G-page 196 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

COM Complement f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} com{B} f {WREG}

Operands: fel0..8191]

Operation: (f) - destination designated by D

Status Affected: N, Z

Encoding: | 1110 | 1110 1BDf ffff ffff fEff

Description: Compute the 1’s complement of the contents of the file register and place the result in

the destination register. The optional WREG operand determines the destination
register. If WREG is specified, the result is stored in WREG. If WREG is not specified,
the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2. The WREG is set to Working register WO.
Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: COM b RAM200O ; COM RAMR0OO (Byte node)
Before After
Instruction Instruction
RAM200| 80FF RAM200| 8000
SR| 0000 SR| 0002 |(2)
Example 2: cov RAMA00O, WREG ; COM RAMA0O0O and store to WREG
;o (Word node)
Before After
Instruction Instruction
WREG 1211 WREG| F7DC
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0008 |(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 197

16-Bit MCU and DSC Programmer’s Reference Manual

COM

Complement Ws

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label:} COM({.B} Ws, Wwd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Ws e [WO ... W15]
Wd € [WO ... W15]

(Ws) - Wd
N, Z
| 1110 | 1010 | 1Bqq | qddd | dppp | ssss |

Compute the 1’s complement of the contents of the source register Ws and place the
result in the destination register Wd. Either Register Direct or Indirect Addressing may
be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: COM B [W++], [Wi++] ; COM [W)] and store to [W] (Byte node)

Post -i ncrement W, WL

Before After
Instruction Instruction
WO 2301 WO 2302
W1 2400 W1 2401
Data 2300 5607 Data 2300 5607
Data 2400 ABCD Data 2400| ABA9
SR 0000 SR 0008 | (N=1)

DS70000157G-page 198

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: COM W, [Wi++] ; COMW and store to [W] (Wrd node)
Post -i ncrement W
Before After

Instruction Instruction

WO D004 WO D004

W1 1000 WA1 1002

Data 1000 ABA9 Data 1000| 2FFB

SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 199

16-Bit MCU and DSC Programmer’s Reference Manual

CP Compare f with WREG, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} CP{.B} f

Operands: fe[0..8191]

Operation: (f) - (WREG)

Status Affected: DC,N,0QV, Z,C

Encoding: | 1110 | o011 | oBof | ffff | ffff | ffff |

Description: Compute (f) - (WREG) and update the STATUS Register. This instruction is equivalent

to the SUBWF instruction, but the result of the subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP.B RAM400 ; Conpare RAMAOO wi th WREG (Byte node)
Before After
Instruction Instruction
WREG 8823 WREG 8823
RAM400 0823 RAM400 0823
SR 0000 SR 0003|(C=1)
Example 2: cP 0x1200 ; Conpare (0x1200) with WREG (Word node)
Before After
Instruction Instruction
WREG 2377 WREG 2377
Data 1200 2277 Data 1200 2277
SR 0000 SR 0008 | (N=1)

DS70000157G-page 200 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CP Compare Wb with lit5, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X
Syntax: {label:} CP{.B} Wb, #lits
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Operation: (Wb) —lit5
Status Affected: DC,N,0V,Z, C
Encoding: | 1110 | 0001 \ ovww WwB00 011k kkkk
Description: Compute (Wb) — lit5 and update the STATUS Register. This instruction is equivalent

to the SUB instruction, but the result of the subtraction is not stored. Register Direct
Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb Base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1
Example 1: CP.B W, #0x12 ; Conpare WA with 0x12 (Byte node)
Before After
Instruction Instruction
w4, 7711 w4 7711
SR| 0000 SR| 0008 |(N=1)
Example 2: CcP WA, #0x12 ; Conpare WA with 0x12 (Word node)
Before After
Instruction Instruction
w4 7713 W4 7713
SR 0000 SR 0001|(C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 201

16-Bit MCU and DSC Programmer’s Reference Manual

CP

Compare Wb with 1it8, Set Status Flags

Implemented in:

Syntax:
Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X

{label:} CP{.B} Wb, #Iit8
Wb e [WO ... W15]

lit8 [0 ... 255]

(Wb) — lit8

DC,N, 0V, Z, C

| 1110 [0001 | Oww wBkk k11k kkkk

Compute (Wb) — Iit8 and update the STATUS Register. This instruction is equivalent
to the SUB instruction, but the result of the subtraction is not stored. Register Direct
Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb Base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Example 1: CP.B W, #0x12 . Conmpare WA with 0x12 (Byte node)
Before After
Instruction Instruction
w4, 771 w4 | 7711
SR| 0000 SR| 0009|(N,C=1)
Example 2: CcP Wi, #0x12 ; Conpare WA with 0x12 (Word node)
Before After
Instruction Instruction
W4 7713 W4 7713
SR 0000 SR 0001|(C=1)

DS70000157G-page 202

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CP Compare Wb with Ws, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X X X X X
Syntax: {label:} CP{.B} Wb, Ws
[Ws]
[Ws++]
[Ws--]
[++Ws]
[--Ws]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Operation: (Wb) — (Ws)
Status Affected: DC,N, 0V, Z,C
Encoding: ‘ 1110 | 0001 ‘ Oowww wB00 Oppp SSSS
Description: Compute (Wb) — (Ws) and update the STATUS Register. This instruction is equivalent to the

SUB instruction, but the result of the subtraction is not stored. Register Direct Addressing
must be used for Wb. Register Direct or Indirect Addressing may be used for Ws.

The ‘W’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the address of the Ws source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP.B W, [WL++4] ; Conpare [W] with W (Byte node)
; Post-increnment W

Before After
Instruction Instruction
WO | ABA9 WO0| ABA9
W1 2000 W1| 2001
Data 2000| D004 Data 2000| D004
SR| 0000 SR| O0009|(N,C=1)
Example 2: CcP Wb, W ; Conpare W6 with Wo (Word node)
Before After (-? 5
Instruction Instruction g 2
W5| 2334 W5| 2334 % c
w6 | 8001 W6 | 8001 =2
SR| 0000 SR| 000C| (N, OV = 1) gse
w

© 2005-2018 Microchip Technology Inc. DS70000157G-page 203

16-Bit MCU and DSC Programmer’s Reference Manual

CPO

Compare f with 0x0, Set Status Flags

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

{label} CPO{B} f
fel0..8191]

(f) — 0x0

DC,N, OV, Z, C

| 1110 | 0010 0BOf \ fff | ffff ‘ffff \

Compute (f) — 0x0 and update the STATUS Register. The result of the subtraction is
not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f bits select the address of the file register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CPO. B RAMLOO ; Conpare RAMLOO with OxO (Byte node)
Before After
Instruction Instruction
RAM100| 44C3 RAM100| 44C3
SR 0000 SR 0009|(N,C=1)
Example 2: CPO Ox1FFE ; Conpare (Ox1FFE) with 0x0 (Wrd node)
Before After
Instruction Instruction
Data 1FFE 0001 Data 1FFE 0001
SR 0000 SR 0001 ((C=1)

DS70000157G-page 204

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPO Compare Ws with 0x0, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} CP0{.B} Ws
[Ws]
[Ws++]
(Ws--]
[++Ws]
[-Ws]
Operands: Ws e [WO ... W15]
Operation: (Ws) — 0x0000
Status Affected: DC,N,0V,Z,C
Encoding: | 1120 | o000 | o000 | o0BoO | Oppp | ssss |
Description: Compute (Ws) — 0x0000 and update the STATUS Register. The result of the subtraction

is not stored. Register Direct or Indirect Addressing may be used for Ws.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1M

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP0.B [W--] ; Conmpare [WH with O (Byte node)
Post - decr enent W
Before After
Instruction Instruction
W4 1001 w4 1000
Data 1000 0034 Data 1000 0034
SR 0000 SR 0001|(C=1)
Example 2: CPO [--VWB] . Conpare [--W5] with 0 (Wrd node)
Before After
Instruction Instruction
W5 2400 W5| 23FE
Data 23FE 9000 Data 23FE 9000
SR 0000 SR 0009 (N,C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 205

16-Bit MCU and DSC Programmer’s Reference Manual

CPB

Compare f with WREG Using Borrow, Set Status Flags

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E

dsPIC33C

X

X

X

X

X

X

X

{label:}

CPB{.B}

f

fel0..8191]

(f) - (WREG) - (C)
DC,N, OV, Z, C

\ 1110 | 0011 \ 1BOf

\ fFff \ fFff |ffff \

Compute (f) — (WREG) — (6) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The f bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

1
1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CPB.B RAMA0O

Example 2: CPB 0x1200

Conpare RAMAOO with WREG using C (Byte nopde)

Before After
Instruction Instruction
WREG 8823 WREG 8823
RAM400 0823 RAM400| 0823
SR 0000 SR 0008 | (N=1)

Conpare (0x1200) with WREG using C (Wrd node)

Before After
Instruction Instruction
WREG 2377 WREG 2377
Data 1200 2377 Data 1200 2377
SR 0001|(C=1) SR 0001|(C=1)

DS70000157G-page 206

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB

Compare Wb with lit5 Using Borrow, Set Status Flags

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

{label} CPB{B} Wb, #lit5

Wb e [WO ... W15]

lits < [0 ... 31]

(Wb) — lit5 — (C)

DC, N, OV, Z,C

\ 1110 | 0001 \ 1wy WwB00 011k kkkk

Compute (Wb) — lit5 — (6) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.
Register Direct Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1:

The extension . B in the instruction denotes a byte operation rather than a

word operation. You may use a . Wextension to denote a word operation,

but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions

can only clear Z.

Example 1: CPB.B W, #0x12

Before
Instruction

7711
0001

W4
SR

(C=1)

Example 2: CPB.B W, #0x12

Before
Instruction

771
0000

W4
SR

CPB W2, #Ox1F

Example 3:

Before
Instruction

0020
0002 |(Z = 1)

W12
SR

CPB W2, #Ox1F

Example 4:

Before
Instruction

0020
0003(z, C = 1)

W12
SR

Conpare WA with O0x12 using C (Byte node)

After
Instruction
w4 7711
SR| 0008|(N=1)

Conpare WA with Ox12 using C (Byte node)

w4
SR

After
Instruction

771
0008

(N=1)

Conpare W2 with Ox1F using C (Wrd node)

W12
SR

After
Instruction

0020
0003

Z,Cc=1)

Conpare WL2 with Ox1F using C (Wrd node)

After

Instruction

W12
SR

0020
0001

(€=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 207

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

CPB

Compare Wb with 1it8 Using Borrow, Set Status Flags

Implemented in:

Syntax:
Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X

{label} CPB{B} Wb, #lit8

Wb e [WO ... W15]
lit8 < [0 ... 255]

(Wb) — lit8 — (C)
DC,N,0V, Z,C

| 1110 | 0001 \ 1w wBk k k11k kkkk

Example 1:

Example 2: CPB.B W, #0x12

Example 3: CcPB

Example 4: CPB

Compute (Wb) —1it8 — (C) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.
Register Direct Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,

but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

CPB.B W, #0x12 Conpare WA with O0x12 using C (Byte node)
Before After
Instruction Instruction
W4 7711 W4 7711
SR 0001 {(C=1) SR 0008 | (N=1)

Conpare WA with Ox12 using C (Byte node)

Before After
Instruction Instruction
W4 7711 W4 7711
SR 0000 SR 0008 | (N=1)
WL2, #Ox1F Conpare WL2 with Ox1F using C (Wrd node)
Before After
Instruction Instruction
w12 0020 w12 0020
SR 0002|(z=1) SR 0003|(Z,C=1)
WL2, #Ox1F Conpare WL2 with Ox1F using C (Wrd node)
Before After
Instruction Instruction
W12 0020 W12 0020

SR| 0003|(z,c=1) SR| 0001|(C=1)

DS70000157G-page 208

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB Compare Ws with Wb Using Borrow, Set Status Flags
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} CPB{.B} Wb, Ws
[Ws]
[Ws++]
(Ws-]
[++Ws]
[--Ws]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Operation: (Wb) — (Ws) — (C)
Status Affected: DC,N, 0V, Z,C
Encoding: | 1110 | 0001 | 1w | wB00 Oppp SSSS
Description: Compute (Wb) — (Ws) — (C) and update the STATUS Register. This instruction is

equivalent to the SUBB instruction, but the result of the subtraction is not stored.
Register Direct Addressing must be used for Wb. Register Direct or Indirect Addressing
may be used for Ws.

The ‘W’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the address of the Ws source register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.
Words: 1

Cycles: 1

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CPB.B W), [WL++] ; Conpare [W] with W using C (Byte node)
Post -i ncrement WL
Before After
Instruction Instruction

WO0| ABA9 WO | ABA9
WA1 1000 W1 1001

Data 1000| DOA9 Data 1000| DOA9
SR 0002|(Zz=1) SR 0008 | (N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 209

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: CPB.B W), [WL++] Conpare [W] with W using C (Byte node)
Post -i ncrement WL
Before After
Instruction Instruction
WO | ABA9 WO0| ABA9
W1 1000 W1 1001
Data 1000| DOA9 Data 1000| DOA9
SR| 0001|(C=1) SR| 0001|(C=1)
Example 3: CPB W, W Conpare Wb with WA using T (Word node)
Before After
Instruction Instruction
W4 | 4000 W4 | 4000
W5| 3000 W5| 3000
SR| 0001|(C=1) SR| 0001 |(C=1)

DS70000157G-page 210

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPBEQ

Compare Wb with Wn, Branch if Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X
Syntax: {label:} CPBEQ{.B} Wb, Whn, Expr
Operands: Wb € [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr] - PC and NOP — Instruction Register
Status Affected: None
Encoding: ‘ 1110 ‘ 0111 | Twww ‘ wBnn | nnnn | SSSS |
Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb) = (Wn), the next instruction is executed as normal (branch is not taken).
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

Words: 1
Cycles: 1 (5 if branch taken)

002000 HERE: CPBEQ B W), W, BYPASS If W =W (Byte node)

Example 1:

002002 ADD W, W3, W Per f orm branch to BYPASS
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2008
WO 1000 WO 1000
WA1 1000 WA1 1000
SR 0000 SR 0002((z=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 211

16-Bit MCU and DSC Programmer’s Reference Manual

CPBGT

Signed Compare Wb with Wn, Branch if Greater Than (Wb > Wn)

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X

{label} CPBGT{B} Wb, Wn, Expr

Wb e [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

If (Wb) = (Wn), [(PC+2) + 2 * Expr] —» PC and NOP — Instruction Register

None
| 1110 \ 0110 \ Oww \ wBnn | nnnn | ssss \

Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb) = (Wn), the next instruction is executed as normal (branch is not
taken).

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

The ‘n’ bits select the offset of the branch destination.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1 (5 if branch taken)

Example 1: 002000 HERE: CPBGT.B W, W, BYPASS ; If W > W (Byte node),
002002 ADD W, W8, W ; Performbranch to BYPASS
002004
002006
002008 BYPASS
00200A

Before After
Instruction Instruction
PC 00 2000 PC 00 2008
WO 30FF WO O0FF
WA1 26FE WA1 26FE
SR 0000 SR 0000|(N, C=0)

DS70000157G-page 212

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPBLT

Signed Compare Wb with Wn, Branch if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X
Syntax: {label:} CPBLT{.B} Wb, Wn, Expr
Operands: Wb € [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr] - PC and NOP — Instruction Register
Status Affected: None
Encoding: ‘ 1110 ‘ 0110 | Twww ‘ wBnn | nnnn | SSSS ‘
Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb) = (Wn), the next instruction is executed as normal (branch is not taken).
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

Words: 1
Cycles: 1 (5 if branch taken)
Example 1: 002000 HERE: CPBLT.B VB, V9, BYPASS ; If W8 < VW (Byte node),
002002 ADD W, W8, W ; Performbranch to BYPASS
002004
002006 -
002008 BYPASS: ...
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2008
w8 00FF w8 00FF
w9 26FE w9 26FE
SR 0000 SR 0008 |(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 213

16-Bit MCU and DSC Programmer’s Reference Manual

CPBNE

Compare Wb with Wn, Branch if Not Equal (Wb = Wn)

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X

Example 1: 002000 HERE: CPBNE. B W2, VB, BYPASS

{label:} CPBNE{.B} Wb, Wn, Expr

Wb e [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

If (Wb) = (Wn), [(PC+2) + 2 * Expr] > PC and NOP — Instruction Register

None
\ 1110 | 0111 \ Ovww \ wBnn \ nnnn | ssss |

Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb) = (Wn), the next instruction is executed as normal (branch is not taken).

The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.
Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

1
1 (5 if branch taken)

; If W2 I= W8 (Byte node),

002002 ADD 2, W, W ; Perform branch to BYPASS
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 200A
W2 00FF W2 O0FF
W3 26FE W3 26FE
SR 0000 SR 0001 |{(C=1)

DS70000157G-page 214

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Compare Wb with Wn, Skip if Equal (Wb = Wn)

CPSEQ

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X
Syntax: {label:} CPSEQ{.B} Wb, Wn
Operands: Wb € [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1120 | 0111 | 1ww | wB0O | 0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. If (Wb) = (Wn), the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSEQ B w, W If W0 = WL (Byte node),
002002 GOTO BYPASS skip the GOTO
002004
002006 R
002008 BYPASS: ...
00200A
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
w0 1001 w0 1001
W1 1000 W1 1000
SR 0000 SR 0000

Example 2: 018000 HERE: CPSEQ W, W38 If W =W (Wrd node),
018002 CALL _FIR skip the subroutine call
018006
018008
Before After

Instruction Instruction
PC 01 8000 PC 01 8006
w4 3344 w4 3344
w8 3344 w8 3344
SR 0002((Z2=1) SR 0002|(Z2=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 215

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

CPSEQ

Compare Wb with Wn, Skip if Equal (Wb = Wn)

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F | dsPIC33E |dsPIC33C
X X X

{label:} CPSEQ{.B} Wb, Wn

Wb e [WO ... W15]

Whn e [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) = (Wn)

None

| 1110 | 0111 | 1ww | wB0O | 0001 | ssss |

Compare the contents of Wb with the contents of Wn by performing the subtraction,

(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. If (Wb) = (Wn), the next instruction is executed as normal.

The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note:

The extension . B in the instruction denotes a byte operation rather than a

word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1

1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSEQB W, W If WO = W (Byte node),
002002 @GOTO BYPASS ; skip the GOTO
002004
002006 A
002008 BYPASS: ...
00200A

Before After
Instruction Instruction
PC 00 2000 PC 00 2002
WO 1001 WO 1001
WA1 1000 WA1 1000
SR 0000 SR 0000

Example 2: 018000 HERE: CPSEQ W, W8 If W+ = W8 (Wrd node),
018002 CALL _FIR skip the subroutine call
018006
018008

Before After
Instruction Instruction
PC 01 8000 PC 01 8006
w4 3344 w4 3344
w8 3344 w8 3344
SR 0002((z=1) SR 0002|(z=1)

DS70000157G-page 216

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSGT

Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} CPSGT{.B} Wb, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) > (Wn)
Status Affected: None
Encoding: | 1220 | 0110 | oww | wB00 [0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) > (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSGT. B w, W If W0 > W (Byte node),

002002 GOoro BYPASS skip the GOTO
002006

002008 R

00200A BYPASS ...

00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 2006

w0 OOFF e O0OFF

W1 26FE Wi1 26FE

SR 0009|(N,C=1) SR 0009|(N,C=1)

Example 2: 018000 HERE: CPSGT W4, VB If W > W (Wrd node),
018002 CALL _FIR skip the subroutine call
018006
018008
Before After
Instruction Instruction

PC 01 8000 PC 01 8002
W4 2600 W4 2600
W5 2600 W5 2600

SR 0004 |(OV =1) SR 0004 |(OV =1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 217

16-Bit MCU and DSC Programmer’s Reference Manual

CPSGT

Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X

{label} ~ CPSGT{.B} Wb, Wn

Wb e [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) > (Wn)

None

| 1220 | 0120 | oww | wB00 | 0001 | ssss |

Compare the contents of Wb with the contents of Wn by performing the subtraction,

(Wb) — (Wn), but do not store the result. If (Wb) > (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1 (2 or 3 if skip taken)

002000 HERE: CPSGT. B w, W If W > W (Byte node),
002002 GOTO BYPASS skip the GOTO

002006

002008

00200A BYPASS

00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 2006

WO 00FF WO O00OFF

WA1 26FE WA1 26FE

SR 0009 |(N,C=1) SR 0009 |(N,C=1)
018000 HERE: CPSGT Wi, Wb If W > W (Wrd node),
018002 CALL _FIR skip the subroutine call
018006
018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8002
W4 2600 W4 2600
w5 2600 W5 2600

SR 0004 [(OV =1) SR 0004 [(OV =1)

DS70000157G-page 218

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSLT

Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} CPSLT{.B} Wb, Wn
Operands: Wb € [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) < (Wn)
Status Affected: None
Encoding: | 1120 | 0110 | 1ww | wBo0o | 0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) < (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1: 002000 HERE: CPSLT.B w8, V@ If W8 < V@ (Byte node),
002002 GOro BYPASS skip the GOTO
002006
002008 L
00200A BYPASS: ...
00200C
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
w8 O00FF w8 OOFF
w9 26FE W9 26FE
SR 0008 |(N=1) SR 0008 |(N=1)
Example 2: 018000 HERE: CPSLT W3, W6 If VB < W (Word node),
018002 CALL _FIR skip the subroutine call
018006
018008
Before After 5
Instruction Instruction
PC 01 8000 PC 01 8006
W3 2600 W3 2600
W6 3000 W6 3000
SR 0000 SR 0000

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 219

16-Bit MCU and DSC Programmer’s Reference Manual

CPSLT

Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X
{label} ~ CPSLT{.B} Wb, Wn
Wb e [WO ... W15]
Whn e [WO ... W15]
(Wb) — (Wn)
Skip if (Wb) < (Wn)
None
| 1110 \ 0110 | 1w \ WB00 \ 0001 \ ssss |

Compare the contents of Wb with the contents of Wn by performing the subtraction,

(Wb) — (Wn), but do not store the result. If (Wb) < (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1

1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSLT.B w8, V@ ; If W8 < V@ (Byte node),
002002 GOoro BYPASS ; skip the GOTO
002006 .

002008
00200A BYPASS:
00200C
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
w8 00FF w8 00FF
W9 26FE W9 26FE
SR 0008 (N=1) SR 0008 |(N=1)

Examgle 2: 018000 HERE: CPSLT VB, W6 ;o If WB < W6 (Word node),
018002 CALL _FIR ; Skip the subroutine call
018006
018008

Before After
Instruction Instruction
PC 01 8000 PC 01 8006
W3 2600 W3 2600
W6 3000 W6 3000
SR 0000 SR 0000

DS70000157G-page 220

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSNE

Signed Compare Wb with Wn, Skip if Not Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X
Syntax: {label:} CPSNE{.B} Wb, Wn
Operands: Wb € [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) = (Wn)
Status Affected: None
Encoding: | 1120 | o111 | oww | w00 | 0000 | ssss |
Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.
The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: PSNE.B V2, B If W2 I= W8 (Byte node),
002002 1o BYPASS ; skip the GOTO
002006
002008 L
00200A BYPASS: ...
00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 2006
W2 00FF W2 OOFF
w3 26FE W3 26FE
SR 0001{(C=1) SR 0001{(C=1)

Example 2: 018000 HERE: CPSNE W), V8 If W !'= W8 (Wrd node),
018002 CALL _FIR skip the subroutine call
018006
018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8002
WO 3000 wo 3000
W8 3000 w8 3000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 221

16-Bit MCU and DSC Programmer’s Reference Manual

CPSNE

Signed Compare Wb with Wn, Skip if Not Equal (Wb = Wn)

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E [dsPIC33C
X X X

{label} ~ CPSNE{B} Wb, Wn

Wb e [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) = (Wn)

None

| 1120 | o111 | oww | weo0 | 0001 | ssss |

Compare the contents of Wb with the contents of Wn by performing the subtraction,

(Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched

during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension . B in the instruction denotes a byte operation rather than a

word operation. You may use a . Wextension to denote a word operation, but
it is not required.

1
1 (2 or 3 if skip taken)

Example 2:

002000 HERE: CPSNE. B v, W8 If W I= WB (Byte node),
002002 GOoro BYPASS ; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After

Instruction Instruction
PC 00 2000 PC 00 2006
W2 00FF w2 O00OFF
W3 26FE W3 26FE
SR 0001 |{(C=1) SR 0001 {(C=1)
018000 HERE: CPSNE W, W8 If W !'= W8 (Wrd node),
018002 CALL _FIR skip the subroutine call
018006
018008

Before After

Instruction Instruction
PC 01 8000 PC 01 8002
WO 3000 WO 3000
W8 3000 W8 3000
SR 0000 SR 0000

DS70000157G-page 222

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

CTXTSWP(l) CPU Register Context Swap Literal

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X
Syntax: {label:} CTXTSWP #lit3
Operands: lit3 € [0 ... 4]
Operation: If context defined by lit3 is valid,
Then
Switch CPU register context to context defined by Iit3
Else
Execute as 2-cycle NOP
Status Affected: None
Encoding: 1111 | 1110 | 1110 0000 | 0000 | Okkk
Description: This instruction will force a CPU register context switch (W0 through W14, and

Accumulators A and B) from the current context to the target context defined by the
value defined by #lit3. If the specified context is not implemented on the device, this
instruction will execute as a 2-cycle NOP.

A successful context switch will update the current context identifier and the manual
context identifier (held in CCTXI<2:0> (CTXTSTAT<10:8>) and MCTXI<2:0>
(CTXTSTAT<2:0>), respectively) to reflect the new active CPU register context.

Words: 1
Cycles: 2

Note 1: This instruction is present only in some devices of the device families. Please see the specific device data
sheet to ensure that this instruction is supported on a specific device.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 223

16-Bit MCU and DSC Programmer’s Reference Manual

cTxXTswpd)

CPU Register Context Swap Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X
Syntax: {label:} CTXTSWP Wn
Operands: Wn e [WO ... W15]
Operation: If context defined by the contents of Wn<2:0> is valid,
Then
Switch CPU register context to context defined by the contents of Wn<2:0>
Else
Execute as 2-cycle NOP
Status Affected: None
Encoding: 111 [1110 | 1n 0000 | 0000 | ssss
Description: This instruction will force a CPU register context switch (W0 through W14, and
Accumulators A and B) from the current context to the target context defined by the
value in the three Least Significant bits of Wn. If the specified context is not
implemented on the device, this instruction will execute as a 2-cycle NOP.
A successful context switch will update the current context identifier and the manual
context identifier (held in CCTXI<2:0> (CTXTSTAT<10:8>) and MCTXI<2:0>
(CTXTSTAT<2:0>), respectively) to reflect the new active CPU register context.
Words: 1
Cycles: 2

Note 1: This instruction is present only in some devices of the device families. Please see the specific device data

sheet to ensure that this instruction is supported on a specific device.

DS70000157G-page 224

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DAW.B

Decimal Adjust Wn

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
{label} DAW.B Wn

Wn € [WO ... W15]

If (Wn<3:0>>9) or (DC =1)
(Wn<3:0>) + 6 - Wn<3:0>

Else
(Wn<3:0>) -» Wn<3:0>

If (Wn<7:4>>9)or(C=1)
(Wn<7:4>) + 6 -> Wn<7:4>

Else
(Wn<7:4>) - Wn<7:4>
c
\ 1111 \ 1101 0100 0000 0000 ssss \

Adjust the Least Significant Byte in Wn to produce a Binary Coded Decimal (BCD)
result. The Most Significant Byte of Wn is not changed and the Carry flag is used to
indicate any decimal rollover. Register Direct Addressing must be used for Wn.

The ‘s’ bits select the source/destination register.

Note 1. This instruction is used to correct the data format after two packed BCD
bytes have been added.
2: This instruction operates in Byte mode only and the . B extension must be
included with the opcode.

Example 1: DAWB W Deci mal adj ust W
Before After
Instruction Instruction
WO | 771A WO | 7720
SR| 0002 |(DC=1) SR| 0002 |((DC=1)
Example 2: DAWB WB Deci mal adj ust W8
Before After
Instruction Instruction
W3 | 77AA W3| 7710
SR| 0000 SR| 0001((C=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 225

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

DEC

Decrement f

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X

Syntax: {label:} DEC{.B} f {,WREG}

Operands: fe[0..8191]

Operation: (f) — 1 — destination designated by D

Status Affected: DC,N,0V,Z, C

Encoding: | 1110 | 1101 0BDf frff frff frff

Description: Subtract one from the contents of the file register and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored in
the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.
Words: 1
Cycles: 1@
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC. B 0x200 . Decrement (0x200) (Byte node)
Before After
Instruction Instruction
Data 200| 80FF Data 200| 8O0FE
SR| 0000 SR| 0009 [(N,C=1)
Example 2: DEC RAMA0O, WREG ; Decrenment RAMAOO and store to WREG
(Word node)
Before After
Instruction Instruction
WREG 1211 WREG 0822
RAM400 0823 RAMA400 0823
SR 0000 SR 0000

DS70000157G-page 226

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DEC

Decrement Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
{label:} DEC{.B} Ws, Wd
[Ws], [wWd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[-Ws], [--Wd]
Ws e [WO ... W15]
Wd e [WO ... W15]
(Ws)-1 —>Wd
DC,N,0V,Z,C
| 1110 | 1001 ‘ 0Bqq | gddd | dppp ‘ SSSS ‘

Subtract one from the contents of the source register Ws and place the result in the
destination register Wd. Either Register Direct or Indirect Addressing may be used by
Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC.B [W++], [WB++]

DEC [W] and store to [W8] (Byte node)
Post -i ncrenent W/, W8

Before After
Instruction Instruction
W7| 2301 W7 | 2302
W8 | 2400 W8 | 2401

Data 2300| 5607 Data 2300| 5607
Data 2400 | ABCD Data 2400 AB55
SR| 0000 SR| 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 227

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: DEC Wb,

W5
W6
Data 2000
SR

Before
Instruction

[VB++]

D004

2000

ABA9

0000

Decrement Wb and store to [W] (Word node)
Post -i ncrement W

W5
W6
Data 2000
SR

After
Instruction

D004

2002

D003

0009

(N,C=1)

DS70000157G-page 228

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DEC2 Decrement f by 2

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} DEC2{B} f {,WREG}

Operands: fe[0..8191]

Operation: (f) — 2 — destination designated by D

Status Affected: DC,N,0V,Z, C

Encoding: | 1110 | 1101 1BDf frff ffff ffff

Description: Subtract two from the contents of the file register and place the result in the destination

register. The optional WREG operand determines the destination register. If WREG is

specified, the result is stored in WREG. If WREG is not specified, the result is stored in

the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note: The extension . B in the instruction denotes a byte operation rather than a

word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC2. B 0x200 ; Decrenent (0x200) by 2 (Byte node)
Before After
Instruction Instruction
Data 200| 80FF Data 200| 80FD
SR| 0000 SR| 0009 [(N,C=1)
Example 2: DEC2 RAMA00, WREG ; Decrenent RAMAOO by 2 and
; store to WREG (Word node)
Before After
Instruction Instruction
WREG 1211 WREG 0821
RAM400 0823 RAMA400 0823
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 229

16-Bit MCU and DSC Programmer’s Reference Manual

DEC2

Decrement Ws by 2

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label:} DEC2{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Ws e [WO ... W15]
Wd € [WO ... W15]

(Ws)—2 —» Wd

DC,N,0V,Z,C

| 1120 | 1001 | 1Bqg | qddd | dppp | ssss |
Subtract two from the contents of the source register Ws and place the result in the

destination register Wd. Either Register Direct or Indirect Addressing may be used by
Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC2.B [W--], [W8--] ; DEC [W] by 2, store to [W8] (Byte node)

Post - decrenment W/, W8

Before After
Instruction Instruction
w7 2301 w7 2300
w8 2400 W8| 23FF
Data 2300 0107 Data 2300 0107
Data 2400| ABCD Data 2400| ABFF
SR 0000 SR 0008 (N =1)

DS70000157G-page 230

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DEC2 Wb, [W5++]

Example 2:
W5
W6
Data 1000
SR

Before
Instruction

D004
1000
ABA9
0000

DEC Wb by 2,
Post -i ncrenent W

store to [W]

After
Instruction
W5| D004
W6 1002
Data 1000| D002
SR 0009 |(N,C=1)

(Word node)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 231

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

DISI

Disable Interrupts Temporarily

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
{label:} DISI #lit14
lit14 € [0 ... 16383]
lit14 — DISICNT
1 - DISI
Disable interrupts for (lit14 + 1) cycles
None
1111 | 1100 | O0okk | kkkk | kkkk | Kkkk

Example 1:

Disable interrupts of Priority 0 through Priority 6 for (lit14 + 1) instruction cycles.
Priority O through Priority 6 interrupts are disabled, starting in the cycle that DI SI
executes, and remain disabled for the next (lit 14) cycles. The lit14 value is written to
the DISICNT register and the DI S| flag (INTCON2<14>) is set to ‘1’. This instruction
can be used before executing time-critical code to limit the effects of interrupts.

Note 1:

See the specific device family reference manual for details.
2: This instruction does not prevent any interrupts when the device is in

Sleep mode.

002000 HERE:

002002
002004

Before
Instruction

PC

00 2000

DISICNT

0000

INTCONZ2

0000

SR

0000

This instruction does not prevent Priority 7 interrupts and traps from running.

Disable interrupts for 101 cycl es

next 100 cycles protected by D Sl

DI SI #100
After
Instruction
PC 00 2002
DISICNT 0100
INTCON2 4000
SR 0000

(Dl Sl =1)

DS70000157G-page 232

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DlVS Signed Integer Divide

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} DIV.S{W} Wm, Wn
DIV.SD Wm, Wn
Operands: Wm e [WO ... W15] for word operation

Wm e [WO0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

Operation: For Word Operation (default):

Wm — WO
If (Wm<15>=1):

OxFFFF — W1
Else:

0x0 — W1
W1:W0/Wn — W0
Remainder — W1

For Double Operation (DI V. SD):

Wm + 1:Wm — W1:W0
W1:W0/Wn — WO
Remainder — W1

Status Affected: N, 0V, Z,C
Encoding: | 1100 | 1000 | ottt | tvw [wwo [ssss
Description: Iterative, signed integer divide, where the dividend is stored in Wm (for a 16-bit by 16-bit

divide) or Wm + 1:Wm (for a 32-bit by 16-bit divide) and the divisor is stored in Wn. In the
default word operation, Wm is first copied to WO and sign-extended through W1 to perform
the operation. In the double operation, Wm + 1:Wm is first copied to W1:WO0. The 16-bit
quotient of the divide operation is stored in W0 and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction (with an iteration
count of 17) to generate the correct quotient and remainder. The N flag will be set if the
remainder is negative and cleared otherwise. The OV flag will be set if the divide operation
resulted in an overflow and cleared otherwise. The Z flag will be set if the remainder is ‘0’
and cleared otherwise. The C flag is used to implement the divide algorithm and its final
value should not be used.

The ‘t’ bits select the most significant word of the dividend for the double operation.

These bits are clear for the word operation.

The ‘v’ bits select the least significant word of the dividend.

The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-bit).

Note 1: The ‘s’ bits select the Divisor register. The extension . D in the instruction
denotes a double-word (32-bit) dividend rather than a word dividend. You may
use a . Wextension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in 16 bits.
When this occurs for the double operation (DI V. SD), the OV Status bit will be
set and the quotient and remainder should not be used. For the word operation
(DI'V. S), only one type of overflow may occur (0x8000/0xFFFF = +32768 or
0x00008000), which allows the OV Status bit to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of execution.

4: This instruction is interruptible on each instruction cycle boundary.

6 (plus 1 for REPEAT execution) for dsPIC33C

g5
Words: 1 0 5
Cycles: 18 (plus 1 for REPEAT execution) for PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F, g g
dsPIC33E T o
o
oo
S5 5
wn

© 2005-2018 Microchip Technology Inc. DS70000157G-page 233

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1:

Example 2:

REPEAT #17
DIV.S W8, W

Before
Instruction

WO 5555
W1 1234
W3 3000
w4 0027
SR| 0000
REPEAT #17

DIV.SD W, W2

Before
Instruction

WO 2500

W1 FF42

W12 2200

SR| 0000

Execute DIV.S 18 tines
Di vide WB by W
Store quotient to W), renminder to W

WO
W1
W3
W4
SR

After

Instruction

013B

0003

3000

0027

0000

Execute DI V. SD
Divide WL: W by W2
Store quotient to W), renminder to W

After
Instruction
WO0| FA6B
W1 EF00
W12 2200
SR| 0008

18 tines

(N=1)

DS70000157G-page 234

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DlV U Unsigned Integer Divide

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} DIV.U{W} Wm, Wn
DIV.UD Wm, Wn
Operands: Wm e [WO ... W15] for word operation

Wm e [WO0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

Operation: For Word Operation (default):
Wm — W0
0x0 — W1
W1:W0/Wn — W0
Remainder - W1

For Double Operation (DI V. UD):

Wm + 1:Wm — W1:WO0
W1:W0/Wns — W0
Remainder - W1

Status Affected: N,0V,Z C
Encoding: 1101 ‘ 1000 | 1ttt | tvvv ‘ vWO0 | SSSS ‘
Description: Iterative, unsigned integer divide, where the dividend is stored in Wm (for a 16-bit by

16-bit divide) or Wm + 1:Wm (for a 32-bit by 16-bit divide) and the divisor is stored in
Whn. In the word operation, Wm is first copied to WO and W1 is cleared to perform the
divide. In the double operation, Wm + 1:Wm is first copied to W1:WO0. The 16-bit
quotient of the divide operation is stored in W0 and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction (with an
iteration count of 17) to generate the correct quotient and remainder. The N flag will
always be cleared. The OV flag will be set if the divide operation resulted in an over-
flow and cleared otherwise. The Z flag will be set if the remainder is ‘0’ and cleared
otherwise. The C flag is used to implement the divide algorithm and its final value
should not be used.

The ‘t’ bits select the most significant word of the dividend for the double operation.

These bits are clear for the word operation.

The ‘v’ bits select the least significant word of the dividend.

The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-bit).

The ‘s’ bits select the Divisor register.

Note 1: The extension . Din the instruction denotes a double-word (32-bit)
dividend rather than a word dividend. You may use a . W extension to
denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in
16 bits. This may only occur for the double operation (DI V. UD). When an
overflow occurs, the OV Status bit will be set, and the quotient and
remainder should not be used.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.

4: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 18 (plus 1 for REPEAT execution) for PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F,
dsPIC33E

6 (plus 1 for REPEAT execution) for dsPIC33C

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 235

16-Bit MCU and DSC Programmer’s Reference Manual

DIVF

Fractional Divide

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X

{label:} DIVF Wm, Wn
Wm e [WO ... W15]
Wn e [W2 ... W15]
0x0 —» WO
Wm — WA1
W1:W0/Wn — WO
Remainder — W1
N, 0V, 2z, C

1101 1001 Ottt t 000 0000 SSSS

Iterative, signed fractional 16-bit by 16-bit divide, where the dividend is stored in Wm
and the divisor is stored in Wn. To perform the operation, WO is first cleared and Wm
is copied to W1. The 16-bit quotient of the divide operation is stored in W0 and the
16-bit remainder is stored in W1. The sign of the remainder will be the same as the
sign of the dividend.

This instruction must be executed 18 times using the REPEAT instruction (with an
iteration count of 17) to generate the correct quotient and remainder. The N flag will
be set if the remainder is negative and cleared otherwise. The OV flag will be set if
the divide operation resulted in an overflow and cleared otherwise. The Z flag will be
set if the remainder is ‘0’ and cleared otherwise. The C flag is used to implement the
divide algorithm and its final value should not be used.

The '’ bits select the Dividend register.
The ‘s’ bits select the Divisor register.

Note 1: For the fractional divide to be effective, Wm must be less than Wn. If Wm
is greater than or equal to Wn, unexpected results will occur because the
fractional result will be greater than or equal to 1.0. When this occurs, the
QV Status bit will be set, and the quotient and remainder should not be
used.

2: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.
3: This instruction is interruptible on each instruction cycle boundary.

1
18 (plus 1 for REPEAT execution) for dsPIC30F, dsPIC33F, dsPIC33E
6 (plus 1 for REPEAT execution) for dsPIC33C

DS70000157G-page 236

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: REPEAT #17 ; Execute DIVF 18 tines
Dl VF ws, VW ; Divide W8 by W
; Store quotient to W), renmminder to W

Before After
Instruction Instruction

WO 8000 WO 2000

W1 1234 W1 0000

w8 1000 w8 1000

W9 | 4000 W9| 4000

SR 0000 SR 0002 ((z=1)

Example 2: REPEAT #17 ; Execute DIVF 18 tines

Dl VF s, VW ; Divide W8 by W

Store quotient to W), renminder to W

Before After
Instruction Instruction

WO | 8000 WO | FO000

W1 1234 W1 0000

w8 1000 w8 1000

Ww9| 8000 Ww9| 8000

SR| 0000 SR| 0002|(Zz=1)

Examgle 3: REPEAT #17 ; Execute DI VF 18 tines

Dl VF w, W ; Divide W by WL

Store quotient to W), renminder to W

Before After
Instruction Instruction
W0| 8002 W0| 7FFE
W1 8001 W1 8002
SR| 0000 SR| 0008 |(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 237

16-Bit MCU and DSC Programmer’s Reference Manual

DIVF2

Signed Fractional Divide, 16/16 (W1:WO0 Preserved)

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1: REPEAT #17

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

{label:} DIVF2 Wm, Wn
Wn e [W2 ... W15]; Wm e [W2 ... W15]

Wm = Dividend, Wn = Divisor:
0x0000 —» W(m-1)
Wm:W(m-1)/Wn — W(m-1); Remainder - Wm

C,N,0V,Z
| 1101 | 1001 | ottt t 000 0010 ssss

Iterative, signed fractional 16-bit by 16-bit divide, producing a 16-bit quotient and a 16-bit
remainder. The sign of the remainder will be the same as that of the dividend.

This instruction must be executed 6 times to generate the correct quotient and
remainder. This may only be achieved by executing a REPEAT with an iteration count of 5
(i.e., 5+1 iterations in all) and the DI VF instruction as its target.

The N flag will be set if the remainder is negative and cleared otherwise. The OV flag will
be set if the divide operation resulted in an overflow and cleared otherwise. The Z flag will
be set if the remainder is ‘0’ and cleared otherwise. The C flag is used to implement the
divide algorithm and its final value should not be used.

The ‘s’ bits select the address of the source (divisor) register.
The ‘t’ bits select the address of the source (dividend) register.

Note 1: For the fractional divide to be effective, Wm must be less than Wn. If Wm is
greater than or equal to Wn, unexpected results will occur because the fractional
result will be greater than or equal to 1.0. When this occurs, the OV Status bit
will be set, and the quotient and remainder should not be used.

2: Dividing by zero will initiate an arithmetic error trap during the first cycle of execution.
3: This instruction is interruptible on each instruction cycle boundary.
1

6 (plus 1 for REPEAT instruction execution)

Execute DI V.U 18 tines
Divide W by W
Store quotient to W), renminder to W

Dv.U w, w

Before After
Instruction Instruction
WO 5555 WO 0040
W1 1234 W1 0000
w2 8000 w2 8000
w4 0200 w4 0200
SR| 0000 SR| 0002(Zz=1)

DS70000157G-page 238

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: REPEAT #17 ; Execute DIV.UD 18 tines
DIV.UD W0, W2 ; Divide W1: MO0 by W2
; Store quotient to W), renminder to W

Before After
Instruction Instruction
WO 5555 WO0| O01F2
W1 1234 W1 0100
W10| 2500 W10 2500
W11 0042 W11 0042
W12 2200 W12 2200
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 239

16-Bit MCU and DSC Programmer’s Reference Manual

DIV2.S

Signed Integer Divide (W1:WO0 Preserved)

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

{label} DIV2.S{W} Wm, Wn
DIV2.SD Wm, Wn

Wm e [WO ... W15] for word operation
Wm e [W0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

For Word Operation (default):

W(m+1):Wm/Wn — Wm; Remainder - W(m+1)

For Double Operation (DI V2. SD):

W(m+1):Wm/Wn — Wm; Remainder - W(m+1)

C,N, 0oV, Z

| 1101 | 1000 | ottt [tww [vi10 ssss

Iterative, signed integer 32-bit by 16-bit divide to a 16-bit quotient and a 16-bit
remainder. The sign of the remainder will be the same as that of the dividend. Wm must

be an even number and holds the least significant word of the dividend. The most
significant word of the dividend is held in W(m+1).

This instruction must be executed 6 times to generate the correct quotient and
remainder. This may only be achieved by executing a REPEAT with an iteration count of
5 (i.e., 5+1 iterations in all) and the DI V2. S instruction as its target.

The N flag will be set if the remainder is negative and cleared otherwise. The OV flag
will be set if the divide operation resulted in an overflow and cleared otherwise. The Z
flag will be set if the remainder is ‘0’ and cleared otherwise. The C flag is used to
implement the divide algorithm and its final value should not be used.

The ‘s’ bits select the address of the source (divisor) register.
The ‘t’ bits select the address of the source (dividend, most significant word) register.
The ‘v’ bits select the address of the source (dividend, least significant word) register.

Note 1: The extension . Din the instruction denotes a double-word (32-bit) dividend
rather than a word dividend. You may use a . Wextension to denote a word
operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in
16 bits. When this occurs for the double operation (DI V2. SD), the OV Status
bit will be set, and the quotient and remainder should not be used. For the
word operation (DI V2. S), only one type of overflow may occur
(0x8000/0xFFFF = +32768 or 0x00008000), which allows the OV Status bit
to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.

4: This instruction is interruptible on each instruction cycle boundary.

1
6 (plus 1 for REPEAT instruction execution)

DS70000157G-page 240

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIV2.U

Unsigned Integer Divide (W1:WO0 Preserved)

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X
{label:} DIV2.U{W} Wm, Wn
DIV2.UD Wm, Wn
Wm e [WO ... W15] for word operation
Wm e [W0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]
W(m+1):Wm = Dividend, Wn = Divisor:
W(m+1):Wm/Wn — Wm; Remainder - W(m+1)
For Word Operation (default):
0 —» W(m+1)
W(m+1):Wm/Wn — Wm; Remainder - W(m+1)
For Double Operation (DI V2. SD):
W(m+1):Wm/Wn — Wm; Remainder - W(m+1)
C,N, 0oV, Z
| 1101 | 1000 | 1ttt [tww | vi10 ssSS

Iterative, unsigned integer 16-bit by 16-bit or 32-bit by 16-bit divide, producing a 16-bit
quotient and a 16-bit remainder. Wm must be an even number and holds the least
significant word of the dividend. The most significant word of the dividend is held in

W(m+1).

This instruction must be executed 6 times to generate the correct quotient and
remainder. This may only be achieved by executing a REPEAT with an iteration count of
5 (i.e., 5+1 iterations in all) and the DI V. UD instruction as its target.

The N flag is always cleared. The OV flag will be set if the divide operation resulted in
an overflow and cleared otherwise. The Z flag will be set if the remainder is ‘0’ and
cleared otherwise. The C flag is used to implement the divide algorithm and its final

value should not be used.

The ‘s’ bits select the address of the source (divisor) register.
The ‘t’ bits select the address of the source (dividend, most significant word) register.

Note 1:

The extension . Din the instruction denotes a double-word (32-bit) dividend

rather than a word dividend. You may use a . Wextension to denote a word

operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in
16 bits. This may only occur for the double operation (DI V2. UD). When an
overflow occurs, the OV Status bit will be set, and the quotient and

remainder should not be used.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of

execution.

4: This instruction is interruptible on each instruction cycle boundary.

1
6 (plus 1 for REPEAT instruction execution)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 241

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

DO

Initialize Hardware Loop Literal

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X

{label} DO #lit14, Expr

lit14 € [0 ... 16383]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... +32767].

PUSH DO shadows (DCOUNT, DOEND, DOSTART)
(lit14) - DCOUNT

(PC)+4 > PC

(PC) —» DOSTART

(PC) + (2 * Slit16) —» DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 00kk kkkk kkkk kkkk
0000 0000 nnnn nnnn nnnn nnnn

Initiate a no overhead hardware DOloop, which is executed (lit14 + 1) times. The DO
loop begins at the address following the DO instruction and ends at the

address 2 * Slit16 instruction words away. The 14-bit count value (lit14) supports a
maximum loop count value of 16384 and the 16-bit offset value (Slit16) supports
offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DOloop
parameters specified by the instruction. The DOlevel count, DL<2:0>
(CORCON<8:10>), is then incremented. After the DOloop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored, and DL<2:0> are
decremented.

The ‘K’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DOinstruction.

1. Using a loop count of O will result in the loop being executed one time.

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DOloop cannot be:
* an instruction which changes program control flow
» a DOor REPEAT instruction
Unexpected results may occur if any of these instructions are used.

4. If a hard trap occurs in the second to last instruction or third to last instruction of
a DOloop, the loop will not function properly. The hard trap includes exceptions
of Priority Level 13 through Level 15, inclusive.

Note 1: The DOinstruction is interruptible and supports 1 level of hardware nesting.

Nesting up to an additional 5 levels may be provided in software by the user.
See the specific device family reference manual for details.

2: The linker will convert the specified expression into the offset to be used.

DS70000157G-page 242

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: 002000 LOCP6: DO #5, END6 Initiate DOl oop (6 reps)
002004 ADD W, W2, W First instruction in |oop
002006
002008 L
00200A END6: SuUB w, W8, W Last instruction in | oop
00200C

Before After

Instruction Instruction

PC 00 2000 PC 00 2004

DCOUNT 0000 DCOUNT 0005

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 200A

CORCON 0000 CORCON 0100 (DL =1)

SR 0001|{(C=1) SR 0201 |(DA,C =1)

Example 2: 010000 LOOP12: DO #0x160, END12 Init DO | oop (353 reps)
01C004 DEC W, W First instruction in |oop
010006
010008
01CO00A
01cooC .
01CO0E CALL _FIR88 Call the FIR88 subroutine
01C012 NOP
01C014 END12: NOP ; Last instruction in |oop

(Required NOP filler)
Before After
Instruction Instruction
PC 01 C000 PC 01 C004
DCOUNT 0000 DCOUNT 0160
DOSTART FF FFFF DOSTART 01 C004
DOEND FF FFFF DOEND 01 C014
CORCON 0000 CORCON 0100 {(DL =1)
SR 0008 |(N=1) SR 0208 |(DA, N = 1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 243

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

DO

Initialize Hardware Loop Literal

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X

{label:} DO #lit15, Expr

lit15 € [0 ... 32767]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... +32767].

PUSH DO shadows (DCOUNT, DOEND, DOSTART)
(lit15) - DCOUNT

(PC)+4 > PC

(PC) — DOSTART

(PC) + (2 * Slit16) - DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 Okkk kkkk kkkk kkkk
0000 0000 nnnn nnnn nnnn nnnn

Initiate a no overhead hardware DOloop, which is executed (lit15 + 1) times. The DO
loop begins at the address following the DOinstruction and ends at the

address 2 * Slit16 instruction words away. The 15-bit count value (lit15) supports a
maximum loop count value of 32768 and the 16-bit offset value (Slit16) supports offsets
of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DOloop
parameters specified by the instruction. The DO level count, DL<2:0> bits
(CORCON<8:10>), is then incremented. After the DOloop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored and DL<2:0> are
decremented.

The ‘k’ bits specify the loop count.

The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DOinstruction.

1. Using a loop count of 0 will result in the loop being executed one time.

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DOloop cannot be:
» an instruction which changes program control flow
» a DOor REPEAT instruction
Unexpected results may occur if any of these instructions are used.

4. If a hard trap occurs in the second to last instruction or third to last instruction of
a DOloop, the loop will not function properly. The hard trap includes exceptions of
Priority Level 13 through Level 15, inclusive.

5. The first and last instructions of the DOloop should not be a PSV read, table read
or table write.

Note 1: The DOinstruction is interruptible and supports 1 level of hardware nesting.

Nesting up to an additional 5 levels may be provided in software by the user.
See the specific device family reference manual for details.
2: The linker will convert the specified expression into the offset to be used.

DS70000157G-page 244

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: 002000 LOOP6: DO #5, ENDG Initiate DOl oop (6 reps)
002004 ADD W, W2, W8 First instruction in | oop
002006
002008 -
00200A END6: SuB w, W3, W Last instruction in | oop
00200C

Before After
Instruction Instruction
PC 00 2000 PC 00 2004
DCOUNT 0000 DCOUNT 0005
DOSTART FF FFFF DOSTART 00 2004
DOEND FF FFFF DOEND 00 200A
CORCON 0000 CORCON 0100 (DL =1)
SR 0001 ((C=1) SR 0201 (DA, C =1)

Example 2: 01C000 LOOP12: DO #0x160, END12 Init DO | oop (353 reps)
010004 DEC W, W First instruction in |oop
01C006
01Co008
01C00A
01C00C ...
01CO0E CALL _FIR88 Call the FIR88 subroutine
010012 NOP
01C014 END12: NOP Last instruction in |oop

(Required NOP filler)
Before After
Instruction Instruction
PC 01 C000 PC 01 C004
DCOUNT 0000 DCOUNT 0160
DOSTART FF FFFF DOSTART 01 C004
DOEND FF FFFF DOEND 01 C014
CORCON 0000 CORCON 0100|(DL =1)
SR 0008 |(N=1) SR 0208 |(DA, N = 1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 245

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

DO

Initialize Hardware Loop Wn

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X

{label:} DO Whn, Expr

Wn e [WO ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... +32767].

PUSH Shadows (DCOUNT, DOEND, DOSTART)
(Wn<13:0>) - DCOUNT

(PC)+4 > PC

(PC) —» DOSTART

(PC) + (2 * Slit16) - DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 1000 0000 0000 SSSS
0000 0000 nnnn nnnn nnnn nnnn

Initiate a no overhead hardware DOloop, which is executed (Wn + 1) times. The DOloop
begins at the address following the DOinstruction and ends at the address 2 * Slit16
instruction words away. The lower 14 bits of Wn support a maximum count value of
16384 and the 16-bit offset value (Slit16) supports offsets of 32K instruction words in
both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DOloop
parameters specified by the instruction. The DOlevel count, DL<2:0>
(CORCON<8:10>), is then incremented. After the DOloop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored, and DL<2:0> are
decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DOinstruction.

1. Using a loop count of O will result in the loop being executed one time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DOloop cannot be:
 an instruction which changes program control flow
» a DOor REPEAT instruction
Unexpected results may occur if these last instructions are used.
Note 1: The DOinstruction is interruptible and supports 1 level of nesting. Nesting up

to an additional 5 levels may be provided in software by the user. See the
specific device family reference manual for details.

2. The linker will convert the specified expression into the offset to be used.

DS70000157G-page 246

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: 002000 LOOP6: DO W), END6 ; Initiate DO loop (W reps)
002004 ADD WL, W2, WB ; First instruction in |oop
002006
002008
00200A L
00200C REPEAT #6
00200E SuB W, VB, W
002010 END6: NOP ; Last instruction in |oop

(Required NOP filler)
Before After
Instruction Instruction
PC 00 2000 PC 00 2004
WO 0012 WO 0012
DCOUNT 0000 DCOUNT 0012
DOSTART FF FFFF DOSTART 00 2004
DOEND FF FFFF DOEND 00 2010
CORCON 0000 CORCON 0100|(DL=1)
SR 0000 SR 0080 |(DA =1)

Example 2: 002000 LOOPA: DO W7, ENDA Initiate DO loop (W reps)
002004 SWAP W First instruction in |oop
002006
002008
00200A .

002010 ENDA: MoV WL, [W++] Last instruction in |oop
Before After
Instruction Instruction
PC 00 2000 PC 00 2004
w7 EOOF w7 EOOF
DCOUNT 0000 DCOUNT 200F
DOSTART FF FFFF DOSTART 00 2004
DOEND FF FFFF DOEND 00 2010
CORCON 0000 CORCON 0100 (DL =1)
SR 0000 SR 0080 |(DA=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 247

16-Bit MCU and DSC Programmer’s Reference Manual

DO

Initialize Hardware Loop Wn

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X

{label:} DO Whn, Expr

Wn e [WO ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... +32767].

PUSH Shadows (DCOUNT, DOEND, DOSTART)
(Wn) - DCOUNT

(PC)+4 > PC

(PC) —» DOSTART

(PC) + (2 * Slit16) - DOEND

Increment DL<2:0> (CORCON<10:8>)

DA
0000 1000 1000 0000 0000 SSSS
0000 0000 nnnn nnnn nnnn nnnn

Initiate a no overhead hardware DOloop, which is executed (Wn + 1) times. The DOloop
begins at the address following the DOinstruction and ends at the address 2 * Slit16
instruction words away. The 16 bits of Wn support a maximum count value of 65536
and the 16-bit offset value (Slit16) supports offsets of 32K instruction words in both
directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DOloop
parameters specified by the instruction. The DOlevel count, DL<2:0>
(CORCON<8:10>), is then incremented. After the DOloop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored, and DL<2:0> are
decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DOinstruction.

1. Using a loop count of O will result in the loop being executed one time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DOloop cannot be:
 an instruction which changes program control flow
» a DOor REPEAT instruction
Unexpected results may occur if these last instructions are used.

4. The first and last instructions of the DOloop should not be a PSV read, table read
or table write.
Note 1: The DOinstruction is interruptible and supports 1 level of nesting. Nesting up
to an additional 5 levels may be provided in software by the user. See the
specific device family reference manual for details.

2. The linker will convert the specified expression into the offset to be used.

DS70000157G-page 248

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: 002000 LOOP6: DO W0, END6 ; Initiate DO | oop (W reps)
002004 ADD WL, W2, WB ; First instruction in |oop
002006
002008
00200A -
00200C REPEAT #6
00200E SuB W, W8, W
002010 END®6: NOP ; Last instruction in |oop

(Required NOP filler)
Before After
Instruction Instruction
PC 00 2000 PC 00 2004
WO 0012 WO 0012
DCOUNT 0000 DCOUNT 0012
DOSTART FF FFFF DOSTART 00 2004
DOEND FF FFFF DOEND 00 2010
CORCON 0000 CORCON 0100 (DL =1)
SR 0000 SR 0080 |(DA =1)

Example 2: 002000 LOCPA: DO W, ENDA ; Initiate DO loop (W reps)
002004 SWAP WO ; First instruction in |oop
002006
002008
00200A L
002010 ENDA: MoV WL, [V++] Last instruction in | oop

Before After
Instruction Instruction

PC 00 2000 PC 00 2004

W7 EOOF W7 EOOF

DCOUNT 0000 DCOUNT 200F

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010
CORCON 0000 CORCON 0100|(DL =1)
SR 0000 SR 0080 |(DA=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 249

16-Bit MCU and DSC Programmer’s Reference Manual

ED

Euclidean Distance (No Accumulate)

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1: ED WA*W, A [VW8]+=2, [WO0]-=2, W

PIC24F | PIC24H | PIC24E |dsPIC30F| dsPIC33F | dsPIC33E |dsPIC33C

X X X X
{label} ED Wm*Wm, Acc, [Wx], [Wyl, Wxd
[Wx] +=kx, [Wy] +=ky,
W] —=kx, [Wy]-=ky,
W9 +W12], [W11+W12],
Acc < [A,B]

Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx € [W8, WIJ; kx < [-6, -4, -2, 2, 4, 6]

Wy € [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]

Wxd e [W4 ... W7]

(Wm) * (Wm) — Acc(A or B)

(IWx] — [Wy]) - Wxd

(Wx) + kx — Wx

(Wy) + ky > Wy

OA, OB, OAB, SA, SB, SAB

| 1111 | oonm | Alxx | 00ii | iij] ij11

Compute the square of Wm, and compute the difference of the prefetch values
specified by [Wx] and [Wy]. The results of Wm * Wm are sign-extended to 40 bits and

stored in the specified accumulator. The results of [Wx] — [Wy] are stored in Wxd,
which may be the same as Wm.

Operands, Wx, Wxd and Wyd, specify the prefetch operations which support Indirect
and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch difference Wxd destination.
The ‘" bits select the Wx prefetch operation.

The f bits select the Wy prefetch operation.

1
1

Square W to ACCA
[VB]-[WL0] to W

Post -i ncrenment W8
Post - decrement WLO

Before After

Instruction Instruction
w4 009A W4 0057
w8 1100 w8 1102
W10 2300 W10 22FE
ACCA 00 3DOA 0000 ACCA | 000000 5CA4
Data 1100 007F Data 1100 007F
Data 2300 0028 Data 2300 0028
SR 0000 SR 0000

DS70000157G-page 250

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: ED Ws*Ws, B, [Wo]+=2, [WL1+W12], Wb ; Square Wb to ACCB
[V@] - [WL1+WL2] to W6
Post -i ncrenment W9

Before After

Instruction Instruction
w5 43C2 W5 3F3F
w9 1200 W9 1202
W11 2500 W11 2500
W12 0008 W12 0008
ACCB 00 28E3 F14C ACCB 00 11EF 1F04
Data 1200 B6A7C Data 1200 B6A7C
Data 2508 2B3D Data 2508 2B3D
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 251

16-Bit MCU and DSC Programmer’s Reference Manual

EDAC

Euclidean Distance

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E |dsPIC30F| dsPIC33F | dsPIC33E |dsPIC33C

X X X X

{label} ~ EDAC ~ Wm*Wm, Acc, [Wx], [Wy], Wxd
[Wx] + = kx, [Wy] + =ky,
[Wx] = =kx, [Wy]-=ky,
WO +W12], [W11+W12],

Acc € [A,B]

Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]

Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]

Wxd e [W4 ... W7]

(Acc(A or B)) + (Wm) * (Wm) — Acc(A or B)

([Wx] — [Wy]) »> Wxd

(Wx) + kx — Wx

(Wy) + ky > Wy

OA, OB, OAB, SA, SB, SAB

1111 | oomm | Aux | ooii | iijj ij10

Compute the square of Wm, and also the difference of the prefetch values specified by
[Wx] and [Wy]. The results of Wm * Wm are sign-extended to 40 bits and added to the
specified accumulator. The results of [Wx] — [Wy] are stored in Wxd, which may be the
same as Wm.

Operands, Wx, Wxd and Wyd, specify the prefetch operations which support Indirect
and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A bit selects the accumulator for the result.

The ‘X’ bits select the prefetch difference Wxd destination.
The I’ bits select the Wx prefetch operation.

The ‘j bits select the Wy prefetch operation.

1
1

DS70000157G-page 252

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: EDAC WA*WA, A, [W8]+=2, [wl0]-=2, W ; Square W and
; add to ACCA
[VB]-[WL0] to W
Post -i ncrement W8
Post - decr ement WLO

Before After
Instruction Instruction
w4 009A W4 0057
w8 1100 w8 1102
w10 2300 W10 22FE
ACCA 00 3D0OA 3D0OA ACCA | 00 3DOA 99AE
Data 1100 007F Data 1100 007F
Data 2300 0028 Data 2300 0028
SR 0000 SR 0000
Example 2: EDAC Wo*Ws, B, [wo]+=2, [WL1+W2], W ; Square Wb and
; add to ACCB

;o [WB]-[WL1+W2] to Wb
; Post-increnment W

Before After

Instruction Instruction
W5 43C2 w5 3F3F
W9 1200 W9 1202
W11 2500 W11 2500
W12 0008 W12 0008
ACCB 00 28E3 F14C ACCB 00 3AD3 1050
Data 1200 B6A7C Data 1200 6A7C
Data 2508 2B3D Data 2508 2B3D
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 253

16-Bit MCU and DSC Programmer’s Reference Manual

EXCH

Exchange Wns and Wnd

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} EXCH Whs, Wnd
Operands: Whns € [WO ... W15]
Wnd € [WO ... W15]
Operation: (Wns) < (Wnd)
Status Affected: None
Encoding: [11 | non 0000 0ddd doo0 | ssss |
Description: Exchange the word contents of two Working registers. Register Direct Addressing
must be used for Wns and Wnd.
The ‘d’ bits select the address of the first register.
The ‘s’ bits select the address of the second register.
Note: This instruction only executes in Word mode.
Words: 1
Cycles: 1
Example 1: EXCH W, W Exchange the contents of W and VW@
Before After
Instruction Instruction
W1 55FF W1 A3A3
w9 A3A3 w9 55FF
SR 0000 SR 0000
Example 2: EXCH W, W Exchange the contents of W and Wb
Before After
Instruction Instruction
w4 ABCD w4 4321
W5 4321 W5 ABCD
SR 0000 SR 0000

DS70000157G-page 254

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

FBCL

Find First Bit Change from Left

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X
Syntax: {label:} FBCL Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wnd e [WO ... W15]
Operation: Max_Shift = 15
Sign = (Ws) & 0x8000
Temp = (Ws) << 1
Shift=0
While ((Shift < Max_Shift) && (Temp & 0x8000) == Sign))
Temp = Temp << 1
Shift = Shift + 1
-Shift —» (Wnd)
Status Affected: C
Encoding: 1101 1111 0000 0ddd dppp SSSS
Description: Find the first occurrence of a one (for a positive value) or zero (for a negative value),
starting from the Most Significant bit after the sign bit of Ws and working towards the
Least Significant bit of the word operand. The bit number result is sign-extended to
16 bits and placed in Wnd.
The next Most Significant bit after the sign bit is allocated bit number 0 and the Least
Significant bit is allocated bit number -14. This bit ordering allows for the immediate
use of Wd with the SFTAC instruction for scaling values up. If a bit change is not found,
a result of -15 is returned and the C flag is set. When a bit change is found, the C flag
is cleared.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note: This instruction operates in Word mode only.
Words: 1
Cycles: 1@
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 255

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: FBCL W, W

Before
Instruction

W1 [55FF
W | FFFF
SR| 0000

Example 2: FBCL W, W

Before
Instruction

W1[FFFF
wo| BBBB
SR| 0000

Example 3: FBCL [WL++],

Before
Instruction
W1 2000
W9| BBBB
Data 2000 FFOA
SR| 0000

Find 1st bit change fromleft in W
and store result to W

After
Instruction
W1 55FF
W9 0000
SR 0000

Find 1st bit change fromleft in W
and store result to VW

After
Instruction

W1 FFFF
W9 FFF1
SR| 0001 |(C=1)

Find 1st bit change fromleft in [W]
and store result to VW@
Post -i ncrement WL

After
Instruction

W1| 2002
W9| FFF9
Data 2000| FFOA
SR| 0000

DS70000157G-page 256

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

FFlL Find First One from Left

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} FF1L Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws € [WO ... W15]
Wnd € [WO ... W15]
Operation: Max_Shift = 17
Temp = (Ws)
Shift = 1

While ((Shift < Max_Shift) && !(Temp & 0x8000))
Temp = Temp << 1

Shift = Shift + 1
If (Shift == Max_Shift)
0 —» (Wnd)
Else
Shift - (Wnd)
Status Affected: C
Encoding: | 1100 ‘ 1111 1000 0ddd dppp | SSSS ‘
Description: Finds the first occurrence of a one starting from the Most Significant bit of Ws and

working towards the Least Significant bit of the word operand. The bit number result
is zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Most Significant bit (allocated number 1) and advances
to the Least Significant bit (allocated number 16). A result of zero indicates a ‘1’ was
not found and the C flag will be set. If a ‘1’ is found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
Words: 1
Cycles: 1M

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 257

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: FFIL W2, W
Before
Instruction
w2 000A
W5 | BBBB
SR 0000
Example 2: FFIL [Ve++],
Before
Instruction
w2 2000
W5 | BBBB
Data 2000 0000
SR 0000

Wb

Find the 1st one fromthe left in W
and store result to W

After
Instruction
W2 000A
W5 | 000D
SR 0000

Find the 1st one fromthe left in [W]
and store the result to W
Post -i ncrenment W2
After
Instruction
w2 2002
W5 0000
Data 2000 0000
SR 0001 | (C=1)

DS70000157G-page 258

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

FFlR Find First One from Right

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} FF1R Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wnd € [WO ... W15]
Operation: Max_Shift = 17
Temp = (Ws)
Shift =1

While ((Shift < Max_Shift) && !(Temp & 0x1))
Temp = Temp >> 1

Shift = Shift + 1
If (Shift == Max_Shift)
0 — (Wnd)
Else
Shift — (Wnd)
Status Affected: C
Encoding: ‘ 1100 ‘ 1111 0000 0ddd dppp ‘ SSSS |
Description: Finds the first occurrence of a one starting from the Least Significant bit of Ws and

working towards the Most Significant bit of the word operand. The bit number result is
zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Least Significant bit (allocated number 1) and advances
to the Most Significant bit (allocated number 16). A result of zero indicates a ‘1’ was
not found and the C flag will be set. If a ‘1’ is found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 259

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: FFIR W, V@ ; Find the 1st one fromthe right in W
and store the result to W

Before After
Instruction Instruction
WA1 000A W1 000A
W9 | BBBB w9 0002
SR 0000 SR 0000
Example 2: FFIR [WL++], W ; Find the 1st one fromthe right in [W]

and store the result to W
Post -i ncrement WL

Before After
Instruction Instruction
W1 2000 W1 2002
W9 | BBBB W9 0010
Data 2000 8000 Data 2000 8000
SR 0000 SR | 0000

DS70000157G-page 260 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

FLIM

Force (Signed) Data Range Limit

Implemented in:

Syntax:

Operands:

Operation:

Encoding:

Description:

Words:
Cycles:

PIC24F

PIC24H PIC24E | dsPIC30F | dsPIC33F

dsPIC33E | dsPIC33C

X

{label:}

FLIM Wb, Ws,
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15];
Wb € [WO0, W2, W4, W6, W8, W10, W12, W14];

If (Ws) > (Wb)

Then

(Wb) — (Ws);
0->Z0->N;0->0V;
If (Ws) < (Wb+1)

Then

(Wb+1) > Ws;
0->Z1->N;0->0V;

Else

1-Z;05>N; 0> 0V;

N, Z, OV

1110

0100 owwy w000 | Oppp

| SSSS ‘

Simultaneously compare a 16-bit signed data value in Ws to a maximum signed limit
value held in Wb and a minimum signed limit value held in W(b+1).

If Ws is greater than Wb, set Ws to the limit value held in Wb. The Z, N and OV Status
bits are set such that a subsequent BRA GT instruction will take a branch.

If Ws is less than W(b+1), set Ws to the limit value held in W(b+1). The Z, N and OV
Status bits are set such that a subsequent BRA LT instruction will take a branch.

If Ws is less than or equal to the maximum limit in Wb, and greater than or equal to the
minimum limit in W(b+1), Ws is not modified (i.e., data is within range and limits are not
applied). The Z Status bit is set such that a subsequent BRA Z instruction will take a

branch.

The OV Status bit is always cleared by this instruction.

The ‘s’ bits select the address of the source (data value) register.
The ‘w’ bits select the address of the base (data limit) register.
The ‘p’ bits select the source addressing mode.

Note 1:

Although the instruction assumes signed values for all operands, both upper

and lower limit values may be of the same sign.

The Status bits are set based upon the value loaded into Wnd.

If the operand is greater than the maximum limit value in Wb, the CPU wiill
write back the Wb value, regardless of whether the operand is less than the

minimum value held in W(b+1) or not.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 261

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

FLIM.V

Force (Signed) Data Range Limit with Limit Excess Result

Implemented in:

Syntax:

Operands:

Operation:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E | dsPIC33C

X

{label:} FLIM.V Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15];
Wb < [WO, W2, W4, W6, W8, W10, W12, W14];
Wnd e [WO ... W15]

If (Ws) > (Wb)

Then
(0x0001 — Wnd OR (Ws-Wb) — Wnd;
(Wb) — (Ws);
0->Z0-5N;0->0V;)

If (Ws) < (Wb+1)

Then
(OXFFFF — Wnd OR (Ws—W(b+1)) — Wnd;
W(b+1) > Ws;
0-52Z1->N;0->0V)

Else
(0 »> Wnd;
1-52Z;,0-5>N;0->0V;)

N, Z, OV

1110 | 0101 | XV | wddd | dppp | SSSS |

Simultaneously compare a 16-bit signed data value in Ws to a maximum signed limit value held in Wb
and a minimum signed limit value held in W(b+1). Write the limit excess value into Wnd.

If Ws is greater than Wb, either write the (signed) value by which the limit is exceeded to Wnd (FLI M V,
where instruction bit x = 1) or set Wnd to +1 (FLI M where instruction bit x = 0). In both cases, set Ws to
the limit value held in Wb. Whenever Ws is greater than Wb, Wnd will always be a positive value. The Z,
N and OV Status bits are set such that a subsequent BRA GT instruction will take a branch.

If Ws is less than W(b+1), either write the (signed) value by which the limit is exceeded to Wnd (FLI M V,
where instruction bit x = 1) or set Wnd to -1 (FLI M where instruction bit x = 0). In both cases, set Ws to
the limit value held in W(b+1). Whenever Ws is less than W(b+1), Wnd will always be a negative value.
The Z, N and OV Status bits are set such that a subsequent BRA LT instruction will take a branch.

If Ws is less than or equal to the maximum limit in Wb, and greater than or equal to the minimum limit in
W(b+1), Ws is not modified (i.e., data is within range and limits are not applied). Wnd is cleared and the Z
Status bit is set such that a subsequent BRA Z instruction will take a branch.

The OV Status bit is always cleared by this instruction.
The ‘s’ bits select the address of the source (data value) register.
The ‘W’ bits select the address of the base (data limit) register.
The ‘d’ bits select the address of the destination (limit test result) register.
The ‘p’ bits select the source addressing mode.
The ‘X’ bit defines the presence and result format for Wnd.
Note 1: Although the instruction assumes signed values for all operands, both upper and lower
limit values may be of the same sign.
2. The Status bits are set based upon the value loaded into Wnd.
3: If the operand is greater than the maximum limit value in Wb, the CPU will write back the

Wb value, regardless of whether the operand is less than the minimum value held in
W(b+1) or not.

DS70000157G-page 262 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

GOTO Unconditional Jump

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} GOTO Expr
Operands: Expr may be label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where 1it23 < [0 ... 8388606].
Operation: lit23 » PC
NOP — Instruction Register
Status Affected: None
Encoding: 1stword| 0000 0100 nnnn nnnn nnnn nnno
2nd word| 0000 0000 0000 0000 onnn nnnn
Description: Unconditional jump to anywhere within the 4M instruction word program memory range.

The PC is loaded with the 23-bit literal specified in the instruction. Since the PC must
always reside on an even address boundary, lit23<0> is ignored.

The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the 1it23 to be used.
Words:

Cycles: 2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
4 (PIC24E, dsPIC33E, dsPIC33C)

Example 1: 026000 GOTO _THERE : Junp to _THERE
026004 MoV W, W
027544 _THERE: ND\/ #0x400, W ; Code execution
027846 ; resunes here
Before After
Instruction Instruction
PC 02 6000 PC 02 7844
SR 0000 SR 0000
Example 2: 000100 _code: ... ; start of code
026600 GOTO _code+2 ; Junp to _code+2
026004 ..
Before After
Instruction Instruction
PC 02 6000 PC 00 0102
SR 0000 SR 0000

O _
D >
0w nm

—+
=2
oo
55
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 263

16-Bit MCU and DSC Programmer’s Reference Manual

GOTO

Unconditional Indirect Jump

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} GOTO Wn
Operands: Wn e [WO ... W15]
Operation: 0 —» PC<22:16>
(Wn<15:1>) —» PC<15:1>
0 —» PC<0>
NOP — Instruction Register
Status Affected: None
Encoding: | 0000 ‘ 0001 0100 0000 0000 | ssss |
Description: Unconditional indirect jump within the first 32K words of program memory. Zero is
loaded into PC<22:16> and the value specified in (Wn) is loaded into PC<15:1>.
Since the PC must always reside on an even address boundary, Wn<0> is ignored.
The ‘s’ bits select the source register.
Words: 1
Cycles: 2
Example 1: 006000 GOTO W ; Junp unconditionally
006002 MoV w, W ; to 16-bit value in W

007844 _THERE: MOV

#0x400, W2 Code execution
007846 resunmes here
Before After
Instruction Instruction
w4 7844 w4 7844
PC 00 6000 PC 00 7844
SR 0000 SR 0000

DS70000157G-page 264 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

GOTO Unconditional Indirect Jump

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X
Syntax: {label:} GOTO Wn
Operands: Wn € [WO ... W15]
Operation: 0 —» PC<22:16>
(Wn<15:1>) » PC<15:1>
0 —» PC<0>
NOP — Instruction Register
Status Affected: None
Encoding: 0000 0001 0000 0100 0000 | SSSS |
Description: Unconditional indirect jump within the first 32K words of program memory. Zero is

loaded into PC<22:16> and the value specified in (Wn) is loaded into PC<15:1>. Since
the PC must always reside on an even address boundary, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1
Cycles: 4
Example 1: 006000 GOTO W ; Junp unconditionally
006002 MoV W, WL ; to 16-bit value in W
007544 _THERE: NDJ #0x400, W2 ; Code execution
007846 ; resunes here
Before After
Instruction Instruction
w4 7844 w4 7844
PC 00 6000 PC 00 7844
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 265

16-Bit MCU and DSC Programmer’s Reference Manual

GOTO.L

Unconditional Indirect Jump Long

Implemented in:

Syntax:
Operands:
Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X

Example 1:

{label:} GOTO.L Wn
Wn e [W0, W2, W4, W6, W8, W10, W12]
PC<23> — PC<23> (see text); (Wn+1)<6:0> —» PC<22:16>; (Wn) - PC<15:0>
None

0000 0001 w100 0000
Unconditional indirect jump to any user program memory address.

The Least Significant 7 bits of (Wn+1) are loaded in PC<22:16> and the 16-bit value
(Wn) is loaded into PC<15:0>.

PC<23> is not modified by this instruction.
The contents of (Wn+1)<15:7> are ignored.
The value of Wn<0> is also ignored and PC<0> is always set to ‘0’.

1w SSSS

GOTOis a two-cycle instruction.

The ‘s’ bits select the address of the Wn source register.
The ‘w’ bits specify the address of the Wn+1 source register.

1

4
026000 GoroL w ; Call _FIR subroutine
026004 MoV W, W
026844 FIR MoV #0x400, W2 ; _FIR subroutine start
026846 L

Before After
Instruction Instruction
PC 02 6000 PC 02 6844
w4 6844 w4 6844
w5 0002 w5 0002
W15 A268 W15 A26C

Data A268 FFFF Data A268 6004

Data A26A FFFF Data A26A 0002
SR 0000 SR 0000

DS70000157G-page 266

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

|NC Increment f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} INC{.B} f {{\WREG}

Operands: fe[0..8191]

Operation: (f) + 1 — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: 1110 1100 0BDf fEff HEE | fErf |

Description: Add one to the contents of the file register and place the result in the destination

register. The optional WREG operand determines the destination register. If WREG is

specified, the result is stored in WREG. If WREG is not specified, the result is stored

in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.

Words: 1
Cycles: 1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC. B 0x1000 ; Increment 0x1000 (Byte node)
Before After
Instruction Instruction
Data 1000 8FFF Data 1000 8F00
SR 0000 SR 0101 | (DC,C=1)
Example 2: I NC 0x1000, WREG ; Increnent 0x1000 and store to WREG
(Word node)
Before After
Instruction Instruction
WREG | ABCD WREG 9000
Data 1000 | 8FFF Data 1000 8FFF
SR | 0000 SR 0108 | (DC,N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 267

16-Bit MCU and DSC Programmer’s Reference Manual

|NC Increment Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} INC{.B} Ws, Wd

[Ws], [wd]

[Ws++], [Wd++]

[Ws-], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]
Operands: Ws e [WO ... W15]

Wd e [WO ... W15]

Operation: (Ws)+1 —>Wd
Status Affected: DC,N,QV, z,C
Encoding: | 1110 | 1000 ‘ 0Bqq ‘ gddd | dppp ‘ SSSsS |
Description: Add one to the contents of the source register Ws and place the result in the destination

register Wd. Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC.B W, [++W2] . Pre-increment W2
Increment WL and store to W2
(Byt e node)
Before After
Instruction Instruction
WA1 FF7F W1 FF7F
w2 2000 w2 2001
Data 2000 | ABCD Data 2000 | 80CD
SR 0000 SR 010C | (DC, N, OV =1)
Example 2: I NC W, W ; Increnment WL and store to W2
(Word node)
Before After
Instruction Instruction
WA1 FF7F W1 FF7F
w2 2000 w2 FF80
SR 0000 SR 0108 | (DC,N=1)

DS70000157G-page 268 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

| NC2 Increment f by 2

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X X X X X

Syntax: {label:} INC2{.B} f {WREG}

Operands: fel0..8191]

Operation: (f) + 2 — destination designated by D

Status Affected: DC,N,0V, Z, C

Encoding: 1110 1100 1BDf fEff FEE | fHEE |

Description: Add two to the contents of the file register and place the result in the destination register.

The optional WREG operand determines the destination register. If WREG is specified, the
result is stored in WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

Words: 1
Cycles: 1M

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC2. B 0x1000 ; Increment 0x1000 by 2
(Byte node)
Before After
Instruction Instruction
Data 1000 | 8FFF Data 1000 8F01
SR 0000 SR 0101 | (DC,C=1)
Example 2: I NC2 0x1000, WREG ; Increnent 0x1000 by 2 and store to WREG
(Word node)
Before After
Instruction Instruction
WREG | ABCD WREG 9001
Data 1000 | 8FFF Data 1000 | 8FFF
SR 0000 SR 0108 | (DC, N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 269

16-Bit MCU and DSC Programmer’s Reference Manual

INC2

Increment Ws by 2

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label:} INC2{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [(Wd-]
[++Ws], [++Wd]
[--Ws], [-Wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

(Ws) + 2 > Wd
DC,N,QV, Z C
| 1110 | 1000 | 1Bqq ‘ gddd | dppp ‘ SSSS |

Add two to the contents of the source register Ws and place the result in the destination
register Wd. Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC2.B W, [++W2] . Pre-increnent W2
; Increnent by 2 and store to W
(Byt e npde)
Before After
Instruction Instruction
WA1 FF7F w1 FF7F
w2 2000 w2 2001
Data 2000 | ABCD Data 2000 | 81CD
SR 0000 SR| 010C | (DC,N,0V=1)
Example 2: I NC2 W, w Increnent WL by 2 and store to W2
(word node)
Before After
Instruction Instruction
W1 FF7F W1 FF7F
w2 2000 W2 FF81
SR 0000 SR 0108 | (DC,N=1)

DS70000157G-page 270

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

|OR Inclusive OR f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} IOR{.B} f {WREG}

Operands: fe[0..8191]

Operation: (f).IOR.(WREG) — destination designated by D

Status Affected: N, Z

Encoding: 1011 0111 0BDf frff IR

Description: Compute the logical inclusive OR operation of the contents of the Working register

WREG and the contents of the file register, and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2. The WREG is set to Working register WO.
Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: IOR B 0x1000 : 10R WREG to (0x1000) (Byte node)
(Byt e npde)
Before After
Instruction Instruction
WREG 1234 WREG 1234
Data 1000 FFOO Data 1000 FF34
SR 0000 SR 0000
Examgle 2: I OR 0x1000, WREG ; 1OR (0x1000) to WREG
(Word node)
Before After
Instruction Instruction
WREG 1234 WREG 1FBF
Data 1000 | OFAB Data 1000 | OFAB

SR| 0008 |(N=1) SR | 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 271

16-Bit MCU and DSC Programmer’s Reference Manual

IOR

Inclusive OR Literal and Wn

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X

{label} IOR{B} #lit10, Whn

lit10 < [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

lit10.10R.(Wn) —> Wn
N, Z
| 1011 | 0011 0BKk kkkKk kkkk \ dddd \

Compute the logical inclusive OR operation of the 10-bit literal operand and the
contents of the Working register Wn, and place the result back into the Working
register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1. The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for information
on using 10-bit literal operands in Byte mode.

Example 1: | OR. B #O0xAA, W ;. 1OR OXxAA to WO
(Byte node)
Before After
Instruction Instruction
W9 1234 w9 12BE
SR 0000 SR 0008 | (N=1)
Example 2: I OR #Ox2AA, W ; TOR Ox2AA to W
(Word node)
Before After
Instruction Instruction
W4 | A34D W4 | A3EF
SR 0000 SR 0008 | (N=1)

DS70000157G-page 272

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

|OR Inclusive OR Wb and Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} IOR{.B} Wb, #it5, Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb).IOR.Iit5 —> Wd
Status Affected: N, Z
Encoding: 0111 Owww WBqq qddd diik | Kkkkk |
Description: Compute the logical inclusive OR operation of the contents of the base register Wb

and the 5-bit literal operand, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1
Example 1: IOR B WL, #0x5, [V@++] ; TORWL and 0x5 (Byte node)
Store to [W8]
Post -i ncrement W9
Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
W9 2000 W9 2001
Data 2000 0000 Data 2000 | O0OAF
SR 0000 SR 0008 | (N=1)
Example 2: ICGR W, #0x0, W@ . IORW with 0x0 (Wrd node)
; Store to W
Before After o
Instruction Instruction @ =)
w1 [0000 w1 [0000 o=
W9 | A34D W9 | 0000 55
SR| 0000 SR| 0002|(z=1) 5 =
a -

© 2005-2018 Microchip Technology Inc. DS70000157G-page 273

16-Bit MCU and DSC Programmer’s Reference Manual

IOR

Inclusive OR Wb and Ws

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X X X X
{label:} IOR{.B} Wb, Ws, wd
[Ws], (wd]
[Ws++], [Wd++]
[Ws-], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

(Wb).IOR.(Ws) — Wd
N, Z

0111 Owww wBqq gddd dppp SSSS

Compute the logical inclusive OR operation of the contents of the source register Ws and
the contents of the base register Wb, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

1
1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 274

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: IOR B W, [W++], [W++] ; IOR W and [W] (Byte node)
; Store result to [W]
Post-increnent Wb and W9

Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
W5 2000 w5 2001
W9 2400 W9 2401
Data 2000 1155 Data 2000 1155
Data 2400 0000 Data 2400 OOFF
SR 0000 SR 0008 | (N=1)
Example 2: I OR W, Wb, W ; TORW and W6 (Word node)
Store the result to W
Before After
Instruction Instruction
W1 AAAA W1 AAAA
w5 5555 W5 5555
W9 A34D w9 FFFF
SR 0000 SR 0008 | (N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 275

16-Bit MCU and DSC Programmer’s Reference Manual

LAC

Load Accumulator

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X
{label:} LAC Ws, {#Slit4,} Acc
[Ws],
[Ws++],
[Ws-],
[--Ws],
[++Ws],
[Ws+Whb],
Ws e [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]
Acc e [A,B]
Shiftg)is(Extend(Ws)) — Acc(A or B)
OA, OB, OAB, SA, SB, SAB
1100 1010 A wWrrr rggg | SSSS ‘

Read the contents of the source register. Optionally perform a signed 4-bit shift and store
the result in the specified accumulator. The shift range is -8:7, where a negative operand
indicates an arithmetic left shift and a positive operand indicates an arithmetic right shift.
The data stored in the source register is assumed to be 1.15 fractional data, and is
automatically sign-extended (through bit 39) and zero-backfilled (bits<15:0>) prior to
shifting.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.

The ‘r’ bits encode the accumulator preshift.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits specify the source register Ws.

Note: If the operation moves more than sign-extension data into the Accumulator Upper
register (ACCxU), or causes a saturation, the appropriate overflow and saturation
bits will be set.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 276

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: LAC [Wi++], #-3, B ; Load ACCB with [WM] << 3
; Contents of [W] do not change
; Post increnent W
; Assune saturation disabl ed

(SATB = 0)
Before After
Instruction Instruction

W4 2000 W4 2002

ACCB | 005125 ABCD ACCB FF 9108 0000

Data 2000 1221 Data 2000 1221
SR 0000 SR 4800 | (OB, OAB =1)

Example 2: LAC [--W2], #7, A ; Pre-decrement W2

Load ACCA with [W] >> 7
; Contents of [W2] do not change
; Assune saturation disabled

(SATA = 0)
Before After
Instruction Instruction

w2 4002 w2 4000
ACCA | 005125 ABCD ACCA FF FF22 1000
Data 4000 9108 Data 4000 9108
Data 4002 1221 Data 4002 1221
SR 0000 SR 0000

O _
D >
0w nm

—+
=2
oo
55
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 277

16-Bit MCU and DSC Programmer’s Reference Manual

LAC.D

Load Accumulator Double

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F

PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X

{label:}

LAC.D Ws, [, #Slit4], Acc
[Ws],
[Ws++]
[Ws-]
[--Ws],
[++Ws]

Register Direct: Wns [WO, W2, W4, W6, W8, W10, W12, W14];
Register Indirect: Wns € [WO ... W15];
Slit4 € [-8 ... +7] Acc € [A,B]

Shiftg)4(Extend(Ws)) — ACC (A,B)
OA, SAor OB, SB

\ 1101

‘ 1011 ‘ A000 ‘ Orrr rppp SSSS

Read the contents of the source register. Optionally perform a signed 4-bit shift and
store the result in the specified accumulator. The shift range is -8:7, where a negative
operand indicates an arithmetic left shift and a positive operand indicates an arithmetic
right shift. The data stored in the source register is assumed to be 1.31 fractional data,
and is automatically sign-extended (through bit 39) and zero-backfilled (bits<15:0>)
prior to shifting.

The ‘A’ bit specifies the destination accumulator.

The ‘s’ bits specify the source register Wns.

The ‘p’ bits select the source addressing mode.

The ‘r’ bits encode the optional operand Slit4, which determines the amount of the
accumulator preshift; if the operand Slit4 is absent, a ‘0’ is encoded.

See Table 5-7 for modifier addressing information.

Note 1:
2:
3:

1

2(1)

Unlike the LAC instruction, the LAC. D instruction does not support Indirect
with Register Offset Addressing mode.

Positive values of operand Slit4 represent arithmetic shift right. Negative
values of operand Slit4 represent shift left.

The LAC. Dinstruction cannot be executed within a REPEAT loop.

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 278

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

I_ DS I_V Load Slave Processor Program RAM
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X
Syntax: {label:} LDSLV [Wns] [Wnd++] #lit2
[Wns++]

Operands: Wns e [WO ... W15];

Wnd e [WO ... W15];

lit2 € [0 ... 3]
Operation: Master (EAs) — Slave EAd
Status Affected: None
Encoding: | oooo | o011 O0kk | o0ddd | dopl | ssss |
Description: This instruction moves a single instruction word from the target Slave PRAM image

(held in the Master program space Flash) into the Slave PRAM. The source address
must be located within PSV address space (i.e., DSRPAG > 0x200). The destination
address uses DSWPAG and the destination EA to create a 24-bit Slave PS PRAM write
address.

Starting with an aligned double instruction word destination address (see note), move
the contents of the source Effective Address (in Master program space) to the
destination Effective Address (in the Slave PRAM address space).

If the (single instruction word) destination address is even, capture the data in the Slave
PRAM wrapper. If the (single instruction word) destination address is odd, the ECC
parity bits are calculated from the current and captured source data (48-bits), then
stored together with the data into the PRAM double instruction word destination
Effective Address.

The target Slave processor is selected by the value defined by lit2.

The instruction may be regarded as a PSV operation, and hence, may be executed
within a REPEAT loop to accelerate data processing.

The ‘s’ bits select the address of the source register.

The ‘d’ bits select the address of the destination register.

The ‘K’ bits select the target Slave processor.

The ‘p’ bit selects the destination addressing mode (see note).

Note 1: This instruction supports a subset of addressing modes. The Source
Addressing mode bit field is constrained to 2 options and the Destination
Addressing mode bit field is not required.

2: An aligned double instruction word destination address is an even address
that addresses the least significant word of a double instruction word.

3: This instruction only supports Word mode.
Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 279

16-Bit MCU and DSC Programmer’s Reference Manual

LNK

Allocate Stack Frame

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X X

{label} LNK #lit14

lit14 < [0 ... 16382]

(W14) - (TOS)

(W15) + 2 - W15

(W15) —> W14

(W15) + lit14 —> W15

None
1111 1010 00kk kkkk kkkk \ kkkO |

Example 1:

This instruction allocates a stack frame of size lit14 bytes for a subroutine calling
sequence. The stack frame is allocated by PUSHing the contents of the Frame Pointer
(W14) onto the stack, storing the updated Stack Pointer (W15) to the Frame Pointer
and then incrementing the Stack Pointer by the unsigned 14-bit literal operand. This
instruction supports a maximum stack frame of 16382 bytes.

The ‘K’ bits specify the size of the stack frame.

Note: Since the Stack Pointer can only reside on a word boundary, lit14 must be even.

LNK #0xA0 ; Allocate a stack frane of 160 bytes
Before After
Instruction Instruction
w14 2000 w14 2002
W15 2000 W15 20A2
Data 2000 0000 Data 2000 2000
SR 0000 SR 0000

DS70000157G-page 280

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

I_ N K Allocate Stack Frame
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X
Syntax: {label:} LNK #lit14
Operands: lit14 € [0 ... 16382]
Operation: (W14) —» (TOS)
(W15) + 2 > W15
(W15) > W14

1 — SFA Status bit
(W15) +lit14 —» W15

Status Affected: SFA
Encoding: 1111 1010 00kk kkkk kkkk ‘ kkkO ‘
Description: This instruction allocates a stack frame of size lit14 bytes for a subroutine calling

sequence. The stack frame is allocated by PUSHing the contents of the Frame Pointer
(W14) onto the stack, storing the updated Stack Pointer (W15) to the Frame Pointer
and then incrementing the Stack Pointer by the unsigned 14-bit literal operand. This
instruction supports a maximum stack frame of 16382 bytes.

The ‘K’ bits specify the size of the stack frame.
Note: Since the Stack Pointer can only reside on a word boundary, lit14 must be even.
Words: 1

Cycles: 1
Example 1: LNK #0xA0 ; Allocate a stack frane of 160 bytes
Before After
Instruction Instruction
W14 2000 W14 2002
W15 2000 W15 20A2
Data 2000 0000 Data 2000 2000
SR 0000 SR 0000
CORCON 0000 CORCON 0004

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 281

16-Bit MCU and DSC Programmer’s Reference Manual

LSR

Logical Shift Right f

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label} LSR{B} f { WREG}
fel0..8191]

For Byte Operation:
0 — Dest<7>
(f<7:1>) — Dest<6:0>
(f<0>) > C

For Word Operation:
0 — Dest<15>
(f<15:1>) — Dest<14:0>

(f<0>) > C

.

N,Z C

| 1101 | o101 | oBDX 3T ter | frrr |

Shift the contents of the file register one bit to the right and place the result in the desti-
nation register. The Least Significant bit of the file register is shifted into the Carry bit of
the STATUS Register. Zero is shifted into the Most Significant bit of the destination
register.

The optional WREG operand determines the destination register. If WREG is specified,
the result is stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but
it is not required.

2: The WREG is set to Working register WO.
1
1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 282

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: LSR. B 0x600 ; Logically shift right (0x600) by one
(Byte node)
Before After
Instruction Instruction
Data 600 55FF Data 600 557F
SR 0000 SR 0001 | (C=1)
Example 2: LSR 0x600, WREG ; Logically shift right (0x600) by one
Store to WREG
(Word node)
Before After
Instruction Instruction
Data 600 55FF Data 600 55FF
WREG 0000 WREG | 2AFF
SR 0000 SR 0001 | (C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 283

16-Bit MCU and DSC Programmer’s Reference Manual

LSR

Logical Shift Right Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X

{label:} LSR{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

For Byte Operation:
0 —» Wd<7>
(Ws<7:1>) »> Wd<6:0>
(Ws<0>) > C

For Word Operation:
0 —» Wd<15>
(Ws<15:1>) - Wd<14:0>
(Ws<0>) > C

o> |
N,z C

‘ 1101 ‘ 0001 ‘ 0Bqq gddd dppp ‘ SSSS |

Shift the contents of the source register Ws one bit to the right and place the result in
the destination register Wd. The Least Significant bit of Ws is shifted into the Carry bit
of the STATUS Register. Zero is shifted into the Most Significant bit of Wd. Either
Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 284

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1:

Example 2:

LSR B W, W

Before
Instruction
WO FFO3
W1 2378
SR 0000
LSR W, W
Before
Instruction
WO 8000
W1 2378
SR 0000

LSR W (Byte node)

; Store result to W

After
Instruction
WO FFO3
W1 2301

SR| 0001](C=1)

LSR W (Word node)

; Store the result to W

After
Instruction
WO 8000
W1 4000
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 285

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

LSR

Logical Shift Right by Short Literal

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
{label} LSR Wb, #iitd. Wnd
Wb e [WO ... W15]
lit4 e [0 ... 15]
Wnd e [WO ... W15]
lit4<3:0> —> Shift_Val
0 — Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> —> Wnd<15-Shift_Val:0>
N, Z
\ 1101 | 1110 oww wddd d100 | kkkk \

Logical shift right the contents of the source register Wb by the 4-bit unsigned literal
and store the result in the destination register Wnd. Direct Addressing must be used
for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘K’ bits provide the literal operand.

Note:

Example 1: LSR

Example 2: LSR

This instruction operates in Word mode only.

W, #14, Wb LSR W by 14
Store result to W
Before After
Instruction Instruction
w4 C800 W4 | C800
W5 1200 w5 0003
SR 0000 SR 0000
W, #1, W LSR W by 1
Store result to W
Before After
Instruction Instruction
w4 0505 w4 0505
W5 FO00 w5 0282
SR 0000 SR 0000

DS70000157G-page 286

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

LSR Logical Shift Right by Wns

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} LSR Wb, Whns, Wnd

Operands: Wb e [WO ... W15]

Whns e [WO ...W15]
Wnd e [WO ... W15]

Operation: Wns<4:0> — Shift_Val

0 —» Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> - Wnd<15 — Shift_Val:0>

Status Affected: N, Z
Encoding: | 1101 | 1110 Oowww wddd dooo | SSSS ‘
Description: Logical shift right the contents of the source register Wb by the 5 Least Significant

bits of Wns (only up to 15 positions) and store the result in the destination register
Whnd. Direct Addressing must be used for Wb and Wnd.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.
Note 1. This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1
Cycles: 1
Examgle 1: LSR W, W, w ; LSRW) by W
Store result to W
Before After
Instruction Instruction
W0 | Co00C W0 | Co00C
WA1 0001 W1 0001
w2 2390 w2 6006
SR 0000 SR 0000
Examgle 2: LSR W5, Wi, W3 ; LSR Wb by WM
; Store result to W8
Before After
Instruction Instruction
W3 DD43 W3 0000
W4 000C w4 000C
W5 0800 w5 0800
SR 0000 SR 0002 | (Z2=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 287

16-Bit MCU and DSC Programmer’s Reference Manual

MAC

Multiply and Accumulate

Implemented in:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X
Syntax: {label:} MAC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {, AWB}
{,[wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

{.IWx] = = kx, Wxd} {.IWy] = = ky, Wyd}
{,[W9 + W12], Wxd} {[W11 +W12], Wyd}

Wm * Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc € [AB]

Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd e [W4 ... W7]

Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]

AWB e [W13, [W13] + = 2]

(Acc(A or B)) + (Wm) * (Wn) — Acc(A or B)

(IWx]) - Wxd; (Wx) + kx — Wx

(IWy]) — Wyd; (Wy) + ky - Wy

(Acc(B or A)) rounded - AWB

OA, OB, OAB, SA, SB, SAB

1100 ormm AOXX yyii iijj | jjaa |

Multiply the contents of two Working registers. Optionally prefetch operands in preparation
for another MAC type instruction and optionally store the unspecified accumulator results.
The 32-bit result of the signed multiply is sign-extended to 40 bits and added to the
specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.14.1 “MAC
Prefetches”. Operand AWB specifies the optional store of the “other” accumulator, as
described in Section 4.15.4 “MAC Write-Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The i’ bits select the Wx prefetch operation.

The j bits select the Wy prefetch operation.

The ‘@’ bits select the accumulator Write-Back destination.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.
2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12> in
dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or
mixed-sign. Only dsPIC33E/dsPIC33C devices support mixed-sign
multiplication.

DS70000157G-page 288

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

sat uration)

Example 1: MAC WA*WB, A, [WB]+=6, WA, [WI0]+=2, Wb
; Multiply WA*Wo and add to ACCA
Fetch [W8] to W4, Post-increnent WB by 6
Fetch [WL0] to Wb, Post-increment WLO by 2
CORCON = 0x00C0 (fractional multiply, normal
Before After
Instruction Instruction
w4 A022 w4 2567
W5 B900 W5 909C
w8 0AO00 w8 0A06
W10 1800 W10 1802
ACCA 00 1200 0000 ACCA 00 472D 2400
Data 0AOO 2567 Data 0AOO 2567
Data 1800 909C Data 1800 909C
CORCON 00CO CORCON 00CO
SR 0000 SR 0000
Example 2: MAC Wi*\WB, A [WB]-=2, W, [WO0]+=2, W6, W3
; Multiply WA*Ws and add to ACCA
Fetch [W8] to WA, Post-decrement W8 by 2
; Fetch [WL0] to W, Post-increment WLO by 2
; Wite Back ACCB to W3
CORCON = 0x00D0 (fractional multiply, super saturation)
Before After
Instruction Instruction
w4 1000 W4 5BBE
W5 3000 W5 C967
w8 0AO00 w8 09FE
w10 1800 w10 1802
W13 2000 W13 0001
ACCA 23 5000 2000 ACCA 23 5600 2000
ACCB 00 0000 8F4C ACCB 00 0000 1F4C
Data 0AO0 5BBE Data 0A00 5BBE
Data 1800 C967 Data 1800 C967
CORCON 00DO0 CORCON 00DO
SR 0000 SR 8800

(OA, OAB = 1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 289

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

MAC

Square and Accumulate

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X
{label:} MAC Wm * Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}
{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}
{,[Wx] — = kx, Wxd} {,[Wy] — = ky, Wyd}
{,[W9 + W12], Wxd} {[W11 + W12], Wyd}
Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]

Acc < [A,B]
Wx e [W8, WOJ; kx [-6, -4, -2, 2, 4, 6]; Wxd € [WA4 ... W7]
Wy e [W10, W11]; ky < [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]

(Acc(A or B)) + (Wm) * (Wm) — Acc(A or B)
(IWx]) —» Wxd; (Wx) + kx —> Wx
(IWy]) — Wyd; (Wy) + ky > Wy

OA, OB, OAB, SA, SB, SAB

1111 00nMm AOxXXx yyii iij]j jjoo

Square the contents of a Working register. Optionally prefetch operands in preparation for
another MAC type instruction. The 32-bit result of the signed multiply is sign-extended to
40 bits and added to the specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.14.1 “MAC
Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The ‘i’ bits select the Wx prefetch operation.

The bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.
2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12>
in dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or
mixed-sign. Only dsPIC33E/dsPIC33C devices support mixed-sign
multiplication.

DS70000157G-page 290

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: MAC WI*WA, B, [VO+WL2], W, [WLO0]-=2, Wb
; Square Wi and add to ACCB
; Fetch [W+WL2] to W
Fetch [WL0] to W, Post-decrenment WO by 2
CORCON = 0x00C0 (fractional multiply, normal saturation)

Before After

Instruction Instruction
w4 A022 w4 A230
W5 B200 W5 650B
W9 0C00 W9 0C00
w10 1900 W10 18FE
W12 0020 w12 0020
ACCB 00 2000 0000 ACCB 00 67CD 0908
Data 0C20 A230 Data 0C20 A230
Data 1900 650B Data 1900 650B
CORCON 00CO CORCON 00CO
SR 0000 SR 0000

Example 2: MAC W*wWr, A [W1]-=2, W
Square W and add to ACCA
Fetch [WL1] to W/, Post-decrement WL1 by 2
CORCON = 0x00D0 (fractional multiply, super saturation)

Before After
Instruction Instruction

w7 76AE w7 23FF

W11 2000 W11 1FFE

ACCA FE 9834 4500 ACCA FF 063E 0188

Data 2000 23FF Data 2000 23FF

CORCON 00DO0 CORCON 00DO0
SR 0000 SR 8800 |(OA, OAB =1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 291

16-Bit MCU and DSC Programmer’s Reference Manual

MAX

Accumulator Force Maximum Data Range Limit

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X
{label:} MAX Acc
Acc € [A,B]
If (MAX A) Then
If ACCA—-ACCB >0 Then
(ACCB — ACCA;
0->Z,0>N;0->0V;)
Else

(1>Z;05>N;0->0V;)
If (MAX B) Then
If ACCB — ACCA >0 Then
(ACCA — ACCB;
0->Z,0>N;0->0V;)
Else
(1>Z;,0->N;0->0V;)

N, OV, Z

1100 1110 AOOX x000 0000 0000

The target accumulator (defined in the instruction) is clamped to the maximum limit value
previously loaded into the other accumulator (sign-extended 32-bit value). The comparison
examines the full 40-bit value of the target accumulator, and will therefore, clamp an
overflowed accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. The Z and N Status bits are set such that a sub-
sequent BRA GT instruction will take a branch. In addition, Z is set such that a subsequent
M Ninstruction will execute as a NOP if the limit is exceeded. If the limit is not exceeded
(Z =1), the M Ninstruction will execute as normal.

If the target accumulator is not greater than the limit accumulator, the target accumulator is
unaffected. The Z Status bit is set such that a subsequent BRA Z instruction will take a
branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘X’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute
SFTAC <AccX>, #0 after MAX operation to update DSP status to reflect
contents of AccX.

DS70000157G-page 292

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAXV Accumulator Force Maximum Data Range Limit with Limit Excess Result
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X
Syntax: {label:} MAX.V Acc Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
A € [AB]
Operation: If (MAX A) Then

If ACCA - ACCB >0 Then
(0x0001 — Wd or ACCA — ACCB — Wd (see text);
ACCB — ACCA;
0->Z;0->N;0->0V;)

Else
(0 - Wa;
1-5Z;0-5N;0-50V)

If (MAX B) Then

If ACCB — ACCA >0 Then
(0x0001 — Wd or ACCB — ACCA — Wd (see text);
ACCA — ACCB;
1-5Z;0-5N;0->0V)

Else
(0 > Wa;
1-5Z;0-5N;0->0V)

Status Affected: N, OV, Z
Encoding: | 1100 | 1120 | Aoox | x000 | o0qqq dddd

Description: The target accumulator (defined in the instruction) is clamped to the maximum limit value
previously loaded into the other accumulator. The comparison examines the full 40-bit
value of the target accumulator, and will therefore, clamp an overflowed accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. For MAX (instruction bit field xx = 2’ b10), set Wd
to +1. For MAX. V (instruction bit field xx = 2’ b11), write the (signed) value by which the limit
is exceeded to Wd. This is sourced from the Least Significant 16 bits of the 40-bit result. If the
limit is exceeded by a value greater than that which can be represented by a signed 16-bit
number, saturate the Wd write to the maximum positive value (i.e., set Wd to Ox7FFF).

The Z and N Status bits are set such that a subsequent BRA GT instruction will take a
branch if the limit is exceeded. In addition, Z is set such that a subsequent M N{ . V}
instruction will execute as a NOP if the limit is exceeded. If the limit is not exceeded (Z = 1),
the M N{. V} instruction will execute as normal.

If the target accumulator is not greater than the limit accumulator, the target accumulator is
unaffected and Wd is cleared. The Z Status bit is set such that a subsequent BRA Z
instruction will take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘d’ bits select the address of the destination register.
The ‘q’ bits select the destination addressing mode.

The ‘X’ bits define the presence and result format for Wd. o_

Note: OAand SA or OB and SB Status bits are not modified by this instruction. Execute 8 a

SFTAC <AccX>, #0 after MAX. V operation to update DSP status to reflect o=

contents of AccX. —

29

Words: 1 o5
Cycles: 1 3 -

© 2005-2018 Microchip Technology Inc. DS70000157G-page 293

16-Bit MCU and DSC Programmer’s Reference Manual

MIN

Accumulator Force Minimum Data Range Limit (Unconditional Execution)

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X

{label:} MIN Acc
A € [A,B]
If (MIN A) Then
If ACCA—-ACCB <0 Then
(ACCB — ACCA;
0->Z;1->N;0->0V;)
Else
(1>Z;0>N;0->0V;)
If (MIN B) Then
If ACCB — ACCA <0 Then

(ACCA — ACCB;
0->Z;1->N;0->0V;)
Else
(1>Z;0->N;0->0V;)
N, QV, Z
1100 1110 A01x x000 0000 0000

The target accumulator (defined in the instruction) is clamped to the minimum limit value
previously loaded into the other accumulator. The comparison examines the full 40-bit
value of the target accumulator, and will therefore, clamp an overflowed accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. The Z and N Status bits are set such that a
subsequent BRA LT instruction will take a branch.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected. The Z Status bit is set (Z = 1) such that a subsequent BRA Z instruction will
take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The X’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute
SFTAC <AccX>, #0 after M N execution to update DSP status to reflect
contents of AccX.

DS70000157G-page 294

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M I N V Accumulator Force Minimum Dgtg Range Lim.it with Limit Excess Result
. (Unconditional Execution)
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X
Syntax: {label:} MIN.V Acc Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
A € [AB]
Operation: If (MIN A) Then

If ACCA - ACCB <0 Then
(OXFFFF — Wd or ACCA — ACCB — Wd (see text);
ACCB — ACCA;
0->Z;1—>N;0->0V;)

Else
(0 - Waq;
1-5Z;0-5N;0->0V)

If (MIN B) Then

If ACCB — ACCA <0 Then
(OXFFFF — Wd or ACCB — ACCA — Wd (see text);
ACCA — ACCB;
0->Z;1->N;0->0V;)

Else
(0 > Wa;
152Z;05N;0->0V)

Status Affected: N, QV, Z
Encoding: | 1100 | 1110 | Aoix | x000 | o0qqq dddd

Description: The target accumulator (defined in the instruction) is clamped to the minimum limit value
previously loaded into the other accumulator. The comparison examines the full 40-bit
value of the target accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. For M N (instruction bit field xx = 2’ b10), set Wd
to -1. For M N. V (instruction bit field xx = 2’ b11), write the (signed) value by which the limit
is exceeded to Wd. This is sourced from the Least Significant 16 bits of the 40-bit result. If the
limit is exceeded by a value greater than that which can be represented by a signed 16-bit
number, saturate the Wd write to the maximum negative value (i.e., set Wd to 0x8000).

The Z and N Status bits are set such that a subsequent BRA LT instruction will take a
branch if the limit is exceeded.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected and Wd is cleared. The Z Status bit is set such that a subsequent BRA Z
instruction will take a branch.

The OV Status bit is always cleared by this instruction.
The ‘A’ bit specifies the destination accumulator.

The ‘d’ bits select the address of the destination register.
The ‘q’ bits select the destination addressing mode.

The X’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute (_? =
SFTAC <AccX>, #0 after M N. V execution to update DSP status to reflect 0w o
contents of AccX. o
Words: 1 55
= =
Cycles: 1 oo
55
n

© 2005-2018 Microchip Technology Inc. DS70000157G-page 295

16-Bit MCU and DSC Programmer’s Reference Manual

MINZ

Accumulator Force Minimum Data Range Limit (Conditional Execution)

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X

{label:} MINZ Acc
Acc € [A,B]
If (Z = 0) execute as NOP
Else
If (MINZ A) Then
If ACCA—-ACCB <0 Then
ACCB — ACCA;
0->Z;1->N;0->0V;)
Else
1-5Z;0-5N;0-50V)
If (MINZ B) Then
If ACCB — ACCA <0 Then

ACCA — ACCB;
0->Z;1->N;0->0V;)
Else
(0 »> Wd;
1-52Z;0-5N;0->0V))
N, OV, Z
1100 1110 AO01x x100 0000 0000

If M NZ is executed when Z = 1 (see note), the target accumulator (defined in the
instruction) is clamped to the minimum limit value previously loaded into the other
accumulator. If M NZ is executed when Z = 0, the instruction is skipped (executed as a
NOP).

The comparison examines the full 40-bit value of the target accumulator, and will therefore,
clamp an overflowed accumulator.

If the target accumulator is less than the limit accumulator, load the target accumulator with
the contents of the limit accumulator. The Z and N Status bits are set such that a
subsequent BRA LT instruction will take a branch.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected. The Z Status bit is set (Z = 1) such that a subsequent BRA Z instruction will
take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.

The X’ bits define the presence and result format for Wd.

Note 1. Execution of the accumulator maximum clamp instruction (MAX) is expected to
be immediately followed by execution of the conditionally executed accumulator
minimum clamp instruction (M NZ). If MAX resulted in a clamp condition (Z = 0),
M NZ will be skipped. Use the unconditionally executed M N instruction if it is
required to be executed in isolation.

2: OA and SA or OB and SB Status bits are not modified by this instruction.

Execute SFTAC <AccX>, #0 after M NZ execution to update DSP status to
reflect the contents of AccX.

DS70000157G-page 296

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M I NZV Accumulator Force Minimum I?a_ua Range Limit with Limit Excess Result
(Conditional Execution)
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X
Syntax: {label:} MINZ.V Acc Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
A € [AB]
Operation: If (Z = 0) execute as a NOP
Else

If (MINZ A) Then
If ACCA — ACCB <0 Then
(OXFFFF — Wd or ACCA — ACCB — Wd (see text);
ACCB — ACCA;
0->2Z;1->N;0->0V;)
Else
(0 » Wd;
1-5Z;0-5N;0-50V)
If (MINZ B) Then
If ACCB — ACCA <0 Then
(OXFFFF — Wd or ACCB — ACCA — Wd (see text);
ACCA — ACCB;
0-527Z1->N;0->0V)
Else
(0 > Wa;
1-5Z;05N;0->0V)

Status Affected: N, OV, Z
Encoding: | 1100 | 1110 ‘ A01x x100 0qqq dddd

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 297

16-Bit MCU and DSC Programmer’s Reference Manual

MINZ.V

Accumulator Force Minimum Data Range Limit with Limit Excess Result
(Conditional Execution)

Description:

Words:
Cycles:

If M NZ is executed when Z = 1 (see note), the target accumulator (defined in the instruc-
tion) is clamped to the minimum limit value previously loaded into the other accumulator. If
M NZ is executed when Z = 0, the instruction is skipped (executed as a NOP).

The comparison examines the full 40-bit value of the target accumulator, and will therefore,
clamp an overflowed accumulator.

If the target accumulator is less than the limit accumulator, load the target accumulator with
the contents of the limit accumulator. For M NZ (instruction bit field xx = 2’ b10), set Wd
to-1. For M NZ. V (instruction bit field xx = 2" b11), write the (signed) value by which the limit
is exceeded to Wd. This is sourced from the Least Significant 16 bits of the 40-bit result. If the
limit is exceeded by a value greater than that which can be represented by a signed 16-bit
number, saturate the Wd write to the maximum negative value (i.e., set Wd to 0x8000).

The Z and N Status bits are set such that a subsequent BRA LT instruction will take a
branch if the limit is exceeded.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected and Wd is cleared. The Z Status bit is set such that a subsequent BRA Z
instruction will take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.

The ‘d’ bits select the address of the destination register.
The ‘q’ bits select the destination addressing mode.

The ‘X’ bits define the presence and result format for Wd.

Note 1. Execution of the M NZ. Vinstruction is intended to immediately follow execution
of a MAX instruction. If MAX resulted in a clamp condition (Z = 0), the M NZ. V
instruction will be skipped.

2: OA and SA or OB and SB Status bits are not modified by this instruction.
Execute SFTAC <AccX>, #0 after M NZ. V execution to update DSP status to
reflect the contents of AccX.

DS70000157G-page 298

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV

Move f to Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} Mov{B} f {,\WREG}

Operands: fe[0..8191]

Operation: (f) —> destination designated by D

Status Affected: N, Z

Encoding: 1011 1111 1BDf fiff fiff fiff

Description: Move the contents of the specified file register to the destination register. The optional

WREG operand determines the destination register. If WREG is specified, the result is

stored in WREG. If WREG is not specified, the result is stored back to the file register and

the only effect is to modify the STATUS Register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The f’ bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a word
operation. You may use a . Wextension to denote a word operation, but it is not
required.

2: The WREG is set to Working register WO.
3: When moving word data from file register memory, the “MOV f to Whd”
(page 301) instruction allows any Working register (W0:W15) to be the
destination register.
Words: 1
Cycles: 1@
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: MOV. B TMRO, WREG nmove (TMRO) to WREG (Byte node)
Before After
Instruction Instruction
WREG (WO0)| 9080 WREG (W0)| 9055
TMRO| 2355 TMRO| 2355
SR| 0000 SR| 0000
Example 2: MoV 0x800 update SR based on (0x800) (Word node)
Before After
Instruction Instruction
Data 0800| B29F Data 0800| B29F
SR| 0000 SR| 0008 [(N=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 299

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

MOV

Move WREG to f

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label:} MOV{.B} WREG, f
fel0..8191]
(WREG) — f
None
1011 0111 1B1f ffff ffff ffff

Move the contents of the default Working register WREG into the specified file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte move rather than a word
move. You may use a . Wextension to denote a word move, but it is not
required.

2: The WREG is set to Working register WO.

3: When moving word data from the Working register array to file register
memory, the “MOV Whs t o f” (page 302) instruction allows any Working
register (W0:W15) to be the source register.

Example 1: MOV. B WREG, 0x801 ; nove WREG to 0x801 (Byte node)
Before After
Instruction Instruction
WREG (WO0) 98F3 WREG (WO0) 98F3
Data 0800 4509 Data 0800 F309
SR 0000 SR 0008 | (N=1)
Examgle 2: MoV WREG, DI SI CNT ; move WREG t o DI SI CNT
Before After
Instruction Instruction
WREG (W0) 00A0 WREG (WO0) 00A0
DISICNT 0000 DISICNT 00A0
SR 0000 SR 0000

DS70000157G-page 300

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move f to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} MOV f, Wnd
Operands: fe[0..65534]
Wnd e [WO ... W15]
Operation: (f) > Wnd
Status Affected: None
Encoding: 1000 of ff ffff ffff ffff dddd
Description: Move the word contents of the specified file register to Wnd. The file register may reside

anywhere in the 32K words of data memory, but must be word-aligned. Register Direct
Addressing must be used for Wnd.

The ‘f bits select the address of the file register.
The ‘d’ bits select the destination register.
Note 1. This instruction operates on word operands only.

2. Since the file register address must be word-aligned, only the upper 15 bits of
the file register address are encoded (bit 0 is assumed to be ‘0’).

3: To move a byte of data from file register memory, the
“MOV f to Destination”instruction (page 299) may be used.

Words: 1
Cycles: 1@

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV CORCON, W2 ; nove CORCON to WL2
Before After
Instruction Instruction
W12 78FA W12 00FO0
CORCON 00FO CORCON 00FO0
SR 0000 SR 0000
Example 2: MOV Ox27FE, WB ; nmove (O0x27FE) to WB
Before After
Instruction Instruction
W3 0035 W3 | ABCD
Data 27FE | ABCD Data 27FE | ABCD
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 301

16-Bit MCU and DSC Programmer’s Reference Manual

MOV

Move Wns to f

Implemented in:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C

X X X X X X X
Syntax: {label:} MOV Wns, f
Operands: fe[0...65534]
Whns e [WO ... W15]
Operation: (Wns) — f
Status Affected: None
Encoding: 1000 1 f f ffff ffff frff | ssss ‘
Description: Move the word contents of the Working register Wns to the specified file register. The file
register may reside anywhere in the 32K words of data memory, but must be word-aligned.
Register Direct Addressing must be used for Wn.
The f bits select the address of the file register.
The ‘s’ bits select the source register.
Note 1: This instruction operates on word operands only.
2: Since the file register address must be word-aligned, only the upper 15 bits of
the file register address are encoded (bit 0 is assumed to be ‘0’).
3: To move a byte of data to file register memory, the “MOV WREG t o f ” instruction
(page 300) may be used.
Words: 1
Cycles: 1

Example 1: MOV WA, XNDOSRT nmove WA to XMODSRT

Before After
Instruction Instruction
w4 1200 w4 1200
XMODSRT 1340 XMODSRT 1200
SR 0000 SR 0000

Example 2: MOV W8, 0x1222 nmove W8 to data address 0x1222

Before After
Instruction Instruction
w8 F200 w8 F200
Data 1222 | FD88 Data 1222 F200
SR 0000 SR 0000

DS70000157G-page 302 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV.B

Move 8-Bit Literal to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E| dsPIC33C
X X X X X X X
Syntax: {label:} MOV.B #lit8, Wnd
Operands: lit8 € [0 ... 255]
Wnd € [WO ... W15]
Operation: lit8 - Wnd
Status Affected: None
Encoding: 1011 0011 1100 kkkk kkkk dddd
Description: The unsigned 8-bit literal 'k’ is loaded into the lower byte of Wnd. The upper byte of Wnd is
not changed. Register Direct Addressing must be used for Wnd.
The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the Working register.
Note: This instruction operates in Byte mode and the . B extension must be provided.
Words: 1
Cycles: 1
Example 1: MOV. B #0x17, Wb load Wb with #0x17 (Byte node)
Before After
Instruction Instruction
w5 7899 W5 7817
SR 0000 SR 0000
Example 2: MOV. B #OXFE, V@ load V@ with #0xFE (Byte node)
Before After
Instruction Instruction
W9 | AB23 W9 | ABFE
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 303

16-Bit MCU and DSC Programmer’s Reference Manual

MOV

Move 16-Bit Literal to Wnd

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E |dsPIC33C

X X X X X X X
{label:} MOV #lit16, Wnd
lit16 < [-32768 ... 65535]
Wnd € [WO ... W15]
lit16 - Wnd
None
0010 kkkk kkkk kkkk kkkk dddd

Example 1: MOV #0x4231, W3

Example 2: MOV #0x4, W2

Example 3: MOV #-1000, W8

The 16-bit literal ‘k’ is loaded into Wnd. Register Direct Addressing must be used for Wnd.

The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the Working register.

Note 1. This instruction operates only in Word mode.

2: The literal may be specified as a signed value [-32768:32767] or unsigned
value [0:65535].

| oad WL3 with #0x4231

Before After
Instruction Instruction
W13 091B W13 4231
SR 0000 SR 0000

|l oad W2 with #0x4

Before After
Instruction Instruction
w2 B004 w2 0004
SR 0000 SR 0000

load WB with #-1000

Before After
Instruction Instruction
w8 23FF w8 | FC18
SR 0000 SR 0000

DS70000157G-page 304

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move [Ws with Offset] to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label} MOV{.B} [Ws + Slit10], Wnd

Operands: Ws € [WO ... W15]

Slit10 € [-512 ... 511] for byte operation
Slit10 € [-1024 ... 1022] (even only) for word operation
Wnd e [WO ... W15]

Operation: [Ws + Slit10] - Wnd

Status Affected: None

Encoding: 1001 Okkk kBkk kddd dkkk SSSS
Description: The contents of [Ws + Slit10] are loaded into Wnd. In Word mode, the range of Slit10 is

increased to [-1024 ... 1022] and Slit10 must be even to maintain word address alignment.
Register Indirect Addressing must be used for the source and Direct Addressing must be
used for Wnd.

The Kk’ bits specify the value of the literal.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘d’ bits select the destination register.

The ‘s’ bits select the source register.

Note 1: The extension . B in the instruction denotes a byte move rather than a word
move. You may use a . Wextension to denote a word move, but it is not required.

2: In Byte mode, the range of Slit10 is not reduced as specified in Section 4.6
“Using 10-bit Literal Operands”, since the literal represents an address offset
from Ws.

Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV. B [WB+0x13], WO ; load WO with [WB+0x13]
(Byte node)
Before After
Instruction Instruction
w8 1008 w8 1008
w10 4009 w10 4033
Data 101A 3312 Data 101A 3312
SR 0000 SR 0000
Example 2: MOV [W+0x3E8], W2 ; load W2 with [W+0x3E8]
(Word node)
Before After o_
Instruction Instruction 8 a
w2 9088 W2 5634 oz
w4 0800 w4 0800 ol g
Data OBES8 5634 Data OBES8 5634 g' g-
SR 0000 SR 0000 a S

© 2005-2018 Microchip Technology Inc. DS70000157G-page 305

16-Bit MCU and DSC Programmer’s Reference Manual

MOV

Move Wns to [Wd with Offset]

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X X X X

{label’} MOV{B} Wns,

Whs e [WO ... W15]

SIit10 € [-512 ... 511] in Byte mode

SIit10 € [-1024 ... 1022] (even only) in Word mode
Wd e [WO ... W15]

(Wns) —> [Wd + SIit10]

None

[Wd + SIit10]

1001 1kkk kBkk kddd dkkk SSss

Example 1: MOV.B WO, [WL+0x7]

Example 2: MoV WL1, [WL- 0x400]

The contents of Wns are stored to [Wd + Slit10]. In Word mode, the range of Slit10 is
increased to [-1024 ... 1022] and Slit10 must be even to maintain word address alignment.
Register Direct Addressing must be used for Wns and Indirect Addressing must be used for
the destination.

The ‘K’ bits specify the value of the literal.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘d’ bits select the destination register.

The ‘s’ bits select the source register.

Note 1: The extension . B in the instruction denotes a byte move rather than a word
move. You may use a . Wextension to denote a word move, but it is not
required.

2: In Byte mode, the range of Slit10 is not reduced as specified in Section 4.6
“Using 10-bit Literal Operands”, since the literal represents an address offset
from Wd.

; store W to [WL+0x7]

(Byt e node)
Before After
Instruction Instruction
WO 9015 WO 9015
W1 1800 W1 1800
Data 1806 2345 Data 1806 1545
SR 0000 SR 0000

; store WL1 to [WL-0x400]

(Word node)
Before After
Instruction Instruction
W1 1000 W1 1000
W11 8813 W11 8813
Data 0C00 | FFEA Data 0C00 8813
SR 0000 SR 0000

DS70000157G-page 306

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M OV Move Ws to Wd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} MOV{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws-], [Wd--]
[--Ws], [--wd]

[++Ws], [++Wd]
[Ws + Wb], [Wd + Whb]

Operands: Ws e [WO ... W15]
Wb € [WO ... W15]
Wd e [WO ... W15]

Operation: (Ws) > Wd

Status Affected: None

Encoding: 0111 Twwy wBhh hddd dggg Ssss

Description: Move the contents of the source register into the destination register. Either Register Direct

or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits define the offset register Wb.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘h’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘g’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: The extension . B in the instruction denotes a byte move rather than a word
move. You may use a . Wextension to denote a word move, but it is not
required.

2: When Register Offset Addressing mode is used for both the source and
destination, the offset must be the same because the ‘w’ encoding bits are
shared by Ws and Wd.

3: The instruction, “PUSH W$”, translates to “MOV W, [WL5++] 7.
4: The instruction, “POP \W”, translates to “MOV [- - WL5], W".

Words: 1
Cycles: 1@

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 307

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MV.B [WO--],
Before
Instruction
WO 0AO01
w4 2976
Data 0AO0 8988
SR 0000
Example 2: MoV [W6++],
Before
Instruction
w2 0800
W3 0040
W6 1228
Data 0840 9870
Data 1228 0690
SR 0000

W ; Move [W] to W (Byte node)
Post - decrenent W

After

Instruction
WO 0A00
w4 2989
Data 0A00 8988
SR 0000

[V2 +WB] Move [Ws] to [V2+WB] (Word node)
Post -i ncrement W6

After

Instruction
w2 0800
w3 0040
W6 122A
Data 0840 0690
Data 1228 0690
SR 0000

DS70000157G-page 308

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV.D

Double-Word Move from Source to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} MOV.D Wns, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wns e [W0, W2, W4 ... W14]
Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W14]
Operation: For Direct Addressing of Source:
Wns — Wnd
Wns +1 —> Wnd + 1
For Indirect Addressing of Source:
See Description
Status Affected: None
Encoding: 1011 1110 0000 0ddd Oppp SSSS
Description: Move the double word specified by the source to a destination Working register pair
(Wnd:Wnd + 1). If Register Direct Addressing is used for the source, the contents of two
successive Working registers (Wns:Wns + 1) are moved to Wnd:Wnd + 1. If Indirect
Addressing is used for the source, Ws specifies the Effective Address for the least
significant word of the double word. Any pre/post-increment or pre/post-decrement will
adjust Ws by 4 bytes to accommodate for the double word.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the address of the first source register.
Note 1: This instruction only operates on double words. See Figure 4-3 for information
on how double words are aligned in memory.
2: Wnd must be an even numbered Working register.
3: The instruction, “POP. D Whd”, translates to “MOV. D [--WL5], Whd”.
Words: 1
Cycles: 2(1)
Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 309

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MOV. D

W2
W3
W6
W7
SR

Example 2: MWV.D [W--

w4
W5
w7
Data 0900
Data 0902
SR

Before
Instruction

we, W

12FB

9877

9833

FCCo

0000

Before
Instruction

B012

FD89

0900

A319

9927

0000

Move W2 to W6 (Doubl e node)

w2
W3
W6
W7
SR

After
Instruction

12FB

9877

12FB

9877

0000

Move [W] to WA (Doubl e node)
Post - decrenment W

w4
W5
w7
Data 0900
Data 0902
SR

After
Instruction

A319

9927

08FC

A319

9927

0000

DS70000157G-page 310

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOVPAG Move Literal to Page Register

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X
Syntax: {label:} MOVPAG #lit10, DSRPAG
#lit9, DSWPAG
#lit8, TBLPAG
Operands: lit10 € [0 ... 1023], lit9 € [0 ... 511], Iit8 [0 ... 255]
Operation: lit10 —» DSRPAG or lit9 — DSWPAG or lit8 — TBLPAG
Status Affected: None
Encoding: 1111 1110 1100 PPkk kkkk kkkk
Description: The appropriate number of bits from the unsigned literal 'k’ is loaded into the DSRPAG,

DSWPAG or TBLPAG register. The assembiler restricts the literal to a 9-bit unsigned value
when the destination is DSWPAG and an 8-bit unsigned value when the destination is
TBLPAG.

The ‘P’ bits select the destination register.
The ‘K’ bits specify the value of the literal.

Note: This instruction operates in Word mode only.
Words: 1
Cycles: 1

Example 1: MOVPAG #0x02, DSRPAG

Before After
Instruction Instruction

DSRPAG 0000 DSRPAG 0002

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 311

16-Bit MCU and DSC Programmer’s Reference Manual

MOVPAG

Move Wn to Page Register

Implemented in:

Syntax:

Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X

DSRPAG
DSWPAG
TBLPAG

{label} MOVPAG Wn,

Wn e [WO ... W15]
Wn<9:0> — DSRPAG or Wn<8:0> —» DSWPAG or Wn<7:0> —» TBLPAG
None

1111 1110 1101 PPOO 0000 SSSS

The appropriate number of bits from the register Ws is loaded into the DSRPAG,
DSWPAG or TBLPAG register. The assembler restricts the literal to a 9-bit unsigned
value when the destination is DSWPAG and an 8-bit unsigned value when the destination
is TBLPAG.

The ‘P’ bits select the destination register.
The ‘s’ bits specify the source register.

Note: This instruction operates in word mode only.

Example 1: MOVPAG W2, DSRPAG
Before After
Instruction Instruction
DSRPAG 0000 DSRPAG 0002
w2 0002 w2 0002

DS70000157G-page 312

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOVSAC Prefetch Operands and Store Accumulator
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X
Syntax: {label:} MOVSAC Acc {,[Wx], Wxd} {.[Wy], Wyd} {,AWB}
{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}
{,[Wx] — = kx, Wxd} {,[Wy] — = ky, Wyd}
{,IW9 + W12], Wxd} {,IW11 + W12], Wyd}
Operands: Acc € [AB]

Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd e [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd e [W4 ... W7]
AWB € [W13, [W13] + = 2]

Operation: ([Wx]) — Wxd; (Wx) + kx —> Wx
(IWy]) — Wyd; (Wy) + ky — Wy
(Acc(B or A)) rounded — AWB

Status Affected: None
Encoding: 1100 0111 AOXX yyi i iijj jjaa
Description: Optionally prefetch operands in preparation for another MAC type instruction and optionally

store the unspecified accumulator results. Even though an accumulator operation is not
performed in this instruction, an accumulator must be specified to designate which
accumulator to Write-Back.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC
Prefetches”. Operand AWB specifies the optional store of the “other” accumulator, as
described in Section 4.15.4 “MAC Write-Back” .

The ‘A bit selects the other accumulator used for Write-Back.
The ‘X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The ‘" bits select the Wx prefetch operation.

The ‘j bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write-Back destination.

Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 313

16-Bit MCU and DSC Programmer’s Reference Manual

[WL1] +=4, W, W3

Fetch [W1] to W/, Post-increment W1 by 4

W6

w7

W9

W11

W13
ACCA
Data 0800
Data 1900
SR

[WL1+W2]

After
Instruction

7811

B2AF

0800

1904

3290

00 3290 5968

7811

B2AF

0000

W6, [WL3]+=2

Fetch [W] to WA, Post-decrenment W by 2

Example 1: MOVSAC B, [W8], W6,
Fetch [VW] to W
Store ACCA to W3
Before
Instruction
W6 A022
W7 B200
W9 0800
W11 1900
W13 0020
ACCA 00 3290 5968
Data 0800 7811
Data 1900 B2AF
SR 0000
Example 2: MOVSAC A, [W]-=2, W,
Fetch [W11+WL2] to Wb
Store ACCB to [W3],
Before
Instruction
W4 76AE
W6 2000
W9 1200
W11 2000
w12 0024
W13 2300
ACCB 00 9834 4500
Data 1200 BBO0O
Data 2024 52CE
Data 2300 23FF
SR 0000

Post -i ncrenent WL3 by 2

After

Instruction
w4 BBO0O
W6 52CE
W9 11FE
W11 2000
W12 0024
W13 2302
ACCB 00 9834 4500
Data 1200 BB0O
Data 2024 52CE
Data 2300 9834
SR 0000

DS70000157G-page 314

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MPY Multiply Wm by Wn to Accumulator
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X

Syntax: {label:} MPY Wm *Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}
{.[Wx] + = kx, Wxd} {.[Wy] + = ky, Wyd}
{,]Wx] — = kx, Wxd} {,[Wy] — = ky, Wyd}
{,IW9 + W12], Wxd} {IW11 + W12], Wyd}

Operands: Wm * Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]

Acc e [A,B]

Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13], [W13] + =2

Operation: (Wm) * (Wn) — Acc(A or B)
(IWx]) »> Wxd; (Wx) + kx — Wx
(IWy]) — Wyd; (Wy) + ky — Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 Ommm AOXX yyii Pij] jill
Description: Multiply the contents of two Working registers and optionally prefetch operands in

preparation for another MAC type instruction. The 32-bit result of the signed multiply is
sign-extended to 40 bits and stored to the specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.

The ‘m’ bits select the operand registers, Wm and Whn, for the multiply.
The ‘A bit selects the accumulator for the result.

The ‘X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The ‘" bits select the Wx prefetch operation.

The ‘j bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12>in
dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or mixed-sign.
Only dsPIC33E/dsPIC33C devices support mixed-sign multiplication.

Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 315

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MPY WA*WB, A, [W8]+=2, W6, [W0]-=2, W
;o Multiply WA*Ws and store to ACCA
; Fetch [WB] to W5, Post-increnment W8 by 2
Fetch [WL0] to W/, Post-decrement WO by 2
CORCON = 0x0000 (fractional multiply, no saturation)

Before After

Instruction Instruction
w4 C000 w4 C000
w5 9000 w5 9000
W6 0800 W6 671F
w7 B200 w7 E3DC
w8 1780 w8 1782
w10 2400 W10 23FE
ACCA FF F780 2087 ACCA 00 3800 0000
Data 1780 671F Data 1780 671F
Data 2400 E3DC Data 2400 E3DC
CORCON 0000 CORCON 0000
SR 0000 SR 0000

Example 2: MPY W6*W, B, [W8]+=2, W, [W0]-=2, V6
; Multiply We*W' and store to ACCB
Fetch [WB] to W4, Post-increment W8 by 2
Fetch [WL0] to Wb, Post-decrenment W0 by 2
CORCON = 0x0000 (fractional multiply, no saturation)

Before After

Instruction Instruction
w4 C000 w4 8FDC
W5 9000 W5 0078
W6 671F W6 671F
w7 E3DC w7 E3DC
w8 1782 w8 1784
w10 23FE W10 23FC
ACCB 00 9834 4500 ACCB FF E954 3748
Data 1782 8FDC Data 1782 8FDC
Data 23FE 0078 Data 23FE 0078
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70000157G-page 316

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MPY

Square to Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X
Syntax: {label:} MPY Wm * Wm, Acc {.IWx], Wxd} {.[Wyl, Wyd}
{.[Wx] + = kx, Wxd} {.[Wy] + = ky, Wyd}
{.[Wx] — = kx, Wxd} {.[Wy] — = ky, Wyd}
{,IW9 + W12], Wxd} {, W11 + W12], Wyd}
Operands: Wm * Wm e [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Acc e [AB]
Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd e [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: (Wm) * (Wm) — Acc(A or B)
(IWx]) > Wxd; (Wx) + kx —> Wx
([Wy]) > Wyd; (Wy) + ky — Wy
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 00nMm AOX X yyii iijj jjo1l
Description: Square the contents of a Working register and optionally prefetch operands in preparation
for another MAC type instruction. The 32-bit result of the signed multiply is sign-extended to
40 bits and stored in the specified accumulator.
Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC
Prefetches”.
The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘X’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘" bits select the Wx prefetch operation.
The j bits select the Wy prefetch operation.
Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.
2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12>
in dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or
mixed-sign. Only dsPIC33E/dsPIC33C devices support mixed-sign
multiplication.
Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 317

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MPY WB*W5, A [WB]+=2, W6
Square Wb and store to ACCA
Fetch [W] to W, Post-increnent W by 2
CORCON = 0x0000 (fractional multiply, no saturation)
Before After
Instruction Instruction
W6 6500 W6 B865
W9 0900 w9 0902
ACCA 00 7C80 0908 ACCA 00 4FB2 0000
Data 0900 B865 Data 0900 B865
CORCON 0000 CORCON 0000
SR 0000 SR 0000
Example 2: MPY WI*WL, B, [V@+W2], W, [WLO0]+=2, W6
; Square Wi and store to ACCB
Fetch [VO+WL2] to W
Fetch [WL0] to W, Post-increment WLO by 2
CORCON = 0x0000 (fractional multiply, no saturation)
Before After
Instruction Instruction
W4 E228 w4 8911
W5 9000 w5 F678
W9 1700 W9 1700
w10 1B00 w10 1B02
W12 FFOO W12 FFOO
ACCB 00 9834 4500 ACCB 00 06F5 4C80
Data 1600 8911 Data 1600 8911
Data 1B00 F678 Data 1B00 F678
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70000157G-page 318

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY N Multiply -Wm by Wn to Accumulator
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X

Syntax: {label:} MPY.N Wm *Wn, Acc {,[Wx], Wxd} {.[Wy], Wyd}
{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}
{,IWx] — = kx, Wxd} {,[Wy] — = ky, Wyd}
{,]W9 + W12], Wxd} {,IW11 + W12], Wyd}

Operands: Wm * Wn e [W4 * W5; W4 * W6; W4 * W7; W5 * W6; W5 * W7; W6 * W7]

Acc € [AB]

Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd e [W4 ... W7]

Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: -(Wm) * (Wn) — Acc(A or B)

(IWx]) — Wxd; (Wx) + kx - Wx

(Wy]) - Wyd; (Wy) + ky - Wy

Status Affected: OA, OB, OAB
Encoding: 1100 Onmmm AlxX yyi i Pijij jj11
Description: Multiply the contents of a Working register by the negative of the contents of another

Working register. Optionally prefetch operands in preparation for another MAC type instruc-
tion and optionally store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40 bits and stored to the specified accumulator.

The ‘m’ bits select the operand registers, Wm and Whn, for the multiply.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The ‘i bits select the Wx prefetch operation.

The j bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12> in
dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or mixed-sign.
Only dsPIC33E/dsPIC33C devices support mixed-sign multiplication.

Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 319

16-Bit MCU and DSC Programmer’s Reference Manual

MPY. N WA*WB, A,
;o Multiply WA*WB,

[W8] +=2, W4,

[WLO] +=2, Wb
negate the result and store to ACCA

Fetch [WB] to WA, Post-increnent W8 by 2

Fetch [WL0] to W, Post-increment WO by 2

CORCON = 0x0001 (integer nultiply,

;o Multiply WA*WB,

Before
Instruction

3023

1290

0B0O

2000

00 0000 2387

0054

660A

0001

0000

MPY.N WI*WB, A,

[WB] +=2, W4,
negate the result and store to ACCA

no saturation)

After
Instruction

w4 0054
w5 660A
w8 0B02
w10 2002
ACCA FF FC82 7650
Data 0B0OO 0054
Data 2000 660A
CORCON 0001
SR 0000

[WLO] +=2, Wb

Fetch [WB] to WA, Post-increnent W8 by 2
Fetch [WL0] to W, Post-increment WLO by 2

CORCON = 0x0000 (fractional

Example 1:
w4
W5
w8
w10
ACCA
Data 0B00
Data 2000
CORCON
SR
Example 2:
w4
W5
w8
w10
ACCA
Data 0B0OO
Data 2000
CORCON
SR

Before
Instruction

3023

1290

0B0O

2000

00 0000 2387

0054

660A

0000

0000

W4

W5

W8

W10
ACCA
Data 0B0O
Data 2000
CORCON
SR

mul tiply, no saturation)

After
Instruction

0054

660A

0B02

2002

FF F904 ECAO

0054

660A

0000

0000

DS70000157G-page 320

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MSC Multiply and Subtract from Accumulator
Implemented in: PIC24F PIC24H | PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X

Syntax: {label:} MSC Wm *Wn, Acc {,]Wx], Wxd} {,[wWy], Wyd} {,AWB}
{.[wx] + = kx, Wxd} {.[Wy] + = ky, Wyd}
{.[Wx] — = kx, Wxd} {.[Wy] — = ky, Wyd}
{,IW9 + W12], Wxd} {IW11 + W12], Wyd}

Operands: Wm * Wn e [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]

Acc € [AB]

Wx € [W8, WOJ: kx € [-6, -4, -2, 2, 4, 6]; Wxd e [W4 ... W7]
Wy € [W10, W11]; ky € [-6, -4, -2, 2, 4, B]; Wyd < [W4 ... W7]
AWB e [W13, [W13] + = 2]

Operation: (Acc(A or B)) — (Wm) * (Wn) — Acc(A or B)
(IWx]) > Wxd; (Wx) + kx — Wx
([Wy]) > Wyd; (Wy) + ky - Wy
(Acc(B or A)) rounded —» AWB

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1200 | omm | Alxx yyii i ijaa
Description: Multiply the contents of two Working registers. Optionally prefetch operands in preparation

for another MAC type instruction and optionally store the unspecified accumulator results.
The 32-bit result of the signed multiply is sign-extended to 40 bits and subtracted from the
specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing as described in Section 4.15.1 “MAC Prefetches”.
Operand AWB specifies the optional store of the “other” accumulator as described in
Section 4.15.4 “MAC Write-Back”.

The ‘m’ bits select the operand registers, Wm and Wn, for the multiply.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the prefetch Wxd destination.

The ‘y’ bits select the prefetch Wyd destination.

The I’ bits select the Wx prefetch operation.

The ‘j bits select the Wy prefetch operation.

The ‘a’ bits select the accumulator Write-Back destination.

Note: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.
Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 321

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MSC We*Wr, A, [WB]-=4, W6, [WO0]-=4, W
;o Multiply Wo*W' and subtract the result from ACCA
; Fetch [WB] to W5, Post-decrenent W8 by 4
Fetch [WL0] to W/, Post-decrement WO by 4
CORCON = 0x0001 (integer nultiply, no saturation)
Before After
Instruction Instruction
W6 9051 W6 D309
w7 7230 w7 100B
w8 0CO00 w8 OBFC
W10 1C00 W10 1BFC
ACCA 00 0567 8000 ACCA 00 3738 SEDO
Data 0C00 D309 Data 0C00 D309
Data 1C00 100B Data 1C00 100B
CORCON 0001 CORCON 0001
SR 0000 SR 0000
Example 2: MSC W*Ws, B, [WL1+Wi2], W5, W3
;o Multiply WA*Ws and subtract the result from ACCB
; Fetch [WL1+WL2] to Wb
; Wite Back ACCA to W3
CORCON = 0x0000 (fractional multiply, no saturation)
Before After
Instruction Instruction
w4 0500 w4 0500
W5 2000 W5 3579
W11 1800 W11 1800
W12 0800 W12 0800
W13 6233 W13 3738
ACCA 00 3738 5EDO ACCA 00 3738 5EDO
ACCB 00 1000 0000 ACCB 00 OECO0 0000
Data 2000 3579 Data 2000 3579
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70000157G-page 322

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L Integer Unsigned Multiply f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} MUL{.B} f

Operands: fe[0..8191]

Operation: For Byte Operation:

(WREG)<7:0> * (f)<7:0> —» W2
For Word Operation:
(WREG) * (f) » W2:W3

Status Affected: None
Encoding: 1011 1100 0BOf ffff ffff ffff
Description: Multiply the default Working register WREG with the specified file register and place the

result in the W2:W3 register pair. Both operands and the result are interpreted as
unsigned integers. If this instruction is executed in Byte mode, the 16-bit result is stored
in W2. In Word mode, the most significant word of the 32-bit result is stored in W3 and the
least significant word of the 32-bit result is stored in W2.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The f’ bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but it
is not required.

2: The WREG is set to Working register WO.
The IF bit (CORCON<0>) has no effect on this operation.
4: This is the only instruction which provides for an 8-bit multiply.

w

Words: 1
Cycles: 1@

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MJL.B 0x800 ; Multiply (0x800)*WREG (Byte node)
Before After
Instruction Instruction

WREG (WO0) 9823 WREG (W0) 9823

W2 | FFFF W2 13B0

W3 | FFFF W3 | FFFF

Data 0800 2690 Data 0800 2690

SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 323

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: MUL

WREG (W0)
W2
w3

TMR1
SR

TVR1L

Before
Instruction

F001

0000

0000

3287

0000

WREG (W0)
W2
w3

TMR1
SR

; Multiply (TMR1) *WREG (Word node)

After
Instruction

F0O01
Cc287
2F5E
3287

0000

DS70000157G-page 324

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L SS Integer 16x16-Bit Signed Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} MUL.SS Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws-],

[++Ws],

[--Ws],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO0, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws) - Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1001 Twww wddd dppp SSSS
Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two

successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. Both source operands and the result Wnd are interpreted as
two’s complement signed integers. Register Direct Addressing must be used for Wb and
Wnd. Register Direct or Register Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2. Since the product of the multiplication is 32 bits, Wnd must be an even
Working register. See Figure 4-2 for information on how double words are
aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MJL.SS W, W, W2 ;o Mltiply W*wWL
Store the result to W2: W3

Before After o_

Instruction Instruction 8 a

W0 9823 wWo 9823 o

W1 | 67DC W1 | 67DC -§§

W12 | FFFF w12 | D314 o5

W13 | FFFF W13 | D5DC a >
SR 0000 SR 0000

© 2005-2018 Microchip Technology Inc. DS70000157G-page 325

16-Bit MCU and DSC Programmer’s Reference Manual

Example 2: MJL. SS W2,

WO
W1
w2
w4
Data 27FC
SR

Before
Instruction

FFFF

FFFF

0045

27FE

0098

0000

W], W

W0
WA1
W2
w4
Data 27FC
SR

After
Instruction

Pre-decrement W
Mul tiply Wex[W]
Store the result to W: W

28F8

0000

0045

27FC

0098

0000

DS70000157G-page 326

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U I_ SS Integer 16x16-Bit Signed Multiply with Accumulator Destination
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X
Syntax: {label:} MUL.SS Wb, Ws, Acc
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Acc € [A, B]
Operation: signed (Wb) * signed (Ws) — Acc(A or B)
Status Affected: None
Encoding: 1011 1001 Lvww will Appp SSSS
Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the

DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bitin CORCON<0>). Both
source operands are treated as signed values.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.
2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect
upon the operation of this instruction.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MIJL.SS W, W, A

Before After
Instruction Instruction
W0 9823 WO 9823
W1 67DC W1 67DC
ACCA 00 0000 0000 ACCA| FF D5DC D314
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 327

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.SU

Integer 16x16-Bit Signed-Unsigned Short Literal Multiply

Implemented in:

Syntax:
Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X X X X X
{label:} MUL.SU Wb, #lit5, Wnd
Wb e [WO ... W15]
lits € [0 ... 31]
Wnd e [WO, W2, W4 ... W12]
signed (Wb) * unsigned lit5 - Wnd:Wnd + 1
None
1011 1001 Oowww wddd dil1k kkkk

Multiply the contents of Wb with the 5-bit literal and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. The Wb operand and the result Wnd are interpreted as a two’s

complement signed integer. The literal is interpreted as an unsigned integer. Register
Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits define a 5-bit unsigned integer literal.

Note 1:
2:

Example 1:

Example 2:

This instruction operates in Word mode only.
Since the product of the multiplication is 32 bits, Wnd must be an even

numbered Working register. See Figure 4-3 for information on how double
words are aligned in memory.
Wnd may not be W14, since W15<0> is fixed to zero.
The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

MJL. SU W), #Ox1F, W2

WO
W2
W3
SR

MJL. SU W2, #0x10, W

WO
W1
W2
SR

Before
Instruction

CO000
1234
C9BA
0000

Before
Instruction

ABCD
89B3
F240
0000

Multiply W by literal

Ox1F

Store the result to W2: W8

WO
w2
W3
SR

Multiply W2 by literal

After

Instruction

C000

4000

FFF8

0000

0x10

Store the result to W: W

WO
W1
W2
SR

After

Instruction

2400

000F

F240

0000

DS70000157G-page 328

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L SU Integer 16x16-Bit Signed-Unsigned Multiply
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} MUL.SU Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: signed (Wb) * unsigned (Ws) - Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1001 Oowww wddd dppp SSSS
Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two

successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The Ws operand is interpreted as an unsigned integer.
Register Direct Addressing must be used for Wb and Wnd. Register Direct or Register
Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1. This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
Working register. See Figure 4-3 for information on how double words are
aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 329

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MJL. SU V8,

WO
W1
w8
w9
Data 178C
SR

Before
Instruction

68DC

AA40

F000

178C

F000

0000

Example 2: MJL. SU W2,

w2
W3
w4
W5
Data 0282
SR

Before
Instruction

0040

0280

1819

2021

0068

0000

, W

W0
WA1
w8
w9
Data 178C
SR

[++WB], W

W2
W3
w4
W5
Data 0282
SR

After
Instruction

0000

F100

F0O00

178C

F000

0000

After
Instruction

0040

0282

1A00

0000

0068

0000

Mul tiply WB*[W]
Store the result to W: W

Pre-1ncrenment W8
Mul tiply W*[W]
Store the result to W W

DS70000157G-page 330

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U I_ SU Integer 16x16-Bit Signed-Unsigned Multiply with Accumulator Destination
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X
Syntax: {label:} MUL.SU Wb, Ws, Acc
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Acc € [A, B]
Operation: signed (Wb) * unsigned (Ws) — Acc(A or B)
Status Affected: None
Encoding: 1011 1001 Oowww wlll Appp SSss
Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the

DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). The first
source operand is interpreted as a two’s complement signed value and the second
source operand is interpreted as an unsigned value.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1. This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect
upon the operation of this instruction.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MIL.SU W8, W, A

Before After
Instruction Instruction
w8 F000 w8 F000
W9 F000 W9 F000
ACCA 00 0000 0000 ACCA FF F100 0000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 331

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.SU

Integer 16x16-Bit Signed-Unsigned Short Literal Multiply with
Accumulator Destination

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X

{label:} MUL.SU Whb, #lit5, Acc
Wb e [WO ... W15]
lit5 € [0 ... 31]
Acc € [A, B]
signed (Wb) * unsigned (lit5) — Acc(A or B)
None

1011 1001 Ovwwy wlll Al1lk kkkk

Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bitin CORCON<0>). The first
source operand is interpreted as a two’s complement signed value and the second source
operand is interpreted as an unsigned value.

The ‘w’ bits select the address of the base register.
The ‘K’ bits select the 5-bit literal value.
The ‘A’ bit selects the destination accumulator for the product.
Note 1: This instruction operates in Word mode only.
2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

Example 1: MJL. SU W8, #0x02, A

Before After
Instruction Instruction
w8 0042 w8 0042
ACCA 00 0000 0000 ACCA 00 0000 0084
SR 0000 SR 0000

DS70000157G-page 332

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L . US Integer 16x16-Bit Unsigned-Signed Multiply
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X X X X X
Syntax: {label:} MUL.US Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws) - Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1000 Twwwy wddd dppp SSSS
Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two

successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. The Wb operand is interpreted as an unsigned integer. The Ws
operand and the result Wnd are interpreted as a two’s complement signed integer.
Register Direct Addressing must be used for Wb and Wnd. Register Direct or Register
Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2. Since the product of the multiplication is 32 bits, Wnd must be an even
numbered Working register. See Figure 4-3 for information on how double
words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.
Words: 1

Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

© 2005-2018 Microchip Technology Inc. DS70000157G-page 333

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MJL. US WO,

WO
W1
w2
W3
Data 2300
SR

Before
Instruction

CO000

2300

00DA

CC25

F000

0000

Example 2: MJL. US V6,

W5

W6

W10

W11

Data 0C00
SR

Before
Instruction

0C00

FFFF

0908

6EEB

7FFF

0000

, W ;o Multiply W*[WL] (unsi gned- si gned)
Store the result to W2: W8

After
Instruction
Wo | CO000
W1 2300
W2 0000
w3 F400
Data 2300 F000
SR 0000

[Wb++], WO ; Mult. We*[Wh] (unsigned-signed)

Store the result to WO0: W1
Post - I ncrenent Wb

After
Instruction

W5 | 0C02

W6 | FFFF

W10 8001

W11 7FFE

Data 0C00 | 7FFF
SR 0000

DS70000157G-page 334

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MUL.US

Integer 16x16-Bit Unsigned-Signed Multiply with Accumulator Destination

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

Note 1:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X
{label:} MUL.US Wb, Ws, Acc
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Wb e [WO ... W15]
Ws e [WO ... W15]
Acc € [A, B]
unsigned (Wb) * signed (Ws) — Acc(A or B)
None
1011 1000 Oowww wlll Appp SSSS

Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). The first
source operand is interpreted as an unsigned value and the second source operand is
interpreted as a two’s complement signed value.

The ‘w’ bits select the address of the base register.

The ‘p’ bits select Source Addressing Mode 2.

The ‘A’ bit selects the destination accumulator for the product.

Note 1. This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

1
1D

In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MIL.US W, W, B
Before After
Instruction Instruction
WO C000 WO 0000
W1 F000 W1 F000
ACCB 00 0000 0000 ACCB FF F400 0000
SR 0000 SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 335

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.UU

Integer 16x16-Bit Unsigned Short Literal Multiply

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label} MULUU Wb, #it5, Wnd

Wb e [WO ... W15]

lit5 [0 ... 31]

Wnd e [WO, W2, W4 ... W12]
unsigned (Wb) * unsigned lit5 - Wnd:Wnd + 1
None
1011 1000 Oy wddd ditk | kkkk |

Multiply the contents of Wb with the 5-bit literal and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. Both operands and the result are interpreted as unsigned
integers. Register Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.

2. Since the product of the multiplication is 32 bits, Wnd must be an even
Working register. See Figure 4-3 for information on how double words are
aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on
this operation.

Example 1: MJL.UU W, #OxF, W2 ; Miltiply W) by literal OxF
Store the result to Wi2: W3

Before After
Instruction Instruction
WO 2323 WO 2323
W12 4512 W12 | OFOD
W13 7821 W13 0002
SR 0000 SR 0000

Example 2: MJL. UU W7, #0x1F, W0 ; Miltiply W by literal Ox1F
Store the result to W: WL

Before After
Instruction Instruction
WO 780B W0 | 55C0
W1 3805 W1 001D
w7 F240 w7 F240
SR 0000 SR 0000

DS70000157G-page 336

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MULUU Integer 16x16-Bit Unsigned Multiply

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} MUL.UU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws-],

[++Ws],

[--Ws],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned (Ws) - Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1000 Oowww wddd dppp SSSS
Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two

successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. Both source operands and the result are interpreted as
unsigned integers. Register Direct Addressing must be used for Wb and Wnd. Register
Direct or Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
numbered Working register. See Figure 4-3 for information on how double
words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 337

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MUL. WU

WO
W2
W3
W4
SR

Example 2: MJL. WU

WO
W1
W4
W5
Data 2300
SR

Wi, W, W
Before
Instruction
FFFF WO
2300 W2
00DA W3
FFFF w4
0000 SR
W, [W++], W
Before
Instruction
1024 WO
2300 W1
9654 w4
BDBC w5
D625 Data 2300
0000 SR

Ml tiply WA*WD (unsi gned-unsi gned)
Store the result to W2: W8

After
Instruction

FFFF
0001
FFFE
FFFF
0000

Ml t. WO*[WL] (unsigned-unsigned)
Store the result to W W
Post - I ncrement WL

After
Instruction

1024
2302
6D34
0D80
D625
0000

DS70000157G-page 338

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MUL.UU

Integer 16x16-Bit Unsigned Multiply with Accumulator Destination

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

Note 1:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X
{label:} MUL.UU Wb, Ws, Acc
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Wb e [WO ... W15]
Ws e [WO ... W15]
Acc € [A, B]
unsigned (Wb) * unsigned (Ws) — Acc(A or B)
None
1011 1000 Oowww wlll Appp SSSS

Performs a 16-bit x 16-bit unsigned multiply with a 32-bit result, which is stored in one of
the DSP engine accumulators: ACCA or ACCB. The 32-bit result is zero-extended to
bit 39 prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bitin CORCON<0>). Both source
operands are treated as unsigned values.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1:

This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

1
1D

In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1:

MIL.UU Wi, W, B
Before
Instruction
WO FFFFF
w4 FFFFF
ACCB 00 0000 0000
SR 0000

After
Instruction
WO FFFFF
w4 FFFFF
ACCB FF FFFE 0001
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 339

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.UU

Integer 16x16-Bit Unsigned Short Literal Multiply with Accumulator Destination

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X

{label:} MUL.UU Wb, #lit5, Acc
Wb e [WO ... W15]
lit5 € [0 ... 31]
Acc € [A, B]
unsigned (Wb) * unsigned (lit5) — Acc(A or B)
None

1011 1000 0w wlll Allk kkkk

Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is zero-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bitin CORCON<0>). Both source
operands are treated as unsigned values.
The ‘w’ bits select the address of the base register.
The ‘K’ bits select the 5-bit literal.
The ‘A’ bit selects the destination accumulator for the product.
Note 1: This instruction operates in Word mode only.
2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

Example 1: MJL. UU W8, #0x02, A

Before After
Instruction Instruction
w8 0042 w8 0042
ACCA 00 0000 0000 ACCA 00 0000 0084
SR 0000 SR 0000

DS70000157G-page 340

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MULW.SS Integer 16x16-Bit Signed Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X

Syntax: {label:} MULW.SS Whb, Ws, Wnd
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [W0, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws) - Wnd

Status Affected: None

Encoding: 1011 1001 Tvww wddd dppp SSSS
Description: Multiply the contents of Wb with the contents of Ws and store the result in a Working

register, which must be an even numbered Working register. Both source operands and
the result Wnd are interpreted as two’s complement signed integers. Register Direct
Addressing must be used for Wb and Wnd. Register Direct or Register Indirect
Addressing may be used for Ws.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this

operation.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 341

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MIULWSS W, W, W2
Before
Instruction
WO 9823 WO
W1 | 67DC W1
W12 | FFFF W12
SR 0000 SR
Example 2: MULWSS W2, [--W], W
Before
Instruction
W0 | FFFF WO
w2 0045 W2
W4 | 27FE w4
Data 27FC 0098 Data 27FC
SR 0000 SR

Ml ti pl
Store t

After
Instruction

9823
67DC
D314
0000

y VWO*WL
he result to W2

Pre-decrenent W

Ml ti pl
Store t

After
Instruction

28F8
0045
27FC
0098
0000

y V2*[Wi]
he result to W

DS70000157G-page 342

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

MULW.SU Integer 16x16-Bit Signed-Unsigned Multiply with 16-Bit Result
Implemented in: PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X

Syntax: {label} MULW.SU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws-],

[++Ws],

[--Ws],
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

Operation: signed (Wb) * unsigned (Ws) —» Wnd

Status Affected: None

Encoding: 1011 1001 Owww wddd dppp SSSS
Description: Multiply the contents of Wb with the contents of Ws and store the result in a Working

register, which must be an even numbered Working register. The Wb operand and the
result Wnd are interpreted as a two’s complement signed integer. The Ws operand is
interpreted as an unsigned integer. Register Direct Addressing must be used for Wb and
Wnd. Register Direct or Register Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: Wnd must be an even numbered Working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.
Words: 1

Cycles: 11

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 343

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: MULW SU W8,

W0
w8
W9
Data 178C
SR

Example 2: MULW SU W2,

W2
W3
w4
Data 0282
SR

Before
Instruction

68DC

F000

178C

F000

0000

Before
Instruction

0040

0280

1819

0068

0000

, W

wo
w8
W9
Data 178C
SR

[++WB], W

W2
W3
w4
Data 0282
SR

Ml tiply W8*[W]

After

Instruction

0000

F0O00

178C

F000

0000

; Store the result to W

Pre-1ncrenent WB
Mul tiply We*[W8]

After

Instruction

0040

0282

1A00

0068

0000

; Store the result to W

DS70000157G-page 344

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U LW SU Integer 16x16-Bit Signed-Unsigned Short Literal Multiply with 16-Bit Result
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C
X X X

Syntax: {label:} MULW.SU Wb, #lit5, Wnd
Operands: Wb € [WO ... W15]

lit5 € [0 ... 31]

Wnd e [WO, W2, W4 ... W12]
Operation: signed (Wb) * unsigned (lit5) - Wnd
Status Affected: None
Encoding: 1011 1001 Oowww wddd dlik kkkk
Description: Multiply the contents of Wb with a 5-bit literal value and store the result in a Working

register, which must be an even numbered Working register. The Wb operand and the
result Wnd are interpreted as a two’s complement signed integer. Register Direct
Addressing must be used for Wb and Wnd.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits select the 5-bit literal value.
Note 1. This instruction operates in Word mode only.
2: Wnd must be an even numbered Working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this

operation.
Words: 1
Cycles: 1
Example 1: MULW SU W8, #0x04, W ; Miltiply W8 * #0x04
Store the result to W
Before After
Instruction Instruction
W0 | 68DC WO 4000
w8 1000 w8 1000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 345

16-Bit MCU and DSC Programmer’s Reference Manual

MULW.US

Integer 16x16-Bit Unsigned-Signed Multiply with 16-Bit Result

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X

{label:} MULW.US Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Wb € [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]

unsigned (Wb) * signed (Ws) - Wnd
None

1011 1000 Twwwy wddd dppp SSSS

Multiply the contents of Wb with the contents of Ws and store the result in a Working
register, which must be an even numbered Working register. The Wb operand is
interpreted as an unsigned integer. The Ws operand and the result Wnd are interpreted as
a two’s complement signed integer. Register Direct Addressing must be used for Wb and
Wnd. Register Direct or Register Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: Wnd must be an even numbered Working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.
1

1D

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

DS70000157G-page 346

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: MULW US w, [W], W ; Multiply Wo*[WL] (unsigned-si gned)
; Store the result to W
Before After
Instruction Instruction
WO C000 WO C000
W1 2300 W1 2300
w2 00DA W2 0000
Data 2300 F000 Data 2300 FO00
SR 0000 SR 0000
Example 2: MULW US W5, [Wb++], WO ;o Mult. We*[W] (unsigned-signed)

; Store the result to WO
Post - I ncrement W

Before After
Instruction Instruction
W5 0C00 w5 0C02
W6 FFFF W6 FFFF
w10 0908 w10 8001
Data 0C00 T7TFFF Data 0C00 7FFF
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 347

16-Bit MCU and DSC Programmer’s Reference Manual

MULW.UU

Integer 16x16-Bit Unsigned Multiply with 16-Bit Result

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X

{label:} MULW.UU Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO0, W2, W4 ... W12]

unsigned (Wb) * unsigned (Ws) - Wnd
None

1011 1000 Ovww wddd dppp SSSS

Multiply the contents of Wb with the contents of Ws and store the result in a Working
register, which must be an even numbered Working register. Both source operands and
the result are interpreted as unsigned integers. Register Direct Addressing must be used
for Wb and Wnd. Register Direct or Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: Wnd must be an even numbered Working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.
1

1@

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MILWUU WA, VWO, W ; Miltiply WA*WD (unsi gned- unsi gned)
Store the result to W
Before After
Instruction Instruction
WO FFFF WO FFFF
w2 2300 w2 0001
w4 FFFF w4 FFFF
SR 0000 SR 0000

DS70000157G-page 348

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U LW U U Integer 16x16-Bit Unsigned Short Literal Multiply with 16-Bit Result
Implemented in: PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E |dsPIC33C
X X X

Syntax: {label:} MULW.UU Wb, #lit5, Wnd
Operands: Wb e [WO ... W15]

lits € [0 ... 31]

Wnd e [W0, W2, W4 ... W12]
Operation: unsigned (Wb) * unsigned — Wnd
Status Affected: None
Encoding: 1011 1000 Oowww wddd dlik kkkk
Description: Multiply the contents of Wb with a 5-bit literal value and store the result in a Working

register, which must be an even numbered Working register. Both source operands and
the result are interpreted as unsigned integers. Register Direct Addressing must be used
for Wb and Wnd.
The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The Kk’ bits select the 5-bit literal value.
Note 1: This instruction operates in Word mode only.
2: Wnd must be an even numbered Working register.
3: Wnd may not be W14, since W15<0> is fixed to zero.
4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this

operation.
Words: 1
Cycles: 1
Example 1: MULWUU W, #0x04, W ;o Multiply WA*WD (unsi gned- unsi gned)
Store the result to W
Before After
Instruction Instruction
W2 2300 W2 4000
W4 1000 W4 1000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 349

16-Bit MCU and DSC Programmer’s Reference Manual

N EG Negate f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} NEG{B} f {WREG}

Operands: fel0..8191]

Operation: (f) + 1 — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1110 | 1110 0BDf fEff frff fEff

Description: Compute the two’s complement of the contents of the file register and place the

result in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If WREG is

not specified, the result is stored in the file register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a

word operation. You may use a . Wextension to denote a word
but it is not required.

2: The WREG is set to Working register WO.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

operation,

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in

Section 3.2.1 “Multicycle Instructions”.

Example 1: NEG B 0x880, WREG : Negate (0x880) (Byte node)
Store result to WREG
Before After
Instruction Instruction
WREG (WO0)| 9080 WREG (WO0)| 90AB
Data 0880 2355 Data 0880 2355
SR| 0000 SR| 0008 [(N=1)
Example 2: NEG 0x1200 ; Negate (0x1200) (Word node)
Before After
Instruction Instruction
Data 1200| 8923 Data 1200| 76DD
SR| 0000 SR| 0000

DS70000157G-page 350 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

N EG Negate Ws

Implemented in: PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label} NEG{B} Ws, wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]

[--Ws], [--wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) +1 - Wd
Status Affected: DC,N, 0V, Z,C
Encoding: | 1110 | 1010 OBqq | qddd | dppp | ssss |
Description: Compute the two’s complement of the contents of the source register Ws and place

the result in the destination register Wd. Either Register Direct or Indirect
Addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

Words: 1
Cycles: 1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 351

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: NEG B W3,

W3
w4
Data 1004
SR

Negate WB and store to [W] (Byte node)

(N=1)

[W]
Post -increnent W
Before After
Instruction Instruction
7839 W3| 7839
1005 W4| 1006
2355 Data 1004| C755
0000 SR| 0008
[V2++],

Example 2. NEG

w2
w4
Data 0900
Data 1000
SR

Before
Instruction

0900

1002

870F

5105

0000

[--W] ; Pre-decrenent W (Word node)

Negate [W2]

and store to [W]

Post -i ncrenent W2

w2
w4
Data 0900
Data 1000
SR

After
Instruction

0902

1000

870F

78F1

0000

DS70000157G-page 352

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

NEG

Negate Accumulator

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

{label:} NEG Acc
Acc € [A,B]
If (Acc = A):

-ACCA — ACCA
Else:

-ACCB —» ACCB
OA, OB, OAB, SA, SB, SAB

1100 1011 A001 0000 0000 0000

Compute the two’s complement of the contents of the specified accumulator.
Regardless of the Saturation mode, this instruction operates on all 40 bits of the

accumulator.

The ‘A’ bit specifies the selected accumulator.

1
1

NEG A Negat e ACCA
Store result to ACCA
CORCON = 0x0000 (no saturation)
Before After
Instruction Instruction
ACCA 00 3290 59C8 ACCA | FF CD6F A638
CORCON 0000 CORCON 0000
SR 0000 SR 0000
B ; Negate ACCB

Example 2: NEG

Store result to ACCB

CORCON = 0x00C0 (nor mal

Before
Instruction
ACCB | FF F23010DC
CORCON 00Co
SR 0000

sat urati on)

After
Instruction
ACCB | 00O0DCF EF24
CORCON 00Co
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 353

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

NOP

No Operation

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label:} NOP
None
No Operation
None

0000 0000 XXXX XXXX XXXX XXXX
No Operation is performed.
The X’ bits can take any value.
1
1
Example 1: NOP execute no operation
Before After
Instruction Instruction
PC 00 1092 PC 00 1094
SR 0000 SR 0000
Example 2: NOP execute no operation
Before After
Instruction Instruction
PC 00 08AE PC 00 08B0
SR 0000 SR 0000

DS70000157G-page 354

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

NOPR No Operation

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} NOPR

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 1111 1111 XXXX XXXX XXXX XXXX

Description: No Operation is performed.

The X’ bits can take any value.

Words: 1
Cycles: 1
Example 1: NOPR ; execute no operation
Before After
Instruction Instruction
PC 00 2430 PC 00 2432
SR 0000 SR 0000
Example 2: NOPR ; execute no operation
Before After
Instruction Instruction
PC 00 1466 PC 00 1468
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 355

16-Bit MCU and DSC Programmer’s Reference Manual

NORM

Normalize Accumulator

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

{label:} NORM Acc, Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]

Wnd e [WO ... W15]

Acc € [AB]

Refer to text.

OA,SAorOB, SB, N, Z

| 1100 | 1110 A110 0000 0qqq dddd

Normalize the contents of the target accumulator. If the accumulator contains an
overflowed value, the contents of the accumulator are shifted right by the minimum
number of bits required to remove the overflow. If the accumulator does not contain an
overflowed value, the contents of the accumulator are shifted left by the minimum
number of bits required to produce the largest fractional data value without an overflow.

If it is not possible to normalize the target accumulator (i.e., it is already normalized, or
itis all ‘0’s or all ‘1’s), Wd is cleared, the Z bit is set and the N bit is cleared. The target
accumulator is unaffected.

If it is possible to normalize the target accumulator, the exponent (shift value) required
to normalize the target accumulator is written into Wd. A positive result indicates that a
right shift of the accumulator was required for normalization. A negative result indicates
that a left shift of the accumulator was required for normalization. The N bit is set to
reflect the sign of the result and the Z bit is cleared.

The ‘A bit specifies the destination accumulator.
The ‘d’ bits select the address of the destination register.
The ‘q’ bits select Destination Address Mode 2.

Note 1: OA and SA or OB and SB Status bits are set based on the content of the
target accumulator. Consequently, as the NORMinstruction removes any
overflow, OA or OB will always be cleared.

2: The SA/SB bits will remain set if they were already set prior to execution of
the NORMinstruction, but these bits can never be affected by this instruction.

DS70000157G-page 356

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

PO P Pop TOS to f
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} POP f
Operands: fe[0..65534]
Operation: (W15) -2 > W15
(TOS) —» f
Status Affected: None
Encoding: | 1111 | 1001 | ffff 2 tree | fffo |
Description: The Stack Pointer (W15) is pre-decremented by 2 and the Top-of-Stack (TOS) word

is written to the specified file register, which may reside anywhere in the lower
32K words of data memory.

The ‘f bits select the address of the file register.

Note 1: This instruction operates in Word mode only.
2: The file register address must be word-aligned.

Words: 1
Cycles: 1
Examgle 1: POP 0x1230 ; Pop TOS to 0x1230
Before After
Instruction Instruction
W15| 1006 W15 1004
Data 1004| A401 Data 1004 A401
Data 1230| 2355 Data 1230 A401
SR| 0000 SR| 0000
Example 2: POP 0x880 ; Pop TOS to 0x880
Before After
Instruction Instruction
W15 2000 W15| 1FFE
Data 0880| E3E1 Data 0880 AO090
Data 1FFE| A090 Data 1FFE| A090
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 357

16-Bit MCU and DSC Programmer’s Reference Manual

POP

Pop TOS to Wd

Implemented in:

Syntax:

Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E [dsPIC33C
X X X X X X X
{label} POP wd
[Wd]
[Wd++]
[Wd--]
[--Wd]
[++Wd]
[Wd+Wb]
Wd e [WO ... W15]
Wb e [WO ... W15]
(W15) -2 —> W15
(TOS) — Wd
None
| 0111 \ Tvww | wohh hddd d100 \ 1111 |

The Stack Pointer (W15) is pre-decremented by 2 and the Top-of-Stack (TOS) word
is written to Wd. Either Register Direct or Indirect Addressing may be used for Wd.

The ‘w’ bits define the offset register Wb.
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

Note 1:
2:

Example 1: POP
w4

W15

Data 1006

SR

Example 2: POP

W10

W15

Data OE04
Data 1764
SR

This instruction operates in Word mode only.
This instruction is a specific version of the “MOV Ws, WI” instruction,

After
Instruction

C45A
1006
C45A
0000

Pre-increnent WO
Pop TOS to [WO]

After
Instruction

OEO4

1764
C7B5
C7B5

(MOV [--W5],
W Pop TOS to W
Before
Instruction
EDAS W4
1008 W15
C45A Data 1006
0000 SR
[++WL0]
Before
Instruction
0EO02 W10
1766 W15
E3E1 Data OEO4
C7B5 Data 1764
0000 SR

0000

W); it reverse assembles as MOV.

DS70000157G-page 358

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

POP.D

Double Pop TOS to Wnd:Wnd+1

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} POP.D Wnd
Operands: Wnd e [WO, W2, W4, ... W14]
Operation: (W15) -2 > W15
(TOS) —> Wnd + 1
(W15) -2 - W15
(TOS) -» Wnd
Status Affected: None
Encoding: | 1011 [1110 0000 0ddd 0100 | 1111 |
Description: A double word is POPped from the Top-of-Stack (TOS) and stored to Wnd:Wnd + 1.
The most significant word is stored to Wnd + 1 and the least significant word is
stored to Wnd. Since a double word is POPped, the Stack Pointer (W15) gets
decremented by 4.
The ‘d’ bits select the address of the destination register pair.
Note 1: This instruction operates on double words. See Figure 4-3 for information
on how double words are aligned in memory.
2: Wnd must be an even numbered Working register.
3: This instruction is a specific version of the “MOV. D W&, Whd” instruction,
(MOV. D [--W5], Whd); it reverse assembles as MOV. D.
Words:
Cycles: 2
Example 1: POP.D W6 Doubl e pop TOS to W6
Before After
Instruction Instruction
we6| 07BB Wwe| 3210
W7| 89AE W7| 7654
W15 0850 W15| 084C
Data 084C| 3210 Data 084C| 3210
Data 084E| 7654 Data 084E| 7654
SR| 0000 SR| 0000
Example 2: POP.D W Doubl e pop TOS to W
Before After
Instruction Instruction
W0| 673E Wwo| 791C
w1| DD23 W1| D400
W15 0BBC W15 0BBS8
Data 0BB8| 791C Data 0BB8| 791C
Data OBBA| D400 Data OBBA| D400
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 359

16-Bit MCU and DSC Programmer’s Reference Manual

POP.S

Pop Shadow Registers

Implemented in:

Syntax:
Operands:
Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

{label} POPS

None

POP shadow registers.

DC, N, OV, Z, C

| 1111 | 1110 1000 0000 0000 | 0000 |

The values in the shadow registers are copied into their respective primary registers.
The following registers are affected: W0-W3, and the C, Z, OV, N and DC STATUS
Register flags.

Note 1:

The shadow registers are not directly accessible. They may only be
accessed with PUSH. S and POP. S.

The shadow registers are only one-level deep.

Pop the shadow registers
(See PUSH. S Exanple 1 for contents of shadows)

2:
1
1
Example 1: POP. S
Before
Instruction
WO0| 07BB
W1| O03FD
W2| 9610
W3| 7249
SR| O0O0EOQ |(IPL=7)
Note:

WOo
W1
w2
W3
SR

After

0000

1000

2000

3000

00E1

Instruction

(PL=7,C=1)

After instruction execution, the contents of shadow registers are NOT modified.

DS70000157G-page 360

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

PUSH Push f to TOS

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} PUSH f
Operands: fe[0...65534]
Operation: (f) > (TOS)
(W15) + 2 > W15
Status Affected: None
Encoding: | 1111 | 1000 feee | ffff | ffff | fff0 |
Description: The contents of the specified file register are written to the Top-of-Stack (TOS)

location and then the Stack Pointer (W15) is incremented by 2.
The file register may reside anywhere in the lower 32K words of data memory.
The ‘f bits select the address of the file register.
Note 1: This instruction operates in Word mode only.
2: The file register address must be word-aligned.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: PUSH 0x2004 ; Push (0x2004) to TOS
Before After
Instruction Instruction
Ww15| 0B0O W15| 0B02
Data OBOO| 791C Data 0BOO| D400
Data 2004| D400 Data 2004| D400
SR| 0000 SR| 0000
Example 2: PUSH O0xCOE ; Push (OxCOE) to TGOS
Before After
Instruction Instruction
W15| 0920 W15| 0922
Data 0920 0000 Data 0920| 67AA
Data OCOE| 67AA Data 2004| 67AA
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 361

16-Bit MCU and DSC Programmer’s Reference Manual

PUSH Push Ws to TOS

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X
Syntax: {label:} PUSH Ws
[Ws]
[Ws++]
(Ws-]
[--Ws]
[++Ws]
[Ws+Wb]
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Operation: (Ws) — (TOS)
(W15) + 2 > W15
Status Affected: None
Encoding: ‘ 0111 ‘ Twww ‘ w001 1111 | 1999 | SSSS
Description: The contents of Ws are written to the Top-of-Stack (TOS) location and then the Stack

Pointer (W15) is incremented by 2.

The ‘w’ bits define the offset register Wb.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits select the source register.
Note 1. This instruction operates in Word mode only.
2: This instruction is a specific version of the “MOV W8, W” instruction,
(MOV W, [WL5++]); it reverse assembles as MOV.
Words: 1

Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 362 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: PUSH W

Before
Instruction
W2| 6889
W15| 1566
Data 1566 0000
SR| 0000

Example 2: PUSH [W5+WLO0]

Before
Instruction

W5| 1200

W10 0044

W15 0806

Data 0806| 216F
Data 1244| B20A
SR| 0000

Push W2 to TOS

After
Instruction
W2| 6889
W15| 1568
Data 1566| 6889
SR| 0000

Push [VB+W0] to TCS

After
Instruction

W5| 1200

W10| 0044

W15| 0808

Data 0806 B20A
Data 1244| B20A
SR| 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 363

O _
D >
0w nm

—+
=S
oo
S5 5
"

16-Bit MCU and DSC Programmer’s Reference Manual

PUSHD Double Push Wns:Wns+1 to TOS
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} PUSH.D Wns
Operands: Whns e [W0, W2, W4 ... W14]
Operation: (Wns) - (TOS)
(W15) + 2 - W15
(Wns + 1) > (TOS)
(W15) + 2 > W15
Status Affected: None
Encoding: | 1011 | 1110 1001 1111 1000 | ssso |
Description: A double word (Wns:Wns + 1) is PUSHed to the Top-of-Stack (TOS). The least
significant word (Wns) is PUSHed to the TOS first and the most significant word
(Wns + 1) is PUSHed to the TOS last. Since a double word is PUSHed, the Stack
Pointer (W15) gets incremented by 4.
The ‘s’ bits select the address of the source register pair.
Note 1: This instruction operates on double words. See Figure 4-3 for information
on how double words are aligned in memory.
2: Wns must be an even numbered Working register.
3: Thisinstruction is a specific version of the “MOV. D Whs, \WI” instruction,
(MOV. D Whs, [WL5++]); it reverse assembles as MOV. D.
Words:
Cycles: 2
Example 1: PUSH. D W6 Push W6: W to TOS
Before After
Instruction Instruction
W6| C451 W6| C451
W7| 3380 W7| 3380
W15 1240 W15| 1244
Data 1240 B004 Data 1240| C451
Data 1242| 0891 Data 1242| 3380
SR| 0000 SR| 0000
Example 2: PUSH.D WO Push WLO: W1 to TOS
Before After
Instruction Instruction
W10(80D3 W10| 80D3
W11| 4550 W11| 4550
W15 0CO08 W15| 0COC
Data 0C08| 79B5 Data 0C08| 80D3
Data OCOA| 008E Data OCOA| 4550
SR| 0000 SR| 0000

DS70000157G-page 364

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

PUSHS Push Shadow Registers

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} PUSH.S

Operands: None

Operation: Push shadow registers.

Status Affected: None

Encoding: | 1111 | 1110 1010 0000 0000 | 0000 |

Description: The contents of the primary registers are copied into their respective shadow

registers. The following registers are shadowed: W0-W3, and the C, Z, OV, N and
DC STATUS Register flags.

Note 1: The shadow registers are not directly accessible. They may only be
accessed with PUSH. S and POP. S.

2. The shadow registers are only one-level deep.

Words: 1
Cycles: 1
Example 1: PUSH. S ; Push primary registers into shadow registers
Before After
Instruction Instruction

W0| 0000 W0| 0000

W1 1000 W1 1000

W2| 2000 W2| 2000

W3| 3000 W3| 3000

SR| 0001 |(C=1) SR 0001 [(C=1)

Note: After an instruction execution, the contents of the shadow registers are updated.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 365

16-Bit MCU and DSC Programmer’s Reference Manual

PWRSAV

Enter Power-Saving Mode

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label:} PWRSAV #lit1
lit1 € [0,1]

0 —» WDT Count register

0 — WDT Prescaler A count
0 — WDT Prescaler B count
0 > WDTO (RCON<4>)

0 — SLEEP (RCON<3>)

0 — IDLE (RCON<2>)

If (lit1 = 0):
Enter Sleep mode
Else:
Enter Idle mode
None
1111 1110 0100 0000 0000 000k

Example 1: PWRSAV #0

Example 2: PWRSAV #1

Place the processor into the specified power-saving mode. If lit1 = 0, Sleep mode is
entered. In Sleep mode, the clock to the CPU and peripherals is shut down. If an
on-chip oscillator is being used, it is also shut down. If lit1 = 1, Idle mode is entered.
In Idle mode, the clock to the CPU shuts down, but the clock source remains active
and the peripherals continue to operate.

This instruction resets the Watchdog Timer Count register and the Prescaler Count
registers. In addition, the WDTO, SLEEP and IDLE flags of the Reset System and
Control register (RCON) are reset.

Note 1: The processor will exit from Idle or Sleep through an interrupt, processor
Reset or Watchdog Timer time-out. See the specific device data sheet for
details.

2: If awakened from Idle mode, the IDLE bit (RCON<2>) is set to ‘1’ and the
clock source is applied to the CPU.

3: If awakened from Sleep mode, the SLEEP bit (RCON<3>) is set to ‘1’
and the clock source is started.

4: If awakened from a Watchdog Timer time-out, the WDTO bit (RCON<4>)
is setto ‘1’.

Ent er SLEEP node

Before After
Instruction Instruction

SR[0040 [(IPL=2) SR[0040 (IPL=2)

Enter | DLE node

Before After
Instruction Instruction

SR[0020 [(IPL=1) SR 0020 (IPL=1)

DS70000157G-page 366

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCA L L Relative Call

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} RCALL Expr
Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... 32767].
Operation: (PC)+2 > PC

(PC<15:0>) — (TOS)
(W15) + 2 > W15
(PC<22:16>) — (TOS)
(W15) + 2 > W15

(PC) + (2 * Slit16) - PC
NOP — Instruction Register

Status Affected: None
Encoding: | 0000 | 0111 | nnnn nnnn | nnnn | nnnn ‘
Description: Relative subroutine call with a range of 32K program words forward or backward from

the current PC. Before the call is made, the return address (PC + 2) is PUSHed onto
the stack. After the return address is stacked, the sign-extended 17-bit value (2 * Slit16)
is added to the contents of the PC and the result is stored in the PC.

The ‘n’ bits are a signed literal that specifies the size of the relative call (in program
words) from (PC + 2).

Note: When possible, this instruction should be used instead of CALL, since it only
consumes one word of program memory.

Words: 1
Cycles: 2

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 367

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: 012004 RCALL
012006 ADD

012458 _Taskl: SUB

01245A
Before

Instruction

PC 01 2004

W15 0810

Data 0810 FFFF

Data 0812 FFFF

SR 0000

Example 2: 00620E RCALL

006210 MoV

007000 _Init: CLR

007002
Before
Instruction
PC 00 620E
W15 0C50
Data 0C50 FFFF
Data 0C52 FFFF
SR 0000

_Task1l
w, W, w

PC

W15

Data 0810
Data 0812
SR

_Init
W, [Wi++]

PC

W15

Data 0C50
Data 0C52
SR

Cal | _Taskl

; _Taskl subroutine

After
Instruction

01 2458

0814

2006

0001

0000

call _Init

; _lnit subroutine

After
Instruction

00 7000

0C54

6210

0000

0000

DS70000157G-page 368

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCA L L Relative Call

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X
Syntax: {label:} RCALL Expr
Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 < [-32768 ... 32767].
Operation: (PC)+2—>PC

(PC<15:1>) —» TOS<15:1>, SFA Status bit » TOS<0>
(W15) + 2 > W15

(PC<22:16>) — (TOS)

(W15) + 2 > W15

0 — SFA Status bit

(PC) + (2 * Slit16) - PC

NOP — Instruction Register

Status Affected: SFA
Encoding: | 0000 | 0111 | nnnn nnnn ‘ nnnn | nnnn ‘
Description: Relative subroutine call with a range of 32K program words forward or backward from

the current PC. Before the call is made, the return address (PC + 2) is PUSHed onto
the stack. After the return address is stacked, the sign-extended 17-bit value
(2 * Slit16) is added to the contents of the PC and the result is stored in the PC.

The ‘n’ bits are a signed literal that specifies the size of the relative call (in program
words) from (PC + 2).

Note: When possible, this instruction should be used instead of CALL, since it only
consumes one word of program memory.

Words:
Cycles: 4

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 369

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: 012004 RCALL
012006 ADD
012458 _Taskl: SuB
01245A ..

Before
Instruction
PC 01 2004
W15 0810
Data 0810 FFFF
Data 0812 FFFF
SR 0000

Example 2: 00620E CALL
006210 MoV
007000 _Init: CLR
007002

Before
Instruction
PC 00 620E
W15 0C50
Data 0C50 FFFF
Data 0C52 FFFF
SR 0000

_Task1l
w, W, w

PC

W15

Data 0810
Data 0812
SR

_Init
W, [Wi++]

PC

W15

Data 0C50
Data 0C52
SR

Cal | _Taskl

; _Taskl subroutine

After
Instruction

01 2458

0814

2006

0001

0000

call _Init

; _lnit subroutine

After
Instruction

00 7000

0C54

6210

0000

0000

DS70000157G-page 370

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCALL

Computed Relative Call

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E

dsPIC33C

X

X

X

X

{label:}
Whn e [WO ...

RCALL

W15]

PC)+2 - PC
PC<15:0>) — (TOS)

PC<22:16>) - (TOS)

(
(
(W15) + 2 -
(
(

W15) + 2 -

W15

W15

Wn

(PC) +(2* (Wn)) > PC
NOP — Instruction Register

None

\ 0000 \

0001

\ 0010 | 0000 \

0000

SSSS

Computed, relative subroutine call specified by the Working register Wn. The range of
the call is 32K program words forward or backward from the current PC. Before the call
is made, the return address (PC + 2) is PUSHed onto the stack. After the return address
is stacked, the sign-extended 17-bit value (2 * (Wn)) is added to the contents of the PC
and the result is stored in the PC. Register Direct Addressing must be used for Wn.

The ‘s’ bits select the source register.

1

2
OOFF8C EX1:
OOFF8E
010008
01000A
01000C
Before

Instruction

PC 01 000A

W6 FFCO

W15 1004

Data 1004 98FF

Data 1006 2310

SR 0000

Destination of RCALL

RCALL with Ws

I NC W2, VB
RCALL W6
MOVE W, [W0]
After
Instruction
PC 00 FF8C
W6 FFCO
W15 1008
Data 1004 000C
Data 1006 0001
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 371

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

000302 RCALL
000304 FF1L

000450 EX2: CLR
000452

Before
Instruction
PC 00 0302
w2 00A6
W15 1004
Data 1004 32BB
Data 1006 901A
SR 0000

PC

W2

W15

Data 1004
Data 1006
SR

RCALL with W

Destination of RCALL

After
Instruction

00 0450

00AG

1008

0304

0000

0000

DS70000157G-page 372

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCALL

Computed Relative Call

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E

dsPIC33C

X

X

X

{label:}

Wn e [WO ..

RCALL

W15]

(PC) +2 — PC

(PC<15:1>) — TOS<15:1>, SFA Status bit —» TOS<0>
(W15) + 2 — W15
(

PC<22:16>) - (TOS)

(W15) + 2 > W15
0 — SFA Status bit
(PC) +(2*(Wn)) > PC
NOP — Instruction Register

SFA

Wn

| 0000 |

0001

| 0000 | 0010 \

0000

SSSS

Computed, relative subroutine call specified by the Working register Wn. The range of
the call is 32K program words forward or backward from the current PC. Before the call
is made, the return address (PC + 2) is PUSHed onto the stack. After the return address
is stacked, the sign-extended 17-bit value (2 * (Wn)) is added to the contents of the PC
and the result is stored in the PC. Register Direct Addressing must be used for Wn.

The ‘s’ bits select the source register.

1

4
OOFF8C EX1:
OOFF8E
010008
01000A
01000C
Before
Instruction
PC 01 000A
W6 FFCO
W15 1004
Data 1004 98FF
Data 1006 2310
SR 0000

Destination of RCALL

RCALL with W

I NC W2, VB
RCALL W
MOVE W, [W0]
After
Instruction
PC 00 FF8C
W6 FFCO
W15 1008
Data 1004 000C
Data 1006 0001
SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 373

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

000302 RCALL
000304 FF1L

000450 EX2: CLR
000452

Before
Instruction
PC 00 0302
w2 00A6
W15 1004
Data 1004 32BB
Data 1006 901A
SR 0000

PC

W2

W15

Data 1004
Data 1006
SR

RCALL with W

Destination of RCALL

After
Instruction

00 0450

00AG

1008

0304

0000

0000

DS70000157G-page 374

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

REPEAT

Repeat Next Instruction ‘lit14+1’ Times

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

{label} REPEAT #it14

lit14 < [0 ... 16383]

(lit14) — RCOUNT

(PC)+2 - PC

Enable code looping.

RA

| oooo | 1001 | ookk | kkkk | kkkk | kkkk |

Repeat the instruction immediately following the REPEAT instruction (lit14 + 1)
times. The repeated instruction (or target instruction) is held in the Instruction
Register (IR) for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the repeat
count value specified in the instruction. RCOUNT is decremented with each
execution of the target instruction. When RCOUNT equals zero, the target
instruction is executed one more time and then normal instruction execution
continues with the instruction following the target instruction.

The ‘K’ bits are an unsigned literal that specifies the loop count.

Special Features, Restrictions:
When the repeat literal is ‘0’, REPEAT has the effect of a NOP and the RA bit is

1.

not set.
2. The target REPEAT instruction cannot be:
* Aninstruction that changes program flow
« ADQO, DI SI, LNK, MOV. D, PWNRSAV, REPEAT or UNLK instruction
* A 2-word instruction
Unexpected results may occur if these target instructions are used.
Note: The REPEAT and target instruction are interruptible.
1
1
Example 1: 000452 REPEAT #9 Execute ADD 10 tinmes
000454 ADD [VO++], W, [WV2++] ; Vector update
Before After
Instruction Instruction
PC 00 0452 PC 00 0454
RCOUNT 0000 RCOUNT 0009
SR 0000 SR 0010 ((RA=1)
Example 2: 00089E REPEAT #0x3FF Execute CLR 1024 tines
0008A0 CLR [W6++] Cl ear the scratch space
Before After
Instruction Instruction
PC 00 089E PC 00 08A0
RCOUNT 0000 RCOUNT 03FF
SR 0000 SR 0010 ((RA=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 375

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

16-Bit MCU and DSC Programmer’s Reference Manual

REPEAT

Repeat Next Instruction ‘lit15+1’ Times

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X

{label} REPEAT #it15

lit15 < [0 ... 32767]

(lit15) — RCOUNT

(PC)+2 - PC

Enable code looping.

RA

| oooo | 1001 | okkk | kkkk | kkkk | kkkk |

Repeat the instruction immediately following the REPEAT instruction (lit15 + 1)
times. The repeated instruction (or target instruction) is held in the Instruction
Register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the repeat
count value specified in the instruction. RCOUNT is decremented with each
execution of the target instruction. When RCOUNT equals zero, the target
instruction is executed one more time and then normal instruction execution
continues with the instruction following the target instruction.

The ‘K’ bits are an unsigned literal that specifies the loop count.

Special Features, Restrictions:
When the repeat literal is ‘0’, REPEAT has the effect of a NOP and the RA bit is

1.

not set.
2. The target REPEAT instruction cannot be:
* Aninstruction that changes program flow
« ADI S|, LNK, MOV. D, PARSAV, REPEAT or UNLK instruction
* A 2-word instruction
Unexpected results may occur if these target instructions are used.
Note: The REPEAT and target instruction are interruptible.
1
1
Example 1: 000452 REPEAT #9 Execute ADD 10 times
000454 ADD [WO++], W, [W2++] ; Vector update
Before Atfter
Instruction Instruction
PC 00 0452 PC 00 0454
RCOUNT 0000 RCOUNT 0009
SR 0000 SR 0010 |(RA=1)
Example 2: 00089E REPEAT #O0x3FF Execute CLR 1024 tinmes
0008A0 CLR [W6++] Cl ear the scratch space
Before After
Instruction Instruction
PC 00 089E PC 00 08A0
RCOUNT 0000 RCOUNT 03FF
SR 0000 SR 0010 |(RA=1)

DS70000157G-page 376

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

REPEAT

Repeat Next Instruction Wn+1 Times

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X

{label} REPEAT Wn

Wn e [WO ... W15]

(Wn<13:0>) > RCOUNT

(PC) +2 - PC

Enable code looping.

RA

| oooo | 1001 1000 | 0000 | 0000 | ssss |

Repeat the instruction immediately following the REPEAT instruction (Wn<13:0>)
times. The instruction to be repeated (or target instruction) is held in the Instruction
Register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the lower

14 bits of Wn. RCOUNT is decremented with each execution of the target
instruction. When RCOUNT equals zero, the target instruction is executed one more
time and then normal instruction execution continues with the instruction following
the target instruction.

The ‘s’ bits specify the Wn register that contains the repeat count.

Special Features, Restrictions:

1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is not set.
2. The target REPEAT instruction cannot be:
* An instruction that changes program flow
+ ADO DI SI, LNK, MOV. D, PWRSAV, REPEAT or ULNK instruction
* A 2-word instruction
Unexpected results may occur if these target instructions are used.
The REPEAT and target instruction are interruptible.

Note:

000A26 REPEAT W
000A28 COM [VO++]
Before
Instruction
PC 00 0A26
W4 0023
RCOUNT 0000
SR 0000
00089E REPEAT WO
0008A0 TBLRDL [WR++],
Before
Instruction
PC 00 089E
W10 00FF
RCOUNT 0000
SR 0000

[V++]

PC
W4
RCOUNT
SR

[ViB++]

PC

W10
RCOUNT
SR

Execute COM (WA+1) tines

After
Instruction

00 0A28

0023

0023

0010

; Vector conpl enent

(RA=1)

Execute TBLRD (WLO+1) times
Decrenment (0x840)

After
Instruction

00 08A0

00FF

00FF

0010

(RA=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 377

o
D
0
9]
=.
©
=
)
)
)

uonoNIISu|

16-Bit MCU and DSC Programmer’s Reference Manual

REPEAT

Repeat Next Instruction Wn+1 Times

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1:

Example 2:

PIC24F

PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E

dsPIC33C

X

X

X

{label:}

REPEAT

Wn e [WO ... W15]

(Wn) > RCOUNT
(PC)+2—>PC
Enable code looping.

RA

Wn

| 0000

\ 1001

| 1000 \ 0000 \ 0000

| SSSS ‘

Repeat the instruction immediately following the REPEAT instruction (Wn) times.
The instruction to be repeated (or target instruction) is held in the Instruction
Register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with Wn. RCOUNT
is decremented with each execution of the target instruction. When RCOUNT
equals zero, the target instruction is executed one more time and then normal
instruction execution continues with the instruction following the target instruction.

The ‘s’ bits specify the Wn register that contains the repeat count.

Special Features, Restrictions:

1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is not set.
2. The target REPEAT instruction cannot be:

* An instruction that changes program flow

*« ADQ DI Sl , LNK, MOV. D, PWRSAV, REPEAT or ULNK instruction

* A 2-word instruction

Unexpected results may occur if these target instructions are used.
The REPEAT and target instruction are interruptible.

Note:

000A26 REPEAT
000A28 COM
Before
Instruction
PC 00 0A26
W4 0023
RCOUNT 0000
SR 0000
00089E REPEAT
0008A0 TBLRDL
Before
Instruction
PC 00 089E
W10 00FF
RCOUNT 0000
SR 0000

[VO++],

WLO

[V2++],

[V++]

PC
W4
RCOUNT
SR

[VB++]

PC

W10
RCOUNT
SR

Execute COM (WA+1) tines

; Vector conpl enent

After
Instruction

00 0A28

0023

0023

0010|(RA = 1)

Execute TBLRD (WLO0+1) tines
Decrement (0x840)

After
Instruction

00 08A0

00FF

00FF

0010 |(RA = 1)

DS70000157G-page 378

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RESET Reset
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} RESET
Operands: None
Operation: Force all registers that are affected by a MCLR Reset to their Reset condition.
1 — SWR (RCON<6>)
0—->PC
Status Affected: OA, OB, OAB, SA, SB, SAB, DA, DC, IPL<2:0>, RA, N, OV, Z, C, SFA
Encoding: 1111 | 1110 | o000 | 0000 | 0000 | 0000
Description: This instruction provides a way to execute a software Reset. All core and peripheral
registers will take their power-on value. The PC will be set to ‘0’, the location of the
RESET GOTOinstruction. The SWR bit (RCON<6>) will be set to ‘1’ to indicate that
the RESET instruction was executed.
Note: Refer to the specific device family reference manual for the power-on
value of all registers.
Words: 1
Cycles: 1
Example 1: 00202A RESET Execut e software RESET on dsPl C33F
Before After
Instruction Instruction
PC 00 202A PC 00 0000
WO 8901 wo 0000
W1 08BB W1 0000
W2 B87A w2 0000
W3 872F w3 0000
W4 C98A w4 0000
W5 AAD4 W5 0000
W6 981E w6 0000
W7 1809 w7 0000
W8 C341 w8 0000
W9 90F4 w9 0000
W10 F409 W10 0000
W11 1700 W11 0000
W12 1008 W12 0000
W13 6556 W13 0000
W14 231D W14 0000
W15 1704 W15 0800
SPLIM 1800 SPLIM 0000
TBLPAG 007F TBLPAG 0000
PSVPAG 0001 PSVPAG 0000
CORCON 00FO0 CORCON 0020 |(SATDW = 1)
RCON 0000 RCON 0040 |(SWR =1)
SR 0021 |(IPL,C =1) SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 379

uonoNIISu|

o
D
0
9]
=.
©
=
)
)
)

16-Bit MCU and DSC Programmer’s Reference Manual

RETFIE

Return from Interrupt

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H

PIC24E

dsPIC30F

dsPIC33F

dsPIC33E |dsPIC33C

X X

X

X

{label:} RETFIE
None

(W15) — 2 - W15
(TOS<15:8>) - (SR<7:0>)

(TOS<7>) — (IPL3, CORCON<3>)

(TOS<6:0>) —» (PC<22:16>)
(W15) -2 - W15
(TOS<15:0>) —» (PC<15:0>)
NOP — Instruction Register

IPL<3:0>,RA, N, 0V, Z,C

| 0000 \ 0110

| 0100 \ 0000 \

0000

| 0000

Return from Interrupt Service Routine. The stack is POPped, which loads the low
byte of the STATUS Register, IPL<3> (CORCON<3>) and the Most Significant Byte
of the PC. The stack is POPped again, which loads the lower 16 bits of the PC.

Note 1:

Restoring IPL<3> and the low byte of the STATUS Register restores the

Interrupt Priority Level to the level before the execution was processed.

2: Before RETFI E is executed, the appropriate interrupt flag must be
cleared in software to avoid recursive interrupts.

1
3 (2 if exception pending)

Examgle 1: 000A26 RETFI E
Before
Instruction
PC 00 0A26
W15 0834
Data 0830 0230
Data 0832 8101
CORCON 0001
SR 0000
Examgle 2: 008050 RETFI E
Before
Instruction
PC 00 8050
W15 0926
Data 0922 7008
Data 0924 0300
CORCON 0000
SR 0000

Return from | SR

PC

W15

Data 0830
Data 0832
CORCON
SR

After
Instruction

01 0230

0830

0230

8101

0001

0081

Return from | SR

PC

W15

Data 0922
Data 0924
CORCON
SR

After
Instruction

00 7008

0922

7008

0300

0000

0003

(IPL=4,C=1)

(z,C=1)

DS70000157G-page 380

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETFIE Return from Interrupt

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X

Syntax: {label:} RETFIE

Operands: None

Operation: W15) -2 > W15

(
(TOS<15:8>) —» (SR<7:0>)
(TOS<7>) — (IPL3, CORCON<3>)
(TOS<6:0>) —» (PC<22:16>)
(W15) -2 - W15

(TOS<15:1>) —» (PC<15:1>)
TOS<0> — SFA Status bit

NOP — Instruction Register

Status Affected: IPL<3:0>, RA, N, OV, Z, C, SFA
Encoding: | 0000 | o110 | 0100 | 0000 | 0000 | 0000
Description: Return from Interrupt Service Routine. The stack is POPped, which loads the low

byte of the STATUS Register, IPL<3> (CORCON<3>) and the Most Significant Byte
of the PC. The stack is POPped again, which loads the lower 16 bits of the PC.
Note 1: Restoring IPL<3> and the low byte of the STATUS Register restores the
Interrupt Priority Level to the level before the execution was processed.
2: Before RETFI E is executed, the appropriate interrupt flag must be
cleared in software to avoid recursive interrupts.

Words: 1
Cycles: 6 (5 if exception pending)
Example 1: 000A26 RETFIE ; Return fromlISR
Before After
Instruction Instruction
PC 00 0A26 PC 01 0230
W15 0834 W15 0830
Data 0830 0230 Data 0830 0230
Data 0832 8101 Data 0832 8101
CORCON 0001 CORCON 0001
SR 0000 SR 0081|(IPL=4,C=1)
Example 2: 008050 RETFIE ; Return fromlISR
Before After
Instruction Instruction
PC 00 8050 PC 00 7008
W15 0926 W15 0922
Data 0922 7008 Data 0922 7008
Data 0924 0300 Data 0924 0300
CORCON 0000 CORCON 0000
SR 0000 SR 0003((Z,C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 381

16-Bit MCU and DSC Programmer’s Reference Manual

RETLW Return with Literal in Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

Syntax: {label:} RETLW{.B} #lit10, Whn

Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (W15) -2 - W15
TOS<15:8> —» SR<7:0>
TOS<7:0> — IPL<3>: PC<22:16>
(W15) =2 - W15
(TOS) — (PC<15:0>)

lit10 - Wn

NOP — Instruction Register
Status Affected: None
Encoding: | oooo | 0101 | oBkk | kkkk | kkkk | dddd |
Description: Return from subroutine with the specified, unsigned 10-bit literal stored in Wn. The

software stack is POPped twice to restore the PC and the signed literal is stored in
Whn. Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the destination register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

Words:
Cycles: 3 (2 if exception pending)
Example 1: 000440 RETLW B #0xA, W) : Return with OXA in W
Before After
Instruction Instruction
PC 00 0440 PC 00 7006
WO 9846 wo 980A
W15 1988 W15 1984
Data 1984 7006 Data 1984 7006
Data 1986 0000 Data 1986 0000
SR 0000 SR 0000

DS70000157G-page 382 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 00050A RETLW #0x230, W2 ; Return with 0x230 in W2

Before After

Instruction Instruction

PC 00 050A PC 01 7008

W2 0993 w2 0230

W15 1200 W15 11FC

Data 11FC 7008 Data 11FC 7008
Data 1M1FE 0001 Data 11FE 0001
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 383

16-Bit MCU and DSC Programmer’s Reference Manual

RETLW

Return with Literal in Wn

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X

{label} RETLW{.B} #lit10, Wn

lit10 < [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn € [WO ... W15]

(W15) -2 - W15

TOS<15:8> — SR<7:0>
TOS<7:0> — IPL<3>: PC<22:16>
(W15) -2 - W15

(TOS<15:1>) —» (PC<15:1>)
TOS<0> — SFA Status bit

lit10 - Wn

NOP — Instruction Register

SFA

0000 0101 0Bkk \ kkkk \ kkkk | dddd \

Return from subroutine with the specified, unsigned 10-bit literal stored in Wn. The

software stack is POPped twice to restore the PC and the signed literal is stored in

Whn. Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The Kk’ bits specify the value of the literal.

The ‘d’ bits select the destination register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

1
6 (5 if exception pending)

Example 1: 000440 RETLW B #0xA, W) ; Return with OxA in W
Before After
Instruction Instruction
PC 00 0440 PC 00 7006
e 9846 WO 980A
W15 1988 w15 1984
Data 1984 7006 Data 1984 7006
Data 1986 0000 Data 1986 0000
SR 0000 SR 0000

DS70000157G-page 384

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2: 00050A RETLW #0x230, W2 ; Return with 0x230 in W2

Before After

Instruction Instruction

PC 00 050A PC 01 7008

w2 0993 w2 0230

W15 1200 W15 11FC

Data 11FC 7008 Data 11FC 7008
Data 1M1FE 0001 Data 11FE 0001
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 385

16-Bit MCU and DSC Programmer’s Reference Manual

RETURN

Return

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F

PIC24H

PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

X

X X

{label:}
None

RETURN

(W15) -2 - W15
(TOS) — (PC<22:16>)
(W15) -2 - W15
(TOS) — (PC<15:0>)
NOP — Instruction Register

None

\ 0000

| 0110

| 0000 | 0000 \ 0000 | 0000

Return from subroutine. The software stack is POPped twice to restore the PC.
Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

1

3 (2 if exception pending)

Example 1: 001A06 RETURN

Before
Instruction
PC 00 1A06
W15 1248
Data 1244 0004
Data 1246 0001
SR 0000

Example 2: 005404 RETURN

Before
Instruction
PC 00 5404
W15 090A
Data 0906 0966
Data 0908 0000
SR 0000

Return from subroutine

After
Instruction
PC 01 0004
W15 1244
Data 1244 0004
Data 1246 0001
SR 0000

Return from subroutine

After
Instruction
PC 00 0966
W15 0906
Data 0906 0966
Data 0908 0000
SR 0000

DS70000157G-page 386

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETURN Return
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X
Syntax: {label:} RETURN
Operands: None
Operation: (W15) -2 > W15
(TOS) — (PC<22:16>)
(W15) -2 - W15
(TOS<15:1) —» (PC<15:1>)
TOS<0> — SFA Status bit
NOP — Instruction Register
Status Affected: SFA
Encoding: | oooo | o110 | o000 [o0ooo | 0000 | 0000
Description: Return from subroutine. The software stack is POPped twice to restore the PC.

Since two POPs are made, the Stack Pointer (W15) is decremented by 4.
Words: 1

Cycles: 6 (5 if exception pending)
Example 1: 001A06 RETURN Return from subroutine
Before After
Instruction Instruction
PC 00 1A06 PC 01 0004
W15 1248 W15 1244
Data 1244 0004 Data 1244 0004
Data 1246 0001 Data 1246 0001
SR 0000 SR 0000
Example 2: 005404 RETURN Return from subroutine
Before After
Instruction Instruction
PC 00 5404 PC 00 0966
W15 090A W15 0906
Data 0906 0966 Data 0906 0966
Data 0908 0000 Data 0908 0000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 387

16-Bit MCU and DSC Programmer’s Reference Manual

RLC

Rotate Left f through Carry

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

Example 1: RLC. B 0x1233

WREG (W0)[5601| WREG (W0)[42DD

X X X X X X X
{label} RLC{B} f { WREG}
fel0..8191]

For Byte Operation:
(C) —> Dest<0>
(f<6:0>) — Dest<7:1>
(f<7>)>C

For Word Operation:
(C) —> Dest<0>
(f<14:0>) — Dest<15:1>
(f<15>) > C

e —

N, Z, C
| 1101 | 0110 | 1BDf FEff Frff FEff

Rotate the contents of the file register f, one bit to the left through the Carry flag, and
place the result in the destination register. The Carry flag of the STATUS Register is
shifted into the Least Significant bit of the destination and it is then overwritten with
the Most Significant bit of Ws.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for f, ‘1’ for WREG).
The ‘f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The WREG is set to Working register WO.

Rotate Left w C (0x1233) (Byte npde)

Before After

Instruction Instruction
Data 1232| EB807 Data 1232| D007

SR| 0000 SR| 0009 [(N,C=1)
Example 2: RLC 0x820, WREG ; Rotate Left w C (0x820) (Wrd node)
Store result in WREG

Before After

Instruction Instruction

Data 0820 216E Data 0820 216E
SR| 0001|(C=1) SR| 0000 |(C=0)

DS70000157G-page 388

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

R I_ C Rotate Left Ws through Carry
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} RLC{.B} Ws, Wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: For Byte Operation:
(C) > Wd<0>
(Ws<6:0>) —»> Wd<7:1>
(Ws<7>) > C

For Word Operation:

(C) > Wd<0>
(Ws<14:0>) — Wd<15:1>
(Ws<15>) > C

P

Status Affected: N,Z,C
Encoding: ‘ 1101 | 0010 | 1Bqq qddd dppp SSSS

Description: Rotate the contents of the source register Ws, one bit to the left through the Carry
flag, and place the result in the destination register Wd. The Carry flag of the
STATUS Register is shifted into the Least Significant bit of Wd and it is then
overwritten with the Most Significant bit of Ws. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 389

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: RLC. B W, W8 ; Rotate Left w C (W) (Byte node)
; Store the result in W

Before After
Instruction Instruction
WO0| 9976 W0| 9976
W3| 5879 W3| 58ED

SR| 0001 |(C=1) SR| 0009 |(N=1)

Example 2: RLC [V2++], [W8] ; Rotate Left w C[W] (Word node)
Post -i ncrenment W2
; Store result in [W]

Before After
Instruction Instruction
W2| 2008 W2| 200A
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| 8082
Data 2008| CO041 Data 2008| C041
SR| 0001 |(C=1) SR 0009 [(N,C=1)

DS70000157G-page 390 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RLNC Rotate Left f without Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} RLNC{B} f {\WREG}

Operands: fel0...8191]

Operation: For Byte Operation:

(f<6:0>) — Dest<7:1>
(f<7>) — Dest<0>

For Word Operation:
(f<14:0>) — Dest<15:1>
(f<15>) — Dest<0>

oy

Status Affected: N, Z
Encoding: | 1101 | o110 | oOBO FEff fFrff fFrff
Description: Rotate the contents of the file register f, one bit to the left, and place the result in the

destination register. The Most Significant bit of f is stored in the Least Significant bit

of the destination and the Carry flag is not affected.

The optional WREG operand determines the destination register. If WREG is

specified, the result is stored in WREG. If WREG is not specified, the result is stored

in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The WREG is set to Working register WO.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: RLNC. B 0x1233 ; Rotate Left (0x1233) (Byte node)
Before After
Instruction Instruction
Data 1232| E807 Data 1233| D107
SR| 0000 SR| 0008 [(N=1)

Example 2: RLNC 0x820, WREG ; Rotate Left (0x820) (Wrd node)
Store result in WREG

Before After ('? =1

Instruction Instruction g (._-1’1

WREG (WO0)| 5601 WREG (W0)| 42DC % g
Data 0820| 216E Data 0820| 216E g- g.
SR| 0001 |(C=1) SR | 0000 [(C=0) a S

© 2005-2018 Microchip Technology Inc. DS70000157G-page 391

16-Bit MCU and DSC Programmer’s Reference Manual

RLNC

Rotate Left Ws without Carry

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
{label:} RLNC{.B} Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws-], [Wd-]
[++Ws], [++Wd]
[--Ws], [-Wd]
Ws e [WO ... W15]
Wd e [WO ... W15]
For Byte Operation:
(Ws<6:0>) - Wd<7:1>
(Ws<7>) > Wd<0>
For Word Operation:
(Ws<14:0>) - Wd<15:1>
(Ws<15>) » Wd<0>
N, Z
| 1101 ‘ 0010 | 0Bqgq gddd dppp SSSS

Rotate the contents of the source register Ws, one bit to the left, and place the result
in the destination register Wd. The Most Significant bit of Ws is stored in the Least
Significant bit of Wd and the Carry flag is not affected. Either Register Direct or

Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for byte, ‘1’ for word).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note:

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a. W extension to denote a word
operation, but it is not required.

DS70000157G-page 392

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: RLNC. B W, W8 ; Rotate Left (WD) (Byte node)
; Store the result in WB
Before After
Instruction Instruction
WO0| 9976 WO0| 9976
W3| 5879 W3| 58EC

SR| 0001 |(C=1) SR| 0009 |(N,C=1)

Example 2: RLNC [V2++], [W8] ; Rotate Left [W2] (Word node)
Post -i ncrenment W2
; Store result in [W]

Before After
Instruction Instruction
W2| 2008 W2| 200A
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| 8083
Data 2008| C041 Data 2008| C041
SR| 0001 |(C=1) SR| 0009 [(N,C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 393

16-Bit MCU and DSC Programmer’s Reference Manual

RRC Rotate Right f through Carry

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} RRC{B} f {,\WREG}

Operands: fel0..8191]

Operation: For Byte Operation:

(C) > Dest<7>
(f<7:1>) — Dest<6:0>
(f<0>) > C

For Word Operation:
(C) » Dest<15>
(f<15:1>) — Dest<14:0>

(f<0>) > C
- o
Status Affected: N,Z C
Encoding: | 1101 | o111 | 1BOf FEff Frff fFrff
Description: Rotate the contents of the file register f, one bit to the right through the Carry flag,

and place the result in the destination register. The Carry flag of the STATUS
Register is shifted into the Most Significant bit of the destination and it is then
overwritten with the Least Significant bit of Ws.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for byte, ‘1’ for word).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The WREG is set to Working register WO.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 394 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: RRC. B 0x1233 ; Rotate Right w C (0x1233) (Byte nobde)
Before After
Instruction Instruction
Data 1232 E807 Data 1232 7407
SR| 0000 SR| 0000
Example 2: RRC 0x820, WREG ; Rotate Right w C (0x820) (Wrd node)
Store result in WREG
Before After
Instruction Instruction
WREG (W0)| 5601 WREG (WO0)| 90B7
Data 0820 216E Data 0820 216E
SR| 0001 |(C=1) SR 0008 |(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 395

16-Bit MCU and DSC Programmer’s Reference Manual

RRC

Rotate Right Ws through Carry

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E | dsPIC33C

X X X X X X X

{label:} RRC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

For Byte Operation:
(C) > Wd<7>
(Ws<7:1>) - Wd<6:0>
(Ws<0>) > C

For Word Operation:
(C) > Wd<15>
(Ws<15:1>) - Wd<14:0>
(Ws<0>) > C

S

N,Z C
‘ 1101 | 0011 | 1Bqq gddd dppp SSSs

Rotate the contents of the source register Ws, one bit to the right through the Carry
flag, and place the result in the destination register Wd. The Carry flag of the
STATUS Register is shifted into the Most Significant bit of Wd and it is then
overwritten with the Least Significant bit of Ws. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

1
1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 396

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: RRC. B W, W8 ; Rotate Right w C (W) (Byte node)
; Store the result in W
Before After
Instruction Instruction
WO0| 9976 WO0| 9976
W3| 5879 W3| 58BB

SR| 0001 |(C=1) SR| 0008 |[(N=1)

Example 2: RRC [Ve++], [W8] ; Rotate Right w C [W] (Wrd node)
Post -i ncrenment W2
; Store result in [W8]

Before After
Instruction Instruction
W2| 2008 W2| 200A
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| EO020
Data 2008| C041 Data 2008| C041
SR| 0001 |(C=1) SR| 0009 [(N,C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 397

16-Bit MCU and DSC Programmer’s Reference Manual

RRNC

Rotate Right f without Carry

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label} RRNC{.B} f { WREG}
felo..8191]

For Byte Operation:
(f<7:1>) — Dest<6:0>
(f<0>) — Dest<7>

For Word Operation:
(f<15:1>) — Dest<14:0>
(f<0>) — Dest<15>

S —

N, Z
| 1101 \ 0111 | 0BDf fref frff FEff

Rotate the contents of the file register f, one bit to the right, and place the result in
the destination register. The Least Significant bit of f is stored in the Most Significant
bit of the destination and the Carry flag is not affected.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The WREG is set to Working register WO.
1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: RRNC. B 0x1233

Rotate Ri ght (0x1233) (Byte node)

Before After
Instruction Instruction
Data 1232| EB807 Data 1232| 7407
SR| 0000 SR| 0000
Example 2: RRNC 0x820, WREG Rotate Ri ght (0x820) (Word node)
Store result in WREG
Before After
Instruction Instruction
WREG (W0)| 5601 WREG (WO0)| 10B7
Data 0820 216E Data 0820| 216E
SR| 0001 |(C=1) SR 0001 |(C=1)

DS70000157G-page 398

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

RRNC Rotate Right Ws without Carry

Implemented in: PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label} RRNC{.B} Ws, wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: For Byte Operation:
(Ws<7:1>) »> Wd<6:0>
(Ws<0>) —» Wd<7>

For Word Operation:
(Ws<15:1>) — Wd<14:0>

(Ws<0>) - Wd<15>
Status Affected: N, Z
Encoding: | 1101 | 0011 | OBqq qddd dppp ssss
Description: Rotate the contents of the source register Ws, one bit to the right, and place the

result in the destination register Wd. The Least Significant bit of Ws is stored in the
Most Significant bit of Wd and the Carry flag is not affected. Either Register Direct or
Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a. W extension to denote a word
operation, but it is not required.

Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 399

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: RRNC. B W, W3 ; Rotate Right (W) (Byte node)
Store the result in W8
Before After
Instruction Instruction
WO0| 9976 W0| 9976
W3| 5879 W3| 583B

SR| 0001|(C=1) SR| 0001 |(C=1)

Example 2: RRNC [W2++], [W8] ; Rotate Right [W2] (Wrd node)
; Post-increnent W
Store result in [WB]

Before After
Instruction Instruction
W2 2008 W2 200A
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| EO020
Data 2008| CO041 Data 2008| CO041
SR| 0000 SR 0008 |(N=1)

DS70000157G-page 400 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SAC Store Accumulator

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X
Syntax: {label:} SAC Acc, {#Slit4,} Wd
[Wd]
[Wd++]
[Wd-]
[--Wd]
[++Wd]
[Wd + Wb]
Operands: Acc € [AB]
Slit4 € [-8 ... +7]
Wb, Wd e [WO ... W15]
Operation: Shiftgi4(Acc) (optional)
(Acc[31:16]) > Wd
Status Affected: None
Encoding: ‘ 1100 ‘ 1100 | Anwwy ‘ wrrr | r hhh dddd
Description: Perform an optional, signed 4-bit shift of the specified accumulator, then store the

shifted contents of ACCxH (Acc[31:16]) to Wd. The shift range is -8:7, where a
negative operand indicates an arithmetic left shift and a positive operand indicates
an arithmetic right shift. Either Register Direct or Indirect Addressing may be used
for Wd.

The ‘A’ bit specifies the source accumulator.

The ‘w’ bits specify the offset register Wb.

The ‘r’ bits encode the optional accumulator preshift.
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of Acc.

2: This instruction stores the truncated contents of Acc. The instruction,
SAC. R, may be used to store the rounded accumulator contents.

3: If data write saturation is enabled (SATDW (CORCON<5>) = 1), the
value stored to Wd is subject to saturation after the optional shift is
performed.

Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 401

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: SAC A, #4, W
Ri ght shift ACCA by 4
Store result to W
CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
W5 B900 W5 0120
ACCA 00 120F FFOO0 ACCA 00 120F FFOO0
CORCON 0010 CORCON 0010
SR 0000 SR 0000

Example 2: SAC B, #-4, [Vb++]
Left shift ACCB by 4
; Store result to [Ws], Post-increnent Wb
CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
W5 2000 W5 2002
ACCB | FF C891 8F4C ACCB | FF C891 1F4C
Data 2000 5BBE Data 2000 8000
CORCON 0010 CORCON 0010
SR 0000 SR 0000

DS70000157G-page 402 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SACD Store Accumulator Double

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X
Syntax: {label:} SAC.D Acc, [, #Slit4], Wnd
[Wnd]
[Wnd++]
[Wnd--]
[--Wnd]
[++Wnd]
Operands: Register Direct: Wnd < [WO, W2, W4, W6, W8, W10, W12, W14];
Register Indirect: Wnd € [WO ... W15];
Acc € [AB]
Slit4 € [-8 ... +7]
Operation: Shiftgii4(Acc) (optional); (Acc[31:0]) - Wnd
Status Affected: None
Encoding: | 1101 | 1100 | Aogg | grrr r 000 dddd
Description: Optionally shift accumulator, then store accumulator, Acc<31:0>, to the destination
Effective Address.

The ‘A’ bit specifies the source accumulator.

The ‘d’ bits specify the destination register Wnd.

The ‘g’ bits select the destination addressing mode.

The ‘r’ bits encode the optional operand Slit4, which determines the amount of the
accumulator preshift; if the operand Slit4 is absent, a ‘0’ is encoded.

Note 1: Unlike SACand SAC. Rinstructions, the SAC. D instruction does not support
Indirect with Register Offset Addressing mode.

2. Positive values of operand Slit4 represent arithmetic shift right. Negative
values of operand Slit4 represent shift left.

3: The SAC. Dinstruction cannot be executed within a REPEAT loop.
Words:
Cycles: 2

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 403

16-Bit MCU and DSC Programmer’s Reference Manual

SAC.R

Store Rounded Accumulator

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X
{label:} SAC.R Acc, {#Slit4,} Wd
(wd]
[Wd++]
(Wd--]
[--Wd]
[++Wd]
[wd + Wb]
Acc € [A,B]
Slit4 € [-8 ... +7]
Wb e [WO ... W15]
Wd e [WO ... W15]
Shiftgis(Acc) (optional)
Round(Acc)
(Acc[31:16]) —> Wd
None
| 1200 | 1100 | Aww | wrr | rhhh dddd |

Perform an optional, signed 4-bit shift of the specified accumulator, then store the
rounded contents of ACCxH (Acc[31:16]) to Wd. The shift range is -8:7, where a
negative operand indicates an arithmetic left shift and a positive operand indicates
an arithmetic right shift. The Rounding mode (Conventional or Convergent) is set by
the RND bit (CORCON<1>). Either Register Direct or Indirect Addressing may be
used for Wd.

The ‘A’ bit specifies the source accumulator.

The ‘w’ bits specify the offset register Wb.

The ‘r’ bits encode the optional accumulator preshift.
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of the Acc.
2: This instruction stores the rounded contents of Acc. The instruction, SAC,
may be used to store the truncated accumulator contents.
3: If data write saturation is enabled (SATDW (CORCON<5>) = 1), the
value stored to Wd is subject to saturation after the optional shift is
performed.

DS70000157G-page 404

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: SAC.R A, #4, W
Ri ght shift ACCA by 4
Store rounded result to W
CORCON = 0x0010 (SATDW = 1)
Before After
Instruction Instruction
W5 B900 W5 0121
ACCA 00 120F FFOO ACCA 00 120F FFOO
CORCON 0010 CORCON 0010
SR 0000 SR 0000
Example 2: SAC.R B, #-4, [Ws++]

Left shift ACCB by 4
Store rounded result to [Ws],

CORCON = 0x0010 (SATDW = 1)

Post -i ncrement Wb

Before After
Instruction Instruction
W5 2000 W5 2002
ACCB | FF F8918F4C ACCB | FF F891 8F4C
Data 2000 5BBE Data 2000 8919
CORCON 0010 CORCON 0010
SR 0000 SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 405

o
D
0
9]
=.
©
=
)
)
)

=3
0
~—+
=
c
o
=,
o
S5

16-Bit MCU and DSC Programmer’s Reference Manual

SE

Sign-Extend Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X

{label:} SE Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Ws e [WO ... W15]
Wnd € [WO ... W15]
Ws<7:0> - Wnd<7:0>

If (Ws<7>=1):
0xFF - Wnd<15:8>

Else:
0 - Wnd<15:8>

N,Z C

1111 1011 0000 0ddd dppp SSSS

Sign-extend the byte in Ws and store the 16-bit result in Wnd. Either Register Direct
or Indirect Addressing may be used for Ws and Register Direct Addressing must be
used for Wnd. The C flag is set to the complement of the N flag.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: This operation converts a byte to a word and it uses no . Bor . Wextension.
2: The source Ws is addressed as a byte operand, so any address

modification is by ‘1’.
1
1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 406

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: SE W8, W ; Sign-extend WB and store to W
Before After
Instruction Instruction
W3| 7839 W3| 7839
W4 1005 W4| 0039
SR| 0000 SR| 0001 [(C=1)
Example 2: SE [V2++], W2 ; Sign-extend [W2] and store to W2
Post -i ncrenment W2
Before After
Instruction Instruction
Ww2| 0900 w2| 0901
W12| 1002 W12| FF8F
Data 0900 O0O08F Data 0900| O008F
SR| 0000 SR| 0008 [(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 407

16-Bit MCU and DSC Programmer’s Reference Manual

SETM

Set f or WREG

Implemented in:

Syntax:

Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
{label:} SETM{.B} f
WREG

fel0...8191]
For Byte Operation:

OxFF — destination designated by D
For Word Operation:

OxFFFF — destination designated by D
None

1110 1111 1BDF [fRf | ffRE [fFfF

All the bits of the specified register are set to ‘1’. If WREG is specified, the bits of
WREG are set. Otherwise, the bits of the specified file register are set.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note 1:

SETM

Data 0890
SR

Example 2: SETM

WREG (W0)
SR

The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word

The WREG is set to Working register WO.

Set 0x891 (Byte node)

Set WREG (Word node)

After
Instruction

FF39

0000

After
Instruction

FFFF

operation, but it is not required.
B 0x891
Before
Instruction
2739 Data 0890
0000 SR
WREG
Before
Instruction
0900 WREG (WO0)
0000 SR

0000

DS70000157G-page 408

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SETM Set Ws

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} SETM{.B} Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
Operation: For Byte Operation:

OxFF — Wd for byte operation

For Word Operation:
OxFFFF — Wd for word operation

Status Affected: None
Encoding: 1110 1011 1Bgqg | qddd | dooo | 0000 |
Description: All the bits of the specified register are set to ‘1’. Either Register Direct or Indirect

Addressing may be used for Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

Note: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a. W extension to denote a word
operation, but it is not required.

Words: 1
Cycles: 1
Example 1: SETM B W3 ; Set WL3 (Byte node)
Before After
Instruction Instruction
W13| 2739 W13| 27FF
SR| 0000 SR| 0000
Example 2: SETM [--Wg] . Pre-decrement W6 (Word node)
Set [W8]
Before After
Instruction Instruction
W6| 1250 W6| 124E
Data 124E| 3CD9 Data 124E| FFFF
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 409

16-Bit MCU and DSC Programmer’s Reference Manual

SFTAC

Arithmetic Shift Accumulator by Slit6

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X

Syntax: {label:} SFTAC Acc, #Slit6

Operands: Acc € [A,B]
Slité € [-16 ... 16]

Operation: Shift, (Acc) — Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: | 1100 | 1000 A000 0000 01kk kkkk

Description: Arithmetic shift the 40-bit contents of the specified accumulator by the signed, 6-bit
literal and store the result back into the accumulator. The shift range is -16:16, where

a negative operand indicates a left shift and a positive operand indicates a right shift.

Any bits which are shifted out of the accumulator are lost.

The ‘A bit selects the accumulator for the result.

The ‘K’ bits determine the number of bits to be shifted.

Note 1: If saturation is enabled for the target accumulator (SATA, CORCON<7>
or SATB, CORCON<6>), the value stored to the accumulator is subject to
saturation.

2: If the shift amount is greater than 16 or less than -16, no modification will
be made to the accumulator and an arithmetic trap will occur.
Words: 1
Cycles: 1
Example 1: SFTAC A, #12
; Arithnetic right shift ACCA by 12
Store result to ACCA
CORCON = 0x0080 (SATA = 1)
Before After
Instruction Instruction
ACCA 00 120F FFOO ACCA 00 0001 20FF
CORCON 0080 CORCON 0080
SR 0000 SR 0000
Example 2: SFTAC B, #-10
; Arithnetic left shift ACCB by 10
Store result to ACCB
CORCON = 0x0040 (SATB = 1)
Before After
Instruction Instruction
ACCB | FF FFF1 8F4C ACCB | FF C63D 3000
CORCON 0040 CORCON 0040
SR 0000 SR 0000

DS70000157G-page 410

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SFTAC Arithmetic Shift Accumulator by Wb

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X
Syntax: {label:} SFTAC Acc, Wb
Operands: Acc € [AB]
Wb e [WO ... W15]
Operation: Shiftypy(Acc) — Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1200 | 1000 | A000 0000 0000 ssss |
Description: Arithmetic shift the 40-bit contents of the specified accumulator and store the result

back into the accumulator. The Least Significant 6 bits of Wb are used to specify the
shift amount. The shift range is -16:16, where a negative value indicates a left shift
and a positive value indicates a right shift. Any bits which are shifted out of the
accumulator are lost.

The ‘A bit selects the accumulator for the source/destination.
The ‘s’ bits select the address of the Shift Count register.

Note 1: If saturation is enabled for the target accumulator (SATA, CORCON<7>
or SATB, CORCON<6>), the value stored to the accumulator is subject
to saturation.

2: If the shift amount is greater than 16 or less than -16, no modification will
be made to the accumulator and an arithmetic trap will occur.

Words: 1
Cycles: 1

Example 1: SFTAC A W
; Arithnetic shift ACCA by (W)
Store result to ACCA
CORCON = 0x0000 (saturation disabled)

Before After
Instruction Instruction
WO FFFC WO FFFC
ACCA 00 320F AB09 ACCA 03 20FA B090
CORCON 0000 CORCON 0000
SR 0000 SR 8800 |(OA, OAB=1)

Example 2: SFTAC B, W2
; Arithmetic shift ACCB by (W2)
Store result to ACCB
CORCON = 0x0040 (SATB = 1)

Before After
Instruction Instruction
W12 000F w12 000F
ACCB | FF FFF1 8F4C ACCB | FF FFFF FFE3
CORCON 0040 CORCON 0040
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 411

16-Bit MCU and DSC Programmer’s Reference Manual

SL

Shift Left f

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label} SL{.B} f { WREG}
felo..8191]

For Byte Operation:
(f<7>) > (C)
(f<6:0>) — Dest<7:1>
0 — Dest<0>

For Word Operation:
(f<15>) —» (C)
(f<14:0>) — Dest<15:1>
0 — Dest<0>

B
N,Z C
\ 1101 \ 0100 | 0BDf fEff FEff FEff

Shift the contents of the file register, one bit to the left, and place the result in the
destination register. The Most Significant bit of the file register is shifted into the
Carry bit of the STATUS Register and ‘0’ is shifted into the Least Significant bit of the
destination register.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f’ bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.
1
1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 412

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: SL.B 0x909 ; Shift left (0x909) (Byte node)
Before After
Instruction Instruction
Data 0908| 9439 Data 0908| 0839
SR| 0000 SR| 0001 [(C=1)
Examp_)le 2: SL 0x1650, WREG ; Shift left (0x1650) (Word node)
; Store result in WREG
Before After
Instruction Instruction
WREG (WO0)| 0900 WREG (W0)| 80CA
Data 1650 4065 Data 1650 4065
SR| 0000 SR| 0008 [(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 413

16-Bit MCU and DSC Programmer’s Reference Manual

SL

Shift Left Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
{label:} SL{.B} Ws, Wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws-], [Wd-]
[++Ws], [++Wd]
[--Ws], [--Wd]
Ws e [WO ... W15]
Wd e [WO ... W15]
For Byte Operation:
(Ws<7>) > C
(Ws<6:0>) »> Wd<7:1>
0 —» Wd<0>
For Word Operation:
(Ws<15>) > C
(Ws<14:0>) — Wd<15:1>
0 —» Wd<0>
N Y
N,Z,C
‘ 1101 ‘ 0000 | 0Bqq gddd dppp SSSS

Shift the contents of the source register Ws, one bit to the left, and place the result in
the destination register Wd. The Most Significant bit of Ws is shifted into the Carry
bit of the STATUS Register and ‘0’ is shifted into the Least Significant bit of Wd.
Either Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note:

1
1)

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a. W extension to denote a word
operation, but it is not required.

DS70000157G-page 414

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: SL.B V8, W ; Shift left WB (Byte node)
; Store result to W
Before After
Instruction Instruction

W3| 78A9 W3| 78A9

w4 1005 w4 1052

SR| 0000 SR| 0001 [(C=1)
Example 2: SL [Ve++], [WL2] ; Shift left [We] (Word node)

; Store result to [W2]
Post -i ncrenent W2

Before After
Instruction Instruction
W2| 0900 W2| 0902
W12| 1002 W12| 1002
Data 0900 800F Data 0900| 800F
Data 1002| 6722 Data 1002| O001E
SR| 0000 SR| 0001 [(C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 415

16-Bit MCU and DSC Programmer’s Reference Manual

SL Shift Left by Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} SL Wb, #lit4, Wnd
Operands: Wb e [WO ... W15]
lit4 € [0 ... 15]
Wnd e [WO ... W15]
Operation: lit4<3:0> — Shift_Val

Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val — 1:0> =0

Status Affected: N, Z
Encoding: 1101 1101 Owwww wddd d100 kkkk
Description: Shift left the contents of the source register Wb by the 4-bit unsigned literal and

store the result in the destination register Wnd. Any bits shifted out of the source
register are lost. Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: This instruction operates in Word mode only.

Words: 1
Cycles: 1
Example 1: SL W, #4, W ; Shift left W by 4
; Store result to W
Before After
Instruction Instruction
W2| 78A9 W2 8A90
SR| 0000 SR| 0008 [(N=1)

Example 2: SL WB, #12, WB ; Shift left WB by 12
; Store result to W8

Before After
Instruction Instruction
W3| 0912 W3| 0912
W8| 1002 w8| 2000
SR| 0000 SR| 0000

DS70000157G-page 416 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SL Shift Left by Wns

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} SL Wb, Whs, Wnd

Operands: Wb € [WO ... W15]

Wns e [WO ...W15]
Wnd e [WO ... W15]

Operation: Wns<4:0> — Shift_Val
Wnd<15:Shift_Val> = Wb<15 — Shift_Val:0>
Wd<Shift_Val— 1:0>=0

Status Affected: N, Z
Encoding: ‘ 1101 | 1101 | Owww ‘ wddd dooo SSSS
Description: Shift left the contents of the source register Wb by the 5 Least Significant bits of

Whns (only up to 15 positions) and store the result in the destination register Wnd.
Any bits shifted out of the source register are lost. Register Direct Addressing must
be used for Wb, Wns and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.
Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1
Cycles: 1
Example 1: SL W, W, W ; shift left W by W<0:4>
Store result to W2
Before After
Instruction Instruction
WO0| 09A4 WO0| 09A4
W1| 8903 W1| 8903
W2| 78A9 W2| 4D20
SR| 0000 SR| 0000
Example2: SL W, W, W ; shift left W by W<0:4>
Store result to W
Before After
Instruction Instruction
W4| A409 W4| A409
W5| FFO1 W5| FFO1
W6| 0883 W6| 4812
SR| 0000 SR| 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 417

16-Bit MCU and DSC Programmer’s Reference Manual

SUB

Subtract WREG from f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} SUB{.B} {,WREG}

Operands: fel0..8191]

Operation: (f) — (WREG) — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | 0101 | oOBDI ffff ffff fEff

Description: Subtract the contents of the default Working register WREG from the contents of the
specified file register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is specified, the result
is stored in WREG. If WREG is not specified, the result is stored in the file register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.
Note 1: The extension . Bin the instruction denotes a byte operation rather than

a word operation. You may use a . Wextension to denote a word
operation, but it is not required.
2: The WREG is set to Working register WO.

Words: 1

Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUB.B Ox1FFF Sub. WREG from (0x1FFF) (Byte node)
Store result to Ox1FFF
Before After
Instruction Instruction
WREG (W0)| 7804 WREG (WO0)| 7804
Data 1FFE| 9439 Data 1FFE| 9039
SR| 0000 SR| 0001 |(C=1)
Example 2: SUB 0xA04, WREG Sub. WREG from (0xA04) (Wrd node)
Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| E2EF
Data OA04| 4523 Data OA04| 4523
SR| 0000 SR| 0008 |(N=1)

DS70000157G-page 418

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B Subtract Literal from Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} SUB{.B} #lit10, Whn

Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (Wn) —1it10 > Wn

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | 0001 0Bkk kkkk kkkk dddd
Description: Subtract the 10-bit unsigned literal operand from the contents of the Working

register Wn and store the result back in the Working register Wn. Register Direct
Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation.
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

Words: 1
Cycles: 1
Example 1: SUB.B #0x23, W ; Sub. 0x23 from W (Byte node)
; Store result to W
Before After
Instruction Instruction
WO0| 7804 WO0| 78E1
SR| 0000 SR| 0008 [(N=1)
Example 2: SUB #0x108, W ; Sub. 0x108 from W (Wrd node)
; Store result to W
Before After
Instruction Instruction
W4| 6234 W4 612C
SR| 0000 SR| 0001 [(C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 419

16-Bit MCU and DSC Programmer’s Reference Manual

SUB

Subtract Short Literal from Wb

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label} SUB{B} Wb, #lit5, wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Wb e [WO ... W15]
lit5 [0 ... 31]
Wd e [WO ... W15]
(Wb) — lit5 — Wd
DC,N, OV, Z,C
| 0101 | Oww wBqq qddd d11k kkkk

Subtract the 5-bit unsigned literal operand from the contents of the base register Wb
and place the result in the destination register Wd. Register Direct Addressing must
be used for Wb. Register Direct or Indirect Addressing must be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Example 1: SUB.B W, #0x10, Vb ; Sub. 0x10 from W (Byte node)
Store result to Wb
Before After
Instruction Instruction
W4| 1782 W4| 1782
W5| 7804 W5| 7872
SR| 0000 SR| 0005 [(QV,C=1)
Example 2: SUB W0, #0x8, [W2++] ; Sub. 0x8 fromW (Wrd node)

Store result to [W2]
Post -i ncrenment W2

Before After
Instruction Instruction
WO0| F230 W0| F230
W2 2004 W2| 2006
Data 2004| A557 Data 2004| F228
SR| 0000 SR| 0009 |(N,C=1)

DS70000157G-page 420

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B Subtract Ws from Wb
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} SUB{.B} Wb, Ws, wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wad--]
[++Ws], [++Wd]
[--Ws], [--wWd]

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) — (Ws) > Wd

Status Affected: DC,N, 0V, Z,C

Encoding: | 0101 ‘ Owww ‘ wBqq gddd dppp SSSS
Description: Subtract the contents of the source register Ws from the contents of the base

register Wb and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a. W extension to denote a word
operation, but it is not required.

Words: 1
Cycles: 1

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 421

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: SUB.B W, W, W

Before
Instruction

WO| 1732
W1| 7844
SR| 0000

Example 2: SUB W, [V8++4],

Before
Instruction

W7| 2450
W8| 1808
W9| 2020
Data 1808| 92E4
Data 2020| A557
SR| 0000

Sub.

W fromW (Byte node)

Store result to W

After
Instruction
WO0| 17EE
WA1 7844
SR| 0108 |(DC,N=1)
[VO++] Sub. [W8] from W (Word node)
Store result to [W9]
Post -i ncrenent W8
Post -i ncrenment W9
After
Instruction
W7| 2450
ws8g| 180A
W9| 2022
Data 1808| 92E4
Data 2020| 916C
SR| 010C [(DC, N, 0V =1)

DS70000157G-page 422

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B Subtract Accumulators
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X

Syntax: {label:} SuB Acc
Operands: Acc € [A,B]
Operation: If (Acc = A):

ACCA — ACCB — ACCA

Else:

ACCB — ACCA —» ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 1011 AO011 0000 0000 0000
Description: Subtract the contents of the unspecified accumulator from the contents of Acc and

store the result back into Acc. This instruction performs a 40-bit subtraction.

The ‘A’ bit specifies the destination accumulator.

Words: 1
Cycles: 1
Example 1: SUB A ;. Subtract ACCB from ACCA
Store the result to ACCA
CORCON = 0x0000 (no saturation)
Before After
Instruction Instruction
ACCA 76 120F 098A ACCA | 521EFC 4D73
ACCB 23 F312BC17 ACCB 23 F312BC17
CORCON 0000 CORCON 0000
SR 0000 SR 1100 |(OA, OB =1)
Example 2: SUB B ;. Subtract ACCA from ACCB
Store the result to ACCB
CORCON = 0x0040 (SATB = 1)
Before After
Instruction Instruction
ACCA FF 9022 2EE1 ACCA FF 9022 2EE1
ACCB 00 2456 8F4C ACCB 00 7FFF FFFF
CORCON 0040 CORCON 0040
SR 0000 SR 1400 | (SB, SAB =1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 423

16-Bit MCU and DSC Programmer’s Reference Manual

SU B B Subtract WREG and Carry Bit from f

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} SUBB{.B} f {WREG}

Operands: fel0..8191]

Operation: (f) — (WREG) — (C) — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | o101 | 1BDf fref ffff ffff

Description: Subtract the contents of the default Working register WREG and the Borrow flag

(Carry flag inverse, C) from the contents of the specified file register, and place the
result in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If WREG is

not specified, the result is stored in the file register
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The ‘f bits select the address of the file register.

Note 1. The extension . Binthe instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,

but it is not required.
2. The WREG is set to Working register WO.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions

can only clear Z.
Words: 1
Cycles: 1D

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and

Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in

Section 3.2.1 “Multicycle Instructions”.

Example 1: SUBB. B Ox1FFF ; Sub. WREG and C from (Ox1FFF) (Byte node)
Store result to Ox1FFF
Before After
Instruction Instruction
WREG (W0)| 7804 WREG (W0)| 7804
Data 1FFE| 9439 Data 1FFE| 8F39
SR| 0000 SR| 0011 |(DC,C=1)
Example 2: SUBB 0xA04, WREG ; Sub. WREG and C from (0xA04) (Wrd node)
Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (WO0)| 0000
Data OA04| 6235 Data 0A04| 6235
SR| 0000 SR 0001 [(C=1)

DS70000157G-page 424 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B B Subtract Wn from Literal with Borrow

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X

Syntax: {label:} SUBB{.B} #lit10, Whn

Operands: lit10 < [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (Wn) —1it10 — (C) > Wn

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | o001 | 1Bkk | kkkk | kkkk | dddd |
Description: Subtract the unsigned 10-bit literal operand and the Borrow flag (Carry flag inverse,

6) from the contents of the Working register Wn, and store the result back in the
Working register Wn. Register Direct Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . wextension to denote a word
operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1
Cycles: 1
Example 1: SUBB.B #0x23, W ; Sub. 0x23 and C fromW (Byte npde)
; Store result to W
Before After
Instruction Instruction
WO0| 7804 WO0| 78EO
SR| 0000 SR| 0108 |(DC,N=1)
Example 2: SUBB #0x108, W ; Sub. 0x108 and C from W (Wrd node)
; Store result to W
Before After
Instruction Instruction
W4| 6234 W4 612C

SR| 0001|(C=1) SR| 0001 |(C=1)

O _
D >
0w nm

—+
=2
oo
55
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 425

16-Bit MCU and DSC Programmer’s Reference Manual

SUBB

Subtract Short Literal from Wb with Borrow

Implemented in:

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label:} SUBB{.B} Wb, #it5, wd
(wd]
[(Wd++]
(Wd--]
[++Wd]
[--Wd]

Wb € [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]

(Wb) — lit5 — (C) - Wd

DC,N,0V,Z,C

| 0101 | 1ww | wBqq qddd d11k | kkkk |
Subtract the 5-bit unsigned literal operand and the Borrow flag (Carry flag inverse,

6) from the contents of the base register Wb, and place the result in the destination
register Wd. Register Direct Addressing must be used for Wb. Either Register Direct

or Indirect Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

DS70000157G-page 426

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: SUBB.B W, #0x10, W5 ; Sub. 0x10 and C from W (Byte node)
Store result to W
Before After
Instruction Instruction
W4 1782 W4 1782
W5| 7804 W5| 7871
SR| 0000 SR| 0005 |(OV,C=1)
Example 2: SUBB W, #0x8, [VR++] ; Sub. 0x8 and C from W (Wrd node)

Store result to [W2]
Post -i ncrenment W2

Before After
Instruction Instruction
W0| 0009 W0| 0009
W2| 2004 W2| 2006
Data 2004| A557 Data 2004| 0000
SR| 0002 |(Z=1) SR| 0103 |(DC, Z,C=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 427

16-Bit MCU and DSC Programmer’s Reference Manual

SU B B Subtract Ws from Wb with Borrow
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} SUBB{.B} Wb, Ws, Wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) — (Ws) — (C) — Wd

Status Affected: DC,N,0V,Z,C

Encoding: ‘ 0101 ‘ Twwwy ‘ wBqq gddd dppp | SSSS ‘
Description: Subtract the contents of the source register Ws and the Borrow flag (Carry flag

inverse, 6) from the contents of the base register Wb, and place the result in the
destination register Wd. Register Direct Addressing must be used for Wb. Register
Direct or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . W extension to denote a word
operation, but it is not required.

2: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.
Words: 1

Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 428 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: SUBB.B W, W, W ; Sub. W and C fromW (Byte node)
Store result to W
Before After
Instruction Instruction
WO 1732 WO0| 17ED
WA1 7844 W1 7844
SR| 0000 SR| 0108 |(DC,N=1)
Example 2: SUBB W7, [VB++] , [VO++] ; Sub. [W8] and C fromW (Wrd node)

Store result to [W]
Post -i ncrenent W8
Post -i ncrenment VW

Before After
Instruction Instruction

W7| 2450 W7| 2450

Ww8| 1808 Ww8| 180A

W9| 2022 W9| 2024
Data 1808| 92E4 Data 1808| 92E4
Data 2022| A557 Data 2022| 916B

SR| 0000 SR| 010C |(DC, N, OV =1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 429

16-Bit MCU and DSC Programmer’s Reference Manual

SU B B R Subtract f from WREG with Borrow

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} SUBBR{.B} f {WREG}

Operands: fe[0..8191]

Operation: (WREG) — (f) — (C) — destination designated by D

Status Affected: DC,N,0V,Z, C

Encoding: | 1011 | 1101 | 1BODf ffff free | offfe |

Description: Subtract the contents of the specified file register f and the Borrow flag (Carry flag

Words:
Cycles:

Note 1:

inverse, 6) from the contents of WREG, and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG
is specified, the result is stored in WREG. If WREG is not specified, the result is
stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The f bits select the address of the file register.

Note 1. The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to Working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.
1

1@

In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUBBR B 0x803 ; Sub. (0x803) and C from WREG (Byte node)
Store result to 0x803

Before Atfter
Instruction Instruction
WREG (W0)| 7804 WREG (W0)| 7804
Data 0802 9439 Data 0802| 6F39
SR| 0002 |(Z=1) SR| 0000
Example 2: SUBBR 0xA04, WREG ; Sub. (0xA04) and T from WREG (Wrd node)

Store result to WREG

Before Atfter
Instruction Instruction
WREG (W0)| 6234 WREG (WO0)| FFFE
Data OA04| 6235 Data 0A04| 6235
SR| 0000 SR 0008 |(N=1)

DS70000157G-page 430 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B B R Subtract Wb from Short Literal with Borrow
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} SUBBR{.B} Wb, #lit5, Wd
(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd € [WO ... W15]
Operation: lit5 — (Wb) — (C) > Wd
Status Affected: DC,N,0V,Z,C
Encoding: | 0001 | 1ww | wBqq qddd di1k | kkkk |
Description: Subtract the contents of the base register Wb and the Borrow flag (Carry flag

inverse, 6) from the 5-bit unsigned literal, and place the result in the destination
register Wd. Register Direct Addressing must be used for Wb. Register Direct or
Indirect Addressing must be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension . Bin the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1
Cycles: 1

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 431

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: SUBBR. B

W, #0x10, W

Before
Instruction
WO0| F310 WO
W1| 786A W1
SR| 0003|(Z,C=1) SR

Example 2: SUBBR

W), #0x8, [W2++]

Before
Instruction
W0| 0009 WO
W2| 2004 w2
Data 2004| A557 Data 2004
SR| 0020 |(Z=1) SR

Sub.
St or

After
Instruction

F310
7800
0103

Sub.
St or
Post

After
Instruction

0009
2006
FFFE
0108

VW and C from 0x10 (Byte node)
eresult to W

(DC, Z,C = 1)

VW and C from 0x8 (Wrd node)
e result to [W]
-increment W2

(DC, N = 1)

DS70000157G-page 432

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B B R Subtract Wb from Ws with Borrow

Implemented in: PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label} SUBBR{.B} Wb, Ws, wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Ws) — (Wb) — (C) > Wd

Status Affected: DC,N,0V,Z,C

Encoding: | 0001 | Tvwww | wBqq gqddd dppp | SSSS ‘
Description: Subtract the contents of the base register Wb and the Borrow flag (Carry flag

inverse, 6) from the contents of the source register Ws, and place the result in the
destination register Wd. Register Direct Addressing must be used for Wb. Register
Direct or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1. The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a . Wextension to denote a word
operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 433

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: SUBBR B

Instruction

Before

Vo,

WO

1732

W1

7844

SR

0000

Example 2. SUBBR

, W

Sub.

W) and C fromW (Byte node)

Store result to W

After
Instruction
Wo| 1711
W1| 7844
SR| 0001
Sub.

W7, [VB++] , [VO++]

Before
Instruction

W7| 2450

Ww8| 1808

W9| 2022

Data 1808| 92E4
Data 2022| A557
SR| 0000

(C=1)

W and C from[W8] (Wrd node)

Store result to [W]
Post -i ncrenent W8
Post -i ncrenment VW

After
Instruction

W7| 2450

Ww8| 180A

W9| 2024
Data 1808| 92E4
Data 2022| 6E93

SR| 0005 |(0V,C=1)

DS70000157G-page 434

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B R Subtract f from WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X

Syntax: {label:} SUBR{.B} f {,WREG}

Operands: fel0..8191]

Operation: (WREG) — (f) — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | 11010 | oBDf frff ffff ffff

Description: Subtract the contents of the specified file register from the contents of the default

Working register WREG and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is specified, the result
is stored in WREG. If WREG is not specified, the result is stored in the file register

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f bits select the address of the file register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2. The WREG is set to Working register WO.
Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUBR B Ox1FFF ; Sub. (Ox1FFF) from WREG (Byte node)
Store result to Ox1FFF
Before After
Instruction Instruction
WREG (W0)| 7804 WREG (WO0)| 7804
Data 1FFE| 9439 Data 1FFE| 7039
SR| 0000 SR| 0000
Example 2: SUBR 0xA04, WREG ; Sub. (0xA04) from WREG (Word node)
Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (WO0)| FFFF
Data OA04| 6235 Data 0A04| 6235
SR| 0000 SR 0008 |[(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 435

16-Bit MCU and DSC Programmer’s Reference Manual

SUBR

Subtract Wb from Short Literal

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C

X X X X X X X
{label} SUBR{.B} Wb, #lit5, wd
[Wd]
[Wd++]
[Wd-]
[++Wd]
[--Wd]
Wb < [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
lit5 — (Wb) — Wd
DC,N, 0V, Z,C
| 0001 | oww | wBqq qddd d11k kkkk

Subtract the contents of the base register Wb from the unsigned 5-bit literal
operand and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The Kk’ bits provide the literal operand, a five-bit integer number.

Note: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a.W extension to denote a word
operation, but it is not required.

Example 1: SUBR. B W, #0x10, W ; Sub. WD from 0x10 (Byte node)
Store result to W
Before After
Instruction Instruction
WO0| F310 WO0| F310
W1| 786A W1 7800
SR| 0000 SR| 0103 |(DC, Z,C=1)
Example 2: SUBR W0, #0x8, [W2++] ; Sub. WD from 0x8 (Word node)

Store result to [W2]
Post -i ncrement W2

Before After
Instruction Instruction
WO0| 0009 W0| 0009
W2 2004 W2| 2006
Data 2004| A557 Data 2004| FFFF
SR| 0000 SR| 0108 [(DC,N=1)

DS70000157G-page 436

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SU B R Subtract Wb from Ws

Implemented in: PIC24F | PIC24H | PIC24E | dsPIC30F | dsPIC33F |dsPIC33E|dsPIC33C
X X X X X X X
Syntax: {label:} SUBR{.B} Wb, Ws, wd
[Ws], [Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Ws) — (Wb) -» Wd

Status Affected: DC,N,QV, Z,C

Encoding: ‘ 0001 ‘ Oowwww | wBqq gddd dppp SSSS
Description: Subtract the contents of the base register Wb from the contents of the source

register Ws and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte operation rather than
a word operation. You may use a. W extension to denote a word
operation, but it is not required.

Words: 1
Cycles: 1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 437

16-Bit MCU and DSC Programmer’s Reference Manual

Example 1: SUBR. B W, W, W

Before
Instruction

WO| 1732
W1| 7844
SR| 0000

Example 2: SUBR W7, [WB++],

Before
Instruction

W7| 2450
W8| 1808
W9| 2022
Data 1808| 92E4
Data 2022| A557
SR| 0000

Sub.

W fromW (Byte node)

Store result to W

After
Instruction
WO 1712
WA1 7844
SR| 0001 [(C=1)
[VO++] Sub. W from [W8] (Wird node)
Store result to [V9]
Post -i ncrement W8
Post -i ncrement W9
After
Instruction
W7| 2450
ws8g| 180A
W9| 2024
Data 1808| 92E4
Data 2022| 6E94
SR| 0005 [(OV,C=1)

DS70000157G-page 438

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

SWAP

Byte or Nibble Swap Wn

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X X X X
Syntax: {label:} SWAP{.B} Wn
Operands: Wn € [WO ... W15]
Operation: For Byte Operation:
(Wn)<7:4> < (Wn)<3:0>
For Word Operation:
(Wn)<15:8> <> (Wn)<7:0>
Status Affected: None
Encoding: | 1111 | 1100 | 1B0O 0000 0000 ssss
Description: Swap the contents of the Working register Wn. In Word mode, the two bytes of Wn
are swapped. In Byte mode, the two nibbles of the Least Significant Byte of Wn are
swapped and the Most Significant Byte of Wn is unchanged. Register Direct
Addressing must be used for Wn.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Working register.

Note: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

Words: 1
Cycles: 1
Example 1: SWAP.B WO Ni bbl e swap (WD)
Before After
Instruction Instruction
WO| AB87 WO| AB78
SR| 0000 SR| 0000
Example 2: SWAP 1) Byte swap (W)
Before After
Instruction Instruction
WwO0| 8095 WO0| 9580
SR| 0000 SR| 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 439

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

TBLRDH

Table Read High

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X X X X

{label} ~ TBLRDH{.B} [Ws], wd
[Ws++], [Wd]
Ws-], [Wd++]
[++Ws], [Wd-]
[-Ws], [++Wd]
[--Wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

For Byte Operation:

If (LSB(Ws)=1):
0—wd
Else:

Pr_ogram Mem [(TBLPAG),(Ws)] <23:16> — Wd

For Word Operation:
Program Mem [(TBLPAG),(Ws)] <23:16> — Wd <7:0>

0 - Wd <15:8>
None
1011 | 1010 [1Bgg | qddd dppp ssss

Read the contents of the most significant word of program memory and store it to the
destination register Wd. The target word address of program memory is formed by
concatenating the 8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address
specified by Ws. Indirect Addressing must be used for Ws and either Register Direct or
Indirect Addressing may be used for Wd.

In Word mode, zero is stored to the Most Significant Byte of the destination register (due
to non-existent program memory), and the third program memory byte (PM<23:16>) at
the specified program memory address, is stored to the Least Significant Byte of the
destination register.

In Byte mode, the source address depends on the contents of Ws. If Ws is not

word-aligned, zero is stored to the destination register (due to non-existent program

memory). If Ws is word-aligned, the third program memory byte (PM<23:16>), at the

specified program memory address, is stored to the destination register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte move rather than a word

move. You may use a . Wextension to denote a word move, but it is not
required.

1
2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
5 (PIC24E, dsPIC33E, dsPIC33C)

DS70000157G-page 440

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: TBLRDH. B [W0], [WL++] Read PM (TBLPAG [W)]) (Byte node)
Store to [W]
Post -i ncrement WL
Before After
Instruction Instruction
e 0812 W0 0812
W1 OF71 W1 0F72
Data OF70 0944 Data OF70 EF44
Program 01 0812 EF 2042 Program 01 0812 EF 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Example 2: TBLRDH [V6++], V8 Read PM (TBLPAG [W6]) (Wrd node)
Store to W8
Post -i ncrement W6
Before After
Instruction Instruction
W6 3406 W6 3408
w8 65B1 w8 0029
Program 00 3406 29 2E40 Program 00 3406 29 2E40
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 441

16-Bit MCU and DSC Programmer’s Reference Manual

TBLRDL

Table Read Low

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X X X X

{label} ~ TBLRDL{.B} [Ws], wd
[Ws++], [Wd]
Ws-], [Wd++]
[++Ws], [Wd-]
[-Ws], [++Wd]
[--Wd]

Ws e [WO ... W15]
Wd € [WO ... W15]

For Byte Operation:

If (LSB(Ws) =1):
Program Mem [(TBLPAG),(Ws)] <15:8> — Wd

Else:
Program Mem [(TBLPAG),(Ws)] <7:0> — Wd

For Word Operation:
Program Mem [(TBLPAG),(Ws)] <15:0> — Wd

None

1011 ‘ 1010 ‘ 0Bqq ‘ gddd dppp SSSs

Read the contents of the least significant word of program memory and store it to the
destination register Wd. The target word address of program memory is formed by
concatenating the 8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address
specified by Ws. Indirect Addressing must be used for Ws and either Register Direct or
Indirect Addressing may be used for Wd.

In Word mode, the lower 2 bytes of program memory are stored to the destination
register. In Byte mode, the source address depends on the contents of Ws. If Ws is not
word-aligned, the second byte of the program memory word (PM<15:7>) is stored to the
destination register. If Ws is word-aligned, the first byte of the program memory word
(PM<7:0>) is stored to the destination register.

The ‘B’ bit selects byte or word operation (‘0’ for word mode, ‘1’ for byte).

The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte move rather than a word
move. You may use a. Wextension to denote a word move, but it is not
required.

1
2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
5 (PIC24E, dsPIC33E, dsPIC33C)

DS70000157G-page 442

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: TBLRDL. B [W++], W Read PM (TBLPAG [W)]) (Byte node)

Store to W

Post -i ncrement WO

Before After
Instruction Instruction
WO 0813 WO 0814
W1 OF71 W1 0F20
Data OF70 0944 Data OF70 EF44
Program 01 0812 EF 2042 Program 01 0812 EF 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Example 2: TBLRDL [W6], [WVB++] Read PM (TBLPAG [W5]) (Word node)

Store to W8

Post -i ncrement V8

Before After

Instruction Instruction
W6 3406 W6 3406
w8 1202 w8 1204
Data 1202 658B Data 1202 2E40
Program 00 3406 29 2E40 Program 00 3406 29 2E40
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 443

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

TBLWTH

Table Write High

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label:} TBLWTH{.B} Ws, [wd]
[Ws], [Wd++]
[Ws++], [Wd--]
[Ws--], [++Wd]
[++Ws], [--wd]
[--Ws],

Ws e [WO ... W15]
Wd € [WO ... W15]

For Byte Operation:

If (LSB(Wd) =1):
NOP
Else:

(Ws) — Program Mem [(TBLPAG),(Wd)]<23:16>

For Word Operation:
(Ws)<7:0> — Program Mem [(TBLPAG),(Wd)] <23:16>

None
‘ 1011 | 1011 | 1Bqq ‘ gddd ‘ dppp SSSS

Store the contents of the working source register Ws to the most significant word of program
memory. The destination word address of program memory is formed by concatenating the
8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address specified by Wd.
Either Direct or Indirect Addressing may be used for Ws and Indirect Addressing must be
used for Wd.

Since program memory is 24 bits wide, this instruction can only write to the upper byte of
program memory (PM<23:16>). This may be performed using a Wd that is word-aligned in
Byte mode or Word mode. If Byte mode is used with a Wd that is not word-aligned, no
operation is performed.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . Bin the instruction denotes a byte move rather than a word move.
You may use a . Wextension to denote a word move, but it is not required.

1
2(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 444

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Note:

Example 1: TBLWH. B [WO++], [W] ; Wite [W]... (Byte node)
; to PMLatch H gh (TBLPAG [W])
Post-i ncrenent W
Before After
Instruction Instruction
WO 0812 WO 0814
W1 OF70 W1 OF70
Data 0812 0944 Data 0812 EF44
Program 01 OF70 EF 2042 Program 01 OF70 44 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Note: Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.
Example 2: TBLWIH W6, [V8++] ; Wite Ws... (Word node)
; to PM Latch H gh (TBLPAG [W])
Post -i ncrenent W8
Before After
Instruction Instruction
W6 0026 W6 0026
W8 0870 w8 0872
Program 00 0870 22 3551 Program 00 0870 26 3551
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000

Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 445

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

TBLWTL

Table Write Low

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label:} TBLWTL{.B} Ws, [wd]
[Ws], [Wd++]
[Ws++], [Wd--]
[Ws--], [++Wd]
[++Ws], [--wd]
[--Ws],

Ws e [WO ... W15]
Wd € [WO ... W15]

For Byte Operation:
If (LSB(Wd) =1):
(Ws) —» Program Mem [(TBLPAG),(Wd)] <15:8>
Else:
(Ws) —» Program Mem [(TBLPAG),(Wd)] <7:0>
For Word Operation:
(Ws) —» Program Mem [(TBLPAG),(Wd)] <15:0>

None
‘ 1011 | 1011 ‘ 0Bqq | qddd | dppp SSSS

Store the contents of the working source register Ws to the least significant word of
program memory. The destination word address of program memory is formed by
concatenating the 8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address
specified by Wd. Either Direct or Indirect Addressing may be used for Ws and Indirect
Addressing must be used for Wd.

In Word mode, Ws is stored to the lower 2 bytes of program memory. In Byte mode, the
Least Significant bit of Wd determines the destination byte. If Wd is not word-aligned, Ws is
stored to the second byte of program memory (PM<15:8>). If Wd is word-aligned, Ws is
stored to the first byte of program memory (PM<7:0>).

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘g’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . B in the instruction denotes a byte move rather than a word
move. You may use a . Wextension to denote a word move, but it is not required.

1
2(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

DS70000157G-page 446

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: TBLWIL.B W), [Wi++] ; Wite W... (Byte node)
; to PM Latch Low (TBLPAG [W])
Post -i ncrement WL
Before After
Instruction Instruction
WO 6628 WO 6628
W1 1225 W1 1226
Program 00 1224 78 0080 Program 01 1224 78 2880
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000
Note: Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.
Example 2: TBLWIL [V8], [W8] ;. Wite [W]... (Word node)
; to PM Latch Low (TBLPAG [W8])
Post -i ncrement V8
Before After
Instruction Instruction
W6 1600 W6 1600
w8 7208 w8 7208
Data 1600 0130 Data 1600 0130
Program 01 7208 09 0002 Program 01 7208 09 0130
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Note: Only the program latch is written to. The contents of program memory

are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 447

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

ULNK

Deallocate Stack Frame

Implemented in:

Syntax:
Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C
X X X X
{label:} ULNK
None
W14 —» W15
(W15) -2 > W15
(TOS) » W14
None
1111 1010 1000 0000 0000 0000

This instruction deallocates a stack frame for a subroutine calling sequence. The stack
frame is deallocated by setting the Stack Pointer (W15) equal to the Frame Pointer (W14)
and then POPping the stack to reset the Frame Pointer (W14).

1
1

Example 1: ULNK
Before
Instruction
w14 2002
W15 20A2
Data 2000 2000
SR 0000
Example 2: ULNK
Before
Instruction
W14 0802
W15 0812
Data 0800 0800
SR 0000

W14

W15

Data 2000
SR

W14

W15

Data 0800
SR

Unlink the stack frane

After
Instruction

2000
2000
2000
0000

Unlink the stack frane

After
Instruction

0800
0800
0800
0000

DS70000157G-page 448

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

U L N K Deallocate Stack Frame
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X
Syntax: {label:} ULNK
Operands: None
Operation: W14 —» W15
(W15) -2 > W15
(TOS) > W14
0 — SFA bit
Status Affected: SFA
Encoding: 1111 1010 1000 0000 0000 | 0000 ‘
Description: This instruction deallocates a stack frame for a subroutine calling sequence. The stack

frame is deallocated by setting the Stack Pointer (W15) equal to the Frame Pointer
(W14) and then POPping the stack to reset the Frame Pointer (W14).

Words: 1
Cycles: 1
Example 1: ULNK ; Unlink the stack frane
Before After
Instruction Instruction
W14 2002 W14 2000
W15 20A2 W15 2000
Data 2000 2000 Data 2000 2000
SR 0000 SR 0000
Example 2: ULNK ; Unlink the stack frame
Before After
Instruction Instruction
w14 0802 W14 0800
W15 0812 W15 0800
Data 0800 0800 Data 0800 0800
SR 0000 SR 0000

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 449

16-Bit MCU and DSC Programmer’s Reference Manual

VFSLV

Verify Slave Processor Program RAM

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X

{label} VFSLV [Wns], [Wnd++], #lit2
[Wns++],

Whns e [WO ... W15];
Wnd e [WO ... W15];
lit2 € [0 ... 3];

If Master (EAs) ! = Slave EAd
Master VERFERR (MSIXSTAT<11>) =1

None

0000 0011 10kk 0ddd dopl SSSS

This instruction reads a single instruction word from the target Slave PRAM image (held
in the Master program space Flash) and compares it to the value in the Slave PRAM at
the destination address. The source address must be located within PSV address
space (i.e., DSRPAG > 0x200). The destination address uses DSWPAG and the
destination EA to create a 24-bit Slave program space PRAM write address.

Starting with an aligned double instruction word (destination address, see Note 1), the
contents of the source Effective Address (in Master program space) are compared with
the destination Effective Address (in the Slave PRAM address space) in order to verify
the PRAM contents.

If the (single instruction word) destination address is even, the data is captured in the
Slave PRAM wrapper. If the (single instruction word) destination address is odd, the
ECC parity bits are calculated from the current and captured source data (48 bits),
and compared. If the data and ECC parity are not the same, the

VERFERR (MSIxSTAT<11>) status bit is set.

The target Slave processor is selected by the value defined by lit2.

The instruction may be regarded as a PSV operation, and therefore, may be executed
within a REPEAT loop to accelerate data processing.

The ‘s’ bits select the address of the source register.

The ‘d’ bits select the address of the destination register.

The ‘K’ bits select the target Slave processor.

The ‘p’ bit selects the destination addressing mode (see Note 1).

Note 1: This instruction supports a subset of addressing modes. The source
addressing mode bit field is constrained to 2 options and the destination
addressing mode bit field is not required.

2: An aligned double instruction word destination address is an even address
that addresses the least significant word of a double instruction word.
3: This instruction only supports Word mode.

DS70000157G-page 450

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

XOR Exclusive OR f and WREG

Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X

Syntax: {label:} XOR{.B} f {,\WREG}

Operands: fel0..8191]

Operation: (f).XOR.(WREG) — destination designated by D

Status Affected: N, Z

Encoding: | 1011 | o110 | 1BD fref fEff ffff

Description: Compute the logical exclusive OR operation of the contents of the default Working

register WREG and the contents of the specified file register, and place the result in the
destination register. The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not specified, the result is
stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).

The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).

The f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation,
but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1@

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: XOR B Ox1FFF ; XOR (Ox1FFF) and WREG (Byte node)
Store result to Ox1FFF
Before After
Instruction Instruction
WREG (WO0)| 7804 WREG (W0)| 7804
Data 1FFE| 9439 Data 1FFE| 9039
SR| 0000 SR| 0008 [(N=1)

Example 2: XOR 0xA04, WREG ; XOR (0xA04) and WREG (Word node)
Store result to WREG

Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| C267
Data 0A04| A053 Data 0A04| A053
SR| 0000 SR| 0008 [(N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 451

16-Bit MCU and DSC Programmer’s Reference Manual

XOR

Exclusive OR Literal and Wn

Implemented in:

Syntax:
Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1: XOR B #0x23, W

Example 2: XOR #0x108, W

PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X

{label} XOR{B} #lit10, Wn

lit10 < [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

lit10.XOR.(Wn) — Wn
N, Z
\ 1011 \ 0010 \ 1Bkk | kkkk | kkkk | dddd

Compute the logical exclusive OR operation of the unsigned 10-bit literal operand and
the contents of the Working register Wn, and store the result back in the Working register
Whn. Register Direct Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension . Bin the instruction denotes a byte operation rather than a
word operation. You may use a . Wextension to denote a word operation, but it
is not required.

2: For byte operations, the literal must be specified as an unsigned value [0:255].

See Section 4.6 “Using 10-bit Literal Operands” for information on using
10-bit literal operands in Byte mode.

XOR 0x23 and W (Byte npde)
Store result to W

Before After
Instruction Instruction
W0| 7804 WO0| 7827
SR| 0000 SR| 0000

XOR 0x108 and WA (Word node)
Store result to W

Before After
Instruction Instruction
W4| 6134 W4| 603C
SR| 0000 SR| 0000

DS70000157G-page 452

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

XOR Exclusive OR Wb and Short Literal
Implemented in: PIC24F PIC24H PIC24E | dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C
X X X X X X X
Syntax: {label:} XOR{.B} Wb, #lit5, Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb).XORL.Iit5 - Wd
Status Affected: N, Z
Encoding: | 0110 | 1ww | wBqq qddd d11k kkkk
Description: Compute the logical exclusive OR operation of the contents of the base register Wb and

the unsigned 5-bit literal operand, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘K’ bits provide the literal operand, a 5-bit integer number.

Note: The extension . Bin the instruction denotes a byte operation rather than a word
operation. You may use a . Wextension to denote a word operation, but it is not

required.
Words: 1
Cycles: 1
Example 1: XOR B W, #0x14, Wb ; XOR W and 0x14 (Byte node)
Store result to Wb
Before After
Instruction Instruction

w4 C822 w4 C822

W5 1200 W5 1234

SR 0000 SR 0000

Example 2: XOR W2, #O0x1F, [W8++] ; XOR W2 by Ox1F (Wrd node)
; Store result to [W] 5
Post -i ncrement W8

Before After

Instruction Instruction (.? 5
wn
W2 8505 W2 8505 a f_%
w8 1004 w8 1006 %-C
Data 1004 6628 Data 1004 851A = 8
SR 0000 SR 0008 | (N=1) % g
wn

© 2005-2018 Microchip Technology Inc. DS70000157G-page 453

16-Bit MCU and DSC Programmer’s Reference Manual

XOR

Exclusive OR Wb and Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F |dsPIC33E |dsPIC33C

X X X X X X X
{label:} XOR{.B} Wb, Ws, Wwd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Wb € [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

(Wb).XOR.(Ws) - Wd
N, Z
‘ 0110 | Tvwwy ‘ wBqq gddd dppp SSSS

Compute the logical exclusive OR operation of the contents of the source register Ws and
the contents of the base register Wb, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note: The extension . Bin the instruction denotes a byte operation rather than a word
operation. You may use a . Wextension to denote a word operation, but it is not
required.

1
1@

Note 1: IndsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

DS70000157G-page 454

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: XOR B W, [Ws++], [V@++] ; XOR W and [W] (Byte node)
Store result to [W]
Post-increment Wb and W@

Before After
Instruction Instruction
W1 | AAAA W1 | AAAA
W5 2000 w5 2001
W9 2600 W9 2601
Data 2000 115A Data 2000 115A
Data 2600 0000 Data 2600 00F0
SR 0000 SR 0008 | (N=1)
Example 2: XOR W, W6, W ; XOR W and W6 (Word node)
Store the result to VW
Before After
Instruction Instruction
W1 | FEDC W1 | FEDC
W5 1234 W5 1234
W9 | A34D W9 | ECES8
SR 0000 SR 0008 | (N=1)

O _
D >
0w nm

—+
=S
oo
S5 5
"

© 2005-2018 Microchip Technology Inc. DS70000157G-page 455

16-Bit MCU and DSC Programmer’s Reference Manual

ZE

Zero-Extend Ws

Implemented in:

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

PIC24F PIC24H PIC24E dsPIC30F | dsPIC33F | dsPIC33E | dsPIC33C

X X X X X X X

{label:} ZE Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wnd e [WO ... W15]

Ws<7:0> — Wnd<7:0>
0 —» Wnd<15:8>

N,Z C

1111 1011 1000 0ddd dppp SSSs

Zero-extend the Least Significant Byte in source Working register Ws to a 16-bit value
and store the result in the destination Working register Wnd. Either Register Direct or
Indirect Addressing may be used for Ws and Register Direct Addressing must be used for
Wnd. The N flag is cleared and the C flag is set because the zero-extended word is
always positive.

The ‘d’ bits select the destination register.

The ‘p’ bits select the source addressing mode.

The ‘s’ bits select the source register.

Note 1: This operation converts a byte to a word and it uses no . B or . Wextension.

2: The source Ws is addressed as a byte operand, so any address modification is
by one.

1
1D

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

DS70000157G-page 456

© 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1: ZE VW8, W
Before
Instruction
W3| 7839
W4| 1005
SR| 0000
Example 2: ZE [We++], W2
Before
Instruction
W2 0900
W12| 1002
Data 0900| 268F
SR| 0000

zero-extend VB
Store result to Wt

After
Instruction

w3[7839
wWa4| 0039
SR| 0001 |(C=1)

; Zero-extend [W2]
Store to W2
Post -i ncrenment W2

After
Instruction

w2[0901

W12| 008F

Data 0900| 268F
SR| 0001 |(C=1)

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 457

o
D
0
9]
=.
©
=
)
)
)

=3
2]
—
=
c
O
=
@)
S5

16-Bit MCU and DSC Programmer’s Reference Manual

NOTES:

DS70000157G-page 458 © 2005-2018 Microchip Technology Inc.

MICROCHIP
Section 6. Built-in Functions

HIGHLIGHTS

This section of the manual contains the following major topics:

(70 I 1 (oY [UTx 1o [F P UURUORRN 460
6.2 BUilt-in FUNCHON LiSt......oooiieiiiiii e 461

© 2005-2018 Microchip Technology Inc. DS70000157G-page 459

oy
c
=3
L.
S
T
c
>
0
=
o
>
n

16-Bit MCU and DSC Programmer’s Reference Manual

6.1 INTRODUCTION

This section describes the built-in functions that are specific to the MPLAB® C Compiler for
PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30).

Built-in functions give the C programmer access to assembler operators or machine instructions
that are currently only accessible using in-line assembly, but are sufficiently useful that they are
applicable to a broad range of applications. Built-in functions are coded in C source files
syntactically like function calls, but they are compiled to assembly code that directly implements
the function and does not involve function calls or library routines.

There are a number of reasons why providing built-in functions is preferable to requiring
programmers to use in-line assembly. They include the following:

1. Providing built-in functions for specific purposes simplifies coding.

2. Certain optimizations are disabled when in-line assembly is used. This is not the case for
built-in functions.

3. For machine instructions that use dedicated registers, coding in-line assembly while
avoiding register allocation errors can require considerable care. The built-in functions
make this process simpler as you do not need to be concerned with the particular register
requirements for each individual machine instruction.

The built-in functions are listed below followed by their individual detailed descriptions.

+ __ builtin_addab * __ builtin_mpyn

+ _ builtin_add * _ builtin_msc

e builtin_btg e builtin_mulss

e builtin_clr e builtin_mulsu

* _ builtin_clIr_prefetch e builtin_mulus

« _ builtin_divf * __ builtin_muluu

* __ builtin_divmodsd * _ builtin_nop

+ __ builtin_divmodud » __ builtin_psvpage
* _ builtin_divsd e _ builtin_psvoffset
e _ builtin_divud e _ builtin_readsfr
* __ builtin_dmaoffset e _ builtin_return_address
+ _ builtin_ed * _ builtin_sac

* _ builtin_edac * _ builtin_sacr

* __ builtin_edsoffset » _ builtin_sftac

* _ builtin_edspage e builtin_subab

* _ builtin_fbcl e builtin_tbladdress
e builtin_lac e builtin_tblpage
* _ builtin_mac * __ builtin_tbloffset
* __ builtin_modsd * _ builtin_tbirdh

+ __ builtin_modud * _ builtin_tbirdl

* _ builtin_movsac e builtin_tblwth

e _ builtin_mpy e builtin_tblwtl

This section describes only the built-in functions related to the CPU operations. The compiler
provides additional built-in functions for operations, such as writing to Flash program memory
and changing the oscillator settings. Refer to the “MPLAB® C Compiler for PIC24 MCUs and
dsPIC® DSCs User’s Guide” (DS51284) for a complete list of compiler built-in functions.

DS70000157G-page 460 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

6.2 BUILT-IN FUNCTION LIST

This section describes the programmer interface to the compiler built-in functions. Since the
functions are “built-in”, there are no header files associated with them. Similarly, there are no
command-line switches associated with the built-in functions — they are always available. The
built-in function names are chosen such that they belong to the compiler’s namespace (they all
have the prefix: __bui I ti n_), so they will not conflict with function or variable names in the
programmer’s namespace.

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

__builtin_addab

Description:

Adds Accumulators A and B with the result written back to the specified accumulator. For
example:

register int result asn("A");
register int B asn("A");

result = _ builtin_addab(result, B);

will generate:

add A

Prototype:

int _ builtin_addab(int Accuma, int Accum.Db);
Argument:

Accum a First accumulator to add.
Accum b Second accumulator to add.

Return Value:

Returns the addition result to an accumulator.

Assembler Operator/Machine Instruction:

add

Error Messages:

An error message appears if the result is not an Accumulator register.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 461

16-Bit MCU and DSC Programmer’s Reference Manual

__builtin_add

Description:

Adds val ue to the accumulator specified by r esul t with a shift specified by literal shift. For
example:

register int result asn("A");

int val ue;

result = __builtin_add(result, val ue, 0);

If val ue is held in w0, the following will be generated:
add w0, #0, A
Prototype:

int __builtin_add(int Accumint val ue,
const int shift);
Argument:

Accum Accumulator to add.
val ue Integer number to add to accumulator value.
shift Amount to shift resultant accumulator value.

Return Value:

Returns the shifted addition result to an accumulator.
Assembler Operator/Machine Instruction:

add

Error Messages:

An error message appears if:

* The result is not an Accumulator register
« Argument 0 is not an accumulator
» The shift value is not a literal within range

DS70000157G-page 462 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

)
=3
_builtin_btg =
L
Description: L
This function will generate a bt g machine instruction. Some examples include: g
int i; /* near by default */ g'
int | __attribute__((far)); a

struct foo {
int bitl:1;
} barbits;

int bar;

voi d sone_bittoggles() {
register int j asm("wo");
int k;

k =1i;

__builtin_btg(& ,1);
__builtin_btg(&,3);
__builtin_btg(&k,4);
__builtin_btg(&, 11);

return j+k;
}

Note that taking the address of a variable in a register will produce a warning by the compiler
and cause the register to be saved onto the stack (so that its address may be taken); this form
is not recommended. This caution only applies to variables explicitly placed in registers by the
programmer.

Prototype:
void __builtin_btg(unsigned int *, unsigned int 0xn);
Argument:

* A pointer to the data item for which a bit should be toggled.
Oxn A literal value in the range of 0 to 15.

Return Value:

Returns a bt g machine instruction.

Assembler Operator/Machine Instruction:

bt g

Error Messages:

An error message appears if the parameter values are not within range.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 463

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_clr

Description:
Clears the specified accumulator. For example:

register int result asn("A");
result = __builtin_clr();

will generate:

clr A

Prototype:

int __builtin_clr(void);
Argument:

None.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:
clr
Error Messages:

An error message appears if the result is not an Accumulator register.

DS70000157G-page 464

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_clr_prefetch

Description:
Clears an accumulator and prefetch data ready for a future MAC operation.

xpt r may be null to signify no X prefetch to be performed; in which case, the values of xi ncr
and xval are ignored, but required.

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

ypt r may be null to signify no Y prefetch to be performed; in which case, the values of yi ncr
and yval are ignored, but required.

xval andyval nominate the address of a C variable where the prefetched value will be stored.
xi ncr and yi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non-null, the other accumulator will be written back into the referenced variable.

For example:

register int result asn("A");
register int B asn("B");

int x_menory_buf fer[256]
__attribute__((space(xmenory)));
int y_nenory_buffer[256]
__attribute__((space(ynmenory)));
int *Xmenory;

int *ynmenory;

int awb;

int xVal , yVal;

xmenory = x_nenory_buffer;

ymenory y_menory_buffer;

result __builtin_clr(&menory, &xVal, 2,
&menory, &yVal, 2, &awb, B);

May generate:
clr A [w8]+=2, w4, [wl0]+=2, wh, w13

The compiler may need to spill w13 to ensure that it is available for the Write-Back. It may be
recommended to users that the register be claimed for this purpose.

After this instruction:

* Result will be cleared

» xVal will contain x_menory_buf f er[0]

« yVal will containy_nenory_buffer[0]

« xmenory and ymenor y will be incremented by 2, ready for the next MAC operation
Prototype:

int __builtin_clr_prefetch(

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AWB,

int AWB_accum;

© 2005-2018 Microchip Technology Inc. DS70000157G-page 465

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_clr_prefetch (Continued)

Argument:

xptr Integer Pointer to X prefetch.

xval Integer value of X prefetch.

xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to Y prefetch.

yval Integer value of Y prefetch.

yi ncr Integer increment value of Y prefetch.
AVB Accumulator Write-Back location.

AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator/Machine Instruction:

clr

Error Messages:

An error message appears if:

* The result is not an Accumulator register

» xval is a null value but xpt r is not null

» yval is a null value but ypt r is not null

* AVB_accumis not an accumulator and AVB is not null

DS70000157G-page 466 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_divf

Description:

Computes the quotient: num/ den. A math error exception occurs if den is zero. Function
arguments are unsigned, as is the function result.

Prototype:

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

unsigned int _ _builtin_divf(unsigned int num
unsi gned int den);

Argument:

num Numerator.
den Denominator.

Return Value:

Returns the unsigned integer value of the quotient: num/ den.
Assembler Operator/Machine Instruction:

div.f

__builtin_di vhodsd

Description:

Issues the 16-bit architecture’s native signed divide support. Notably, if the quotient does not fit
into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture both the quotient and remainder.

Prototype:

signed int __builtin_di vmodsd(

signed | ong dividend, signed int divisor,
signed int *renainder);

Argument:
di vi dend Number to be divided.
di vi sor Number to divide by.

remai nder Pointer to remainder.

Return Value:

Quotient and remainder.

Assembler Operator/Machine Instruction:
di vrrodsd

Error Messages:

None.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 467

16-Bit MCU and DSC Programmer’s Reference Manual

__builtin_di vhodud

Description:

Issues the 16-bit architecture’s native unsigned divide support. Notably, if the quotient does not
fit into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture both the quotient and remainder.

Prototype:

unsigned int __builtin_di vhrodud(

unsi gned | ong dividend, unsigned int divisor,
unsi gned int *renai nder);

Argument:

di vi dend Number to be divided.
di vi sor Number to divide by.
r emai nder Pointer to remainder.

Return Value:

Quotient and remainder.

Assembler Operator/Machine Instruction:
di vmodud

Error Messages:

None.

__builtin_divsd

Description:

Computes the quotient: num/ den. A math error exception occurs if den is zero. Function
arguments are signed, as is the function result. The command-line option, - Weonver si ons,
can be used to detect unexpected sign conversions.

Prototype:
int __builtin_divsd(const |ong num const int den);
Argument:

num Numerator.
den Denominator.

Return Value:

Returns the signed integer value of the quotient: num/ den.
Assembler Operator/Machine Instruction:

div. sd

DS70000157G-page 468

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

09)
=
__builtin_divud =~
=
Description: L
Computes the quotient: num/ den. A math error exception occurs if den is zero. Function g
arguments are unsigned, as is the function result. The command-line option, - Weonver si ons, fan
can be used to detect unexpected sign conversions. g
Prototype:)
unsigned int _ _builtin_divud(const unsigned
| ong num const unsigned int den);
Argument:

num Numerator.
den Denominator.

Return Value:

Returns the unsigned integer value of the quotient: num/ den.
Assembler Operator/Machine Instruction:

div.ud

__builtin_dmaof f set

Description:
Obtains the offset of a symbol within DMA memory.

For example:

unsi gned int resul t;

char buffer[256] __attribute__((space(dm)));
result = _ _builtin_dmaoffset(&buffer);

May generate:

nov #dmaof f set (buffer), w0

Prototype:

unsigned int __builtin_dmaoffset(const void *p);
Argument:

*p Pointer to DMA address value.

Return Value:

Returns the offset to a variable located in DMA memory.
Assembler Operator/Machine Instruction:

dmaof f set

Error Messages:

An error message appears if the parameter is not the address of a global symbol.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 469

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_ed

Description:

Squares sqr, returning it as the result. Also prefetches data for future square operation by
computing **xptr -**yptr and storing the result in *di st ance.

xi ncr and yi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asn("A");

int *Xmenory, *ynenory,

int di st ance;

result = _ _builtin_ed(distance,
&menory, 2,
&ymenory, 2,
&di st ance) ;

May generate:
ed wva*w4, A [w8] +=2, [WL0] +=2, w4
Prototype:

int __builtin_ed(int sqr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

Argument:

sqr Integer squared value.

xptr Integer Pointer to pointer to X prefetch.
xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yi ncr Integer increment value of Y prefetch.

di stance Integer Pointer to distance.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the squared result to an accumulator.
Assembler Operator/Machine Instruction:
ed

Error Messages:

An error message appears if:

* The result is not an Accumulator register
« xptr isnull

« yptr isnull

« di stance is null

DS70000157G-page 470 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

09)
<
__builtin_edac =~
=
Description: c
Squares sqr and sums with the nominated Accumulator register, returning it as the result. Also g
prefetches data for future square operation by computing **xptr - **ypt r and storing the g-
result in *di st ance. S
xi ncr and yi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value. e
For example:
register int result asn("A");
int *Xmenory, *ynenory,
int di st ance;
result = __builtin_ed(result, distance,
&menory, 2,
&ynenory, 2,
&di st ance) ;

May generate:
edac w4*w4, A, [wB8]+=2, [WL0]+=2, w4
Prototype:

int __builtin_edac(int Accum int sqr,
int **xptr, int xincr, int **yptr, int yincr,
int *distance);

Argument:

Accum Accumulator to sum.

sqr Integer squared value.

xptr Integer Pointer to pointer to X prefetch.
xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yi ncr Integer increment value of Y prefetch.

di st ance Integer Pointer to distance.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the squared result to specified accumulator.
Assembler Operator/Machine Instruction:

edac

Error Messages:

An error message appears if:

* The result is not an Accumulator register
* Accumis not an Accumulator register

* xptr is null

* yptr isnull

» di stance is null

© 2005-2018 Microchip Technology Inc. DS70000157G-page 471

16-Bit MCU and DSC Programmer’s Reference Manual

__builtin_edsof fset

Description:

Returns the EDS page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in Extended Data Space; otherwise, an error
message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User's Guide” (DS51284).

Prototype:

unsigned int _ _builtin_edsoffset(int *p);

Argument:

p Object address.

Return Value:

Returns the EDS page number of the object whose address is given as a parameter
Assembler Operator/Machine Instruction:

edsof f set

__builtin_edspage

Description:

Returns the EDS page number of the object whose address is given as a parameter. The
argument p must be the address of an object in Extended Data Space; otherwise, an error
message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User's Guide” (DS51284).

Prototype:

unsigned int __builtin_edspage(int *p);

Argument:

p Object address.

Return Value:

Returns the EDS page number of the object whose address is given as a parameter.
Assembler Operator/Machine Instruction:

edspage

DS70000157G-page 472

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_fbcl

Description:

Finds the first bit change from left in value. This is useful for dynamic scaling of fixed-point data.
For example:

int result, value;
result = __builtin_fbcl (val ue);

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

May generate:

fbcl w4, w5

Prototype:

int __builtin_fbcl(int value);

Argument:

val ue Integer number of first bit change.

Return Value:

Returns the shifted addition result to an accumulator.
Assembler Operator/Machine Instruction:

f bel

Error Messages:

An error message appears if the result is not an Accumulator register.

_builtin_lac

Description:

Shifts value by shi ft (a literal between -8 and 7) and returns the value to be stored into the
Accumulator register. For example:

register int result asn("A");
int val ue;
result = __builtin_lac(val ue, 3);

May generate:

lac w4, #3, A

Prototype:

int __builtin_lac(int value, int shift);
Argument:

val ue Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted addition result to an accumulator.
Assembler Operator/Machine Instruction:

| ac

Error Messages:

An error message appears if:

* The result is not an Accumulator register
» The shift value is not a literal within range

© 2005-2018 Microchip Technology Inc. DS70000157G-page 473

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_mc

Description:

Computes a x b and sums with accumulator; also, prefetches data ready for a future MAC
operation.

xpt r may be null to signify no X prefetch to be performed; in which case, the values of xi ncr
and xval are ignored, but required.

ypt r may be null to signify no Y prefetch to be performed; in which case, the values of yi ncr
and yval are ignored, but required.

xval andyval nominate the address of a C variable where the prefetched value will be stored.
xi ncr andyi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non-null, the other accumulator will be written back into the referenced variable.

For example:

register int result asn("A");
register int B asm"B");

int *Xnmenory;

int *ynenory;

int xVal , yVal;

result = _ _builtin_mac(result, xVal, yVal,

&nenory, &xVal, 2,
&nenory, &Val, 2, 0, B);

May generate:

mac WA*ws, A, [w8] +=2, w4, [wl0]+=2, w5

Prototype:

int __builtin_mac(int Accum int a, int b,

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AWB,

int AWB_accum;

Argument:

Accum Accumulator to sum.

a Integer multiplicand.

b Integer multiplier.

xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yi ncr Integer increment value of Y prefetch.
AVB Accumulator Write-Back location.

AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator/Machine Instruction:

mac

DS70000157G-page 474

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_mac (Continued)

Error Messages:

An error message appears if:

* The result is not an Accumulator register

* Accumis not an Accumulator register

+ xval is a null value but xpt r is not null

» yval is a null value but ypt r is not null

* AVB_accumis not an Accumulator register and AVB is not null

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

© 2005-2018 Microchip Technology Inc. DS70000157G-page 475

16-Bit MCU and DSC Programmer’s Reference Manual

__builtin_nodsd

Description:

Issues the 16-bit architecture’s native signed divide support. Notably, if the quotient does not fit
into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture only the remainder.

Prototype:

signed int _ _builtin_nbdsd(signed |ong dividend,
signed int divisor);

Argument:

di vi dend Number to be divided.
di vi sor Number to divide by.

Return Value:

Remainder.

Assembler Operator/Machine Instruction:
nodsd

Error Messages:

None.

__builtin_nodud

Description:

Issues the 16-bit architecture’s native unsigned divide support. Notably, if the quotient does not
fit into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture only the remainder.

Prototype:

unsigned int __builtin_npbdud(unsigned | ong dividend,
unsi gned int divisor);

Argument:

di vi dend Number to be divided.
di vi sor Number to divide by.

Return Value:

Remainder.

Assembler Operator/Machine Instruction:
nmodud

Error Messages:

None.

DS70000157G-page 476 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_novsac

Description:
Computes nothing, but prefetches data ready for a future MAC operation.

xpt r may be null to signify no X prefetch to be performed; in which case, the values of xi ncr
and xval are ignored, but required.

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

ypt r may be null to signify no Y prefetch to be performed; in which case, the values of yi ncr
and yval are ignored, but required.

xval andyval nominate the address of a C variable where the prefetched value will be stored.
xi ncr and yi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
If AWB is not null, the other accumulator will be written back into the referenced variable.

For example:

register int result asn("A");

int *Xmenory;

int *ynmenory;

int xVal , yVal;

result = __builtin_novsac(&nenory, &xVal, 2,

&menmory, &yVal, 2, 0, 0);

May generate:

novsac A, [w8]+=2, w4, [wl0] +=2, w5
Prototype:

int __builtin_novsac(

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AWB
int AWB_accum;

Argument:

xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yi ncr Integer increment value of Y prefetch.
AVB Accumulator Write-Back location.

AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns prefetch data.

Assembler Operator/Machine Instruction:
novsac

Error Messages:

An error message appears if:

* The result is not an Accumulator register

+ xval is a null value but xpt r is not null

» yval is a null value but ypt r is not null

+ AVB_accumis not an Accumulator register and AVB is not null

© 2005-2018 Microchip Technology Inc. DS70000157G-page 477

16-Bit MCU and DSC Programmer’s Reference Manual

__bui Il tin_nmpy

Description:
Computes a x b; also, prefetches data ready for a future MAC operation.

xpt r may be null to signify no X prefetch to be performed; in which case, the values of xi ncr
and xval are ignored, but required.

ypt r may be null to signify no Y prefetch to be performed; in which case, the values of yi ncr
and yval are ignored, but required.

xval andyval nominate the address of a C variable where the prefetched value will be stored.

xi ncr andyi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asn("A");

int *Xnmenory;

int *ynenory;

int xVal , yVal;

result = __builtin_nmpy(xVal, yVal,
&menory, &xVal, 2,
& menory, &yVal, 2);

May generate:

mac wA*ws, A [w8]+=2, w4, [wl0] +=2, w5

Prototype:

int __builtin_npy(int a, int b,

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr);

Argument:

a Integer multiplicand.

b Integer multiplier.

xptr Integer Pointer to pointer to X prefetch.

xval Integer Pointer to value of X prefetch.

xi ncr Integer increment value of X prefetch.

yptr Integer Pointer to pointer to Y prefetch.

yval Integer Pointer to value of Y prefetch.

yi ncr Integer increment value of Y prefetch.

AVB Integer Pointer to accumulator selection.

Note:

The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator/Machine Instruction:

nmpy

Error Messages:

An error message appears if:

* The result is not an Accumulator register
« xval is a null value but xpt r is not null
« yval is a null value but ypt r is not null

DS70000157G-page 478

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_nmpyn

Description:
Computes -a x b; also, prefetches data ready for a future MAC operation.

xpt r may be null to signify no X prefetch to be performed; in which case, the values of xi ncr
and xval are ignored, but required.

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

ypt r may be null to signify no Y prefetch to be performed; in which case, the values of yi ncr
and yval are ignored, but required.

xval andyval nominate the address of a C variable where the prefetched value will be stored.

xi ncr and yi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asn("A");

int *Xnmenory;

int *ynmenory;

int xVal , yVal;

result = __builtin_nmpy(xVal, yVal,

&nmenory, &xVal, 2,
& menory, &yVal, 2);

May generate:
mac WA*ws, A, [w8] +=2, w4, [wl0]+=2, w5

Prototype:

int __builtin_npyn(int a, int b,

int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr);
Argument:

a Integer multiplicand.

b Integer multiplier.

xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yi ncr Integer increment value of Y prefetch.
AVB Integer Pointer to accumulator selection.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator/Machine Instruction:

npyn

Error Messages:

An error message appears if:

* The result is not an Accumulator register
« xval is a null value but xpt r is not null
« yval is a null value but ypt r is not null

© 2005-2018 Microchip Technology Inc. DS70000157G-page 479

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_nsc

Description:

Computes a x b and subtracts from accumulator; also, prefetches data ready for a future MAC
operation.

xpt r may be null to signify no X prefetch to be performed; in which case, the values of xi ncr
and xval are ignored, but required.

ypt r may be null to signify no Y prefetch to be performed; in which case, the values of yi ncr
and yval are ignored, but required.

xval andyval nominate the address of a C variable where the prefetched value will be stored.
xi ncr and yi ncr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
If AWB is non-null, the other accumulator will be written back into the referenced variable.

For example:

register int result asn("A");

int *Xmenory;

i nt *ynenory;

int xVal , yVval;

result = _ _builtin_msc(result, xVal, yVal,

&nenory, &xVal, 2,
&menory, &yVal, 2, 0, 0);

May generate:
mec wA*ws, A, [w8]+=2, w4, [wl0] +=2, w5

Prototype:
int __builtin_nsc(int Accum int a, int b,
int **xptr, int *xval, int xincr,

int **yptr, int *yval, int yincr, int *AWB,
int AWB_accum;

Argument:

Accum Accumulator to sum.

a Integer multiplicand.

b Integer multiplier.

xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xi ncr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yi ncr Integer increment value of Y prefetch.
AVB Accumulator Write-Back location.

AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.
Assembler Operator/Machine Instruction:

nsc

DS70000157G-page 480

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_msc (Continued)

Error Messages:

An error message appears if:

* The result is not an Accumulator register

* Accum is not an Accumulator register

« xval is a null value but xpt r is not null

« yval is a null value but ypt r is not null

* AVB_accumis not an Accumulator register and AVB is not null

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

© 2005-2018 Microchip Technology Inc. DS70000157G-page 481

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_mul ss

Description:

Computes the product p0 x p1. Function arguments are signed integers and the function result
is a signed long integer. The command-line option, - Weonver si ons, can be used to detect
unexpected sign conversions.

Prototype:
signed long __builtin_nul ss(const signed int pO, const signed int pl);
Argument:

pO Multiplicand.
pl Multiplier.

Return Value:

Returns the signed long integer value of the product p0 x p1.
Assembler Operator/Machine Instruction:

mul . ss

_builtin_mul su

Description:

Computes the product p0 x pl. Function arguments are integers with mixed signs and the
function result is a signed long integer. The command-line option, - Weonver si ons, can be
used to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction, including Immediate mode for operand p1.

Prototype:
signed long __builtin_mul su(const signed int pO, const unsigned int pl);
Argument:

pO Multiplicand.
pl Multiplier.

Return Value:

Returns the signed long integer value of the product p0 x p1.
Assembler Operator/Machine Instruction:

mul . su

DS70000157G-page 482

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_mulus

Description:

Computes the product pO x pl. Function arguments are integers with mixed signs and the
function result is a signed long integer. The command-line option, - Weonver si ons, can be
used to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction.

Prototype:

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

signed long __builtin_nmulus(const unsigned int pO, const signed int pl);
Argument:

pO Multiplicand.
pl Multiplier.

Return Value:
Returns the signed long integer value of the product p0 x p1.
Assembler Operator/Machine Instruction:

mul . us

_builtin_muluu

Description:

Computes the product p0 x pl. Function arguments are unsigned integers and the function
result is an unsigned long integer. The command-line option, - Wonver si ons, can be used to
detect unexpected sign conversions. This function supports the full range of addressing modes
of the instruction, including Immediate mode for operand p1.

Prototype:
unsi gned long _ builtin_mul uu(const unsigned int p0, const unsigned int pl);
Argument:

pO Multiplicand.
pl Multiplier.

Return Value:
Returns the signed long integer value of the product p0 x p1.
Assembler Operator/Machine Instruction:

mul . uu

© 2005-2018 Microchip Technology Inc. DS70000157G-page 483

16-Bit MCU and DSC Programmer’s Reference Manual

__builtin_nop

Description:

Generates a NOP instruction.

Prototype:

void __builtin_nop(void);
Argument:

None.

Return Value:

Returns a no operation (NOP).

Assembler Operator/Machine Instruction:
NOP

__builtin_psvoffset

Description:

Returns the PSV page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User's Guide” (DS51284).

Prototype:

unsigned int __builtin_psvoffset(const void *p);

Argument:

p Object address.

Return Value:

Returns the PSV page number offset of the object whose address is given as a parameter.
Assembler Operator/Machine Instruction:

psvof f set

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __bui I ti n_psvoffset () is not the address of an object in code, PSV or
EE data section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsi gned page = __builtin_psvoffset(&obj);

DS70000157G-page 484 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_psvpage

Description:

Returns the PSV page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User's Guide” (DS51284).

Prototype:

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

unsigned int __builtin_psvpage(const void *p);

Argument:

p Object address.

Return Value:

Returns the PSV page number of the object whose address is given as a parameter.
Assembler Operator/Machine Instruction:

psvpage

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argumentto __bui | ti n_psvpage() is notthe address of an object in code, PSV or EE data
section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsi gned page = __builtin_psvpage(&obj);

_builtin_readsfr

Description:

Reads the SFR.

Prototype:

unsigned int _ _builtin_readsfr(const void *p);
Argument:

p Object address.

Return Value:

Returns the SFR.

Assembler Operator/Machine Instruction:

readsfr

© 2005-2018 Microchip Technology Inc. DS70000157G-page 485

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_return_address

Description:

Returns the return address of the current function or of one of its callers. For the | evel
argument, a value of 0 yields the return address of the current function, a value of 1 yields the
return address of the caller of the current function, and so forth. When | evel exceeds the
current stack depth, 0 will be returned. This function should only be used with a non-zero
argument for debugging purposes.

Prototype:

int __builtin_return_address (const int level);
Argument:

| evel Number of frames to scan up the call stack.

Return Value:

Returns the return address of the current function or of one of its callers.
Assembler Operator/Machine Instruction:

return_address

__builtin_sac

Description:
Shifts value by shi f t (a literal between -8 and 7) and returns the value.

For example:

register int value asn("A");

int result;

result = _ _builtin_sac(val ue, 3);

May generate:

sac A #3, W

Prototype:

int __builtin_sac(int value, int shift);
Argument:

val ue Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted result to an accumulator.
Assembler Operator/Machine Instruction:
sac

Error Messages:

An error message appears if:

* The result is not an Accumulator register
» The shift value is not a literal within range

DS70000157G-page 486

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_sacr

Description:

Shifts value by shi f t (a literal between -8 and 7) and returns the value, which is rounded using
the Rounding mode determined by the RND (CORCON<1>) control bit.

For example:

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

regi ster int value asn{("A");
int result;

result = __builtin_sac(val ue, 3);

May generate:

sac.r A #3, w0

Prototype:

int __builtin_sacr(int value, int shift);
Argument:

val ue Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted result to the CORCON register.
Assembler Operator/Machine Instruction:

sacr

Error Messages:

An error message appears if:

* The result is not an Accumulator register
» The shift value is not a literal within range

© 2005-2018 Microchip Technology Inc. DS70000157G-page 487

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_sftac

Description:
Shifts accumulator by shi f t . The valid shift range is -16 to 16.

For example:

register int result asn("A");

int i;

result = _builtin_sftac(result,i);

May generate:

sftac A, w0

Prototype:

int __builtin_sftac(int Accum int shift);
Argument:

Accum Accumulator to shift.
shift Amount to shift.

Return Value:

Returns the shifted result to an accumulator.
Assembler Operator/Machine Instruction:
sftac

Error Messages:

An error message appears if:

* The result is not an Accumulator register
* Accumis not an Accumulator register
» The shift value is not a literal within range

DS70000157G-page 488 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

09)
. . c
__builtin_subab =
T
=
Description: T
. . . c
Subtracts Accumulators A and B with the result written back to the specified accumulator. For S
example: Q
register int result asn("A"); g
register int B asn("B");)
result = __builtin_subab(result, B);
Will generate:
sub A
Prototype:
int __ builtin_subab(int Accuma, int Accumb);
Argument:

Accuma Accumulator from which to subtract.
Accum b Accumulator to subtract.

Return Value:

Returns the subtraction result to an accumulator.

Assembler Operator/Machine Instruction:

sub

Error Messages:

An error message appears if the result is not an Accumulator register.

__builtin_tbl address

Description:

Returns a value that represents the address of an object in program memory. The argument p
must be the address of an object in an EE data, PSV or executable memory space; otherwise,
an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsi gned long __builtin_tbl page(const void *p);

Argument:

p Object address.

Return Value:

Returns an unsi gned | ong value that represents the address of an object in program memory.
Assembler Operator/Machine Instruction:

t bl addr ess

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __bui I ti n_t bl addr ess() is not the address of an object in code, PSV or
EE data section”.

The argument must be an explicit object address.
For example, if obj is an object in an executable or read-only section, the following syntax is valid:
unsi gned | ong page = __builtin_tbl address(&obj);

© 2005-2018 Microchip Technology Inc. DS70000157G-page 489

16-Bit MCU and DSC Programmer’s Reference Manual

__builtin_tbl of fset

Description:

Returns the table page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User's Guide” (DS51284).

Prototype:

unsigned int __builtin_tbloffset(const void *p);

Argument:

p Object address.

Return Value:

Returns the table page number offset of the object whose address is given as a parameter.
Assembler Operator/Machine Instruction:

t bl of f set

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tbl of fset () is not the address of an object in code, PSV or
EE data section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsi gned page = __builtin_tbl of fset(&obj);

DS70000157G-page 490

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

__builtin_tbl page

Description:

Returns the table page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User's Guide” (DS51284).

Prototype:

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

unsigned int _ _builtin_tbl page(const void *p);

Argument:

p Object address.

Return Value:

Returns the table page number of the object whose address is given as a parameter.
Assembler Operator/Machine Instruction:

t bl page

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argumentto __bui | ti n_t bl page() is notthe address of an object in code, PSV or EE data
section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsi gned page = __builtin_tbl page(&obj);

_builtin_tblrdh

Description:

Issues the TBLRDH. Winstruction to read a word from Flash or EE data memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and __builtin_tbl page().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

unsigned int __builtin_tblrdh(unsigned int offset);
Argument:

of f set Desired memory offset.

Return Value:

None.

Assembler Operator/Machine Instruction:

t bl rdh

Error Messages:

None.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 491

16-Bit MCU and DSC Programmer’s Reference Manual

_builtin_tblrdl

Description:

Issues the TBLRDL. Winstruction to read a word from Flash or EE data memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and__builtin_tbl page().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

unsigned int _ _builtin_tblrdl (unsigned int offset);
Argument:

of f set Desired memory offset.

Return Value:

None.

Assembler Operator/Machine Instruction:

tbl rdl

Error Messages:

None.

_builtin_tblwth

Description:

Issues the TBLWI'H. Winstruction to write a word to Flash or EE data memory. You must set up
the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and __builtin_tbl page().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

voi d ___builtin_tblwth(unsigned int offset
unsi gned int data);

Argument:

of f set Desired memory offset.
dat a Data to be written.

Return Value:

None.

Assembler Operator/Machine Instruction:
tblwth

Error Messages:

None.

DS70000157G-page 492

© 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

_builtin_tblwtl

Description:

Issues the TBLRDL. Winstruction to write a word to Flash or EE data memory. You must set up
the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and __builtin_tbl page().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

oy)
=3
=
..
=
T
c
=
0
=
o
S
”

Prototype:

voi d __builtin_tblwtl (unsigned int offset
unsi gned int data);

Argument:

of f set Desired memory offset.
data Data to be written.

Return Value:

None.

Assembler Operator/Machine Instruction:
tblwtl

Error Messages:

None.

© 2005-2018 Microchip Technology Inc. DS70000157G-page 493

16-Bit MCU and DSC Programmer’s Reference Manual

Example 6-1: Additional In-Line Functions

#i ncl ude " p33fxxxx. h"
vol atile | ong Resul t _npy1616;
vol atil e | ong Resul t _addab;
vol atile | ong Resul t _subab;
vol atil e | ong Resul t _npy3216;
vol atile | ong Resul t _di v3216;
register i nt Accu_A asm("A");
register int Accu_B asm("B");
inline static long npy_32_16 (long, int);
inline static long npy_32_16 (long x, int y)
| ong result;
int tenmpl, tenp2;
templ = (x>>1) &0x7FFF;
tenp2 = x>>16;
Accu_A = __builtin_npy (tenpl, y, 0,0,0,0,0,0);
Accu_A = __builtin_sftac (15);
Accu_A = __builtin_mac (tenp2, y, 0,0,0,0,0,0,0);
asn("mov _ACCAL, %0\ n\t"
"mov _ACCAH, %d0" : "=r"(result) : "wW' (Accu_A));
return result;
}
int main (void)
{
/1 Variabl e declarations
i nt I nput 1;
i nt I nput 2;
i nt I nput 3;
i nt I nput 4;
| ong I nput 5;
i nt I nput 6;
| ong I nput 7;
int I nput 8;
/'l Enable 32-bit saturation, signed and fractional nodes for both ACCA
and ACCB
CORCON = 0x00C0;
/] Exanple of 16*16-bit fractional nultiplication using ACCA
I nputl = 32767,
I nput2 = 32767,
Accu_A = __builtin_npy (Inputl, Input2, 0,0,0,0,0,0);
asnm("nmov _ACCAL, %9\ n\t"
"mov _ACCAH, %0" : "=r"(Result_npy1616) : "w'(Accu_A));
/1 Exanple of 16*16-bit fractional multiplication using ACCB
I nput3 = 16384,
I nput4 = 16384;
Accu_B = __builtin_npy (Input3, Input4, 0,0,0,0,0,0);
asnm("nmov _ACCBL, %9\ n\t"
"mov _ACCBH, %d0" : "=r"(Result_npy1616) : "w'(Accu_B));
/1 Exanple of 32-bit addition using ACCA (ACCA = ACCA + ACCB)
Accu_A = __builtin_addab();
asnm("nmov _ACCAL, %0\ n\t"
"mov _ACCAH, %0" : "=r"(Result_addab) : "w'(Accu_A));
/1 Exanpl e of 32-bit subtraction using ACCB (ACCB = ACCB - ACCA)
Accu_B = __builtin_subab();
asm("rmov _ACCBL, %0\ n\t"
"mov _ACCBH, %0" : "=r"(Result_subab) : "w'(Accu_B));
/] Exanple of 32*16-bit fractional nultiplication using ACCA
I nput5 = Ox7FFFFFFF;
I nput 6 = 32767,
Resul t _npy3216 = npy_32_16 (lnput5, |nput6);
while(1);
}

DS70000157G-page 494 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions

Example 6-2: Divide_32_by_16 o8]
#i ncl ude <p33Fxxxx. h> =
#i ncl ude "di vi de. h" -

=

_FOSCSEL(FNOSC_FRO) ; T
_FOSC(FCKSM _CSDCMD & OSCl OFNC_OFF & POSCVD_NONE) ; c
_PWDT(FWDTEN_OFF) ; g
=

unsi gned int divide_(long a, int b) { o
uni on convert { a

unsigned | ong |;
unsigned int i[2];
} ¢

int si gn;
unsigned int result;

c.l = g
sign = c.i[1] " b;

if (a<0) a=(-a);
if (b <0) b=-b;

result = _ builtin_divud(a,b);
result >>= 1,
if (sign <0) result = -result;
return result;
}
int mai n(voi d)
{
unsigned long dividend;
unsi gned i nt di vi sor;
unsi gned i nt quotient;
di vi dend = Ox3FFFFFFF;
di vi sor = OX7FFF;
quoti ent = divide_((long)dividend, (int)divisor);
while(1);
}

© 2005-2018 Microchip Technology Inc. DS70000157G-page 495

16-Bit MCU and DSC Programmer’s Reference Manual

NOTES:

DS70000157G-page 496 © 2005-2018 Microchip Technology Inc.

MICROCHIP

Section 7. Reference

HIGHLIGHTS

This section of the manual contains the following major topics:

% B 11 (U T3 T I = 1 /=T oL SO 498
7.2 Instruction Set SUMMary Tablecccooiiiiiii i 501
7.3 REVISION HISIOMY ...ceiiiiiei e 511

RY
@
=
@
<
@
>
)
@

© 2005-2018 Microchip Technology Inc. DS70000157G-page 497

16-Bit MCU and DSC Programmer’s Reference Manual

7.1 INSTRUCTION BIT MAP

Instruction encoding for the 16-bit MCU and DSC family devices is summarized in Table 7-1. This
table contains the encoding for the MSB of each instruction. The first column in the table
represents bits<23:20> of the opcode and the first row of the table represents bits 19:16 of the
opcode. The first byte of the opcode is formed by taking the first column bit value and appending
the first row bit value. For instance, the MSB of the PUSH instruction (last row, ninth column) is
encoded with ‘11111000b’ (OxF8).

Note: The complete opcode for each instruction may be determined by the instruction
descriptions in Section 5. “Instruction Descriptions”, using Table 5-1 through
Table 5-15.

DS70000157G-page 498 © 2005-2018 Microchip Technology Inc.

"ou] ABojouyos | dIyd010IN 810Z-G00Z ©

66% 9bed-9/5,0000.5d

Table 7-1: Instruction Encoding
Opcode<19:16>
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 | NOP BRA CALL | LDSLV® | GOTO | RETLW RETFIE RCALL po® REPEAT | BFEXT® = BRAM | BRA® BRAMY BRAM
CALL VFSLV®) RETURN BFINS®) (OA) (OB) (SA) (SB)
GOTO
RCALL
0001 SUBR SUBBR
0010 MOV
0011 | BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA BRA —
(ov) (€) 2 (N) (LE) (LT) (LEU) (NOV) (NC) (NZ) (NN) (GT) (GE) (GTU)
0100 ADD ADDC
0101 SuB SUBB
A 0110 AND XOR
& | o1 IOR MOV
S [1000 MOV
g | 1001 MOV
§ 1010 | BSET | BCLR BTG BTST BTSTS | BTST BTSS BTSC BSET BCLR BTG BTST BTSTS BSW BTSS BTSC
1011 | ADD SuB AND IOR ADD SuB AND IOR MUL.US MUL.SS | TBLRDH | TBLWTH MUL SuB MOV.D MOV
ADDC | SUBB | XOR MOV ADDC SUBB XOR MOV MUL.UU MUL.SU | TBLRDL | TBLWTL SUBB
1100 MAC® CLRAC® MAC® MOVSAC®) SFTAC® ADDW LAC® ADDW sAc® | sac.RM MAX®) FF1L
MPY® MPY® LAC.D® NEG® | sac.D® MAX.V® FF1R
MPY.N® MPY.N®) sus® MIN®)
msc® msc® MIN.VE®
MINZ™)
MINZ.V®)
NORM®
1101 SL ASR RLC RRC SL ASR RLC RRC DIV.S DIVF() = = = SL ASR FBCL
LSR RLNC | RRNC LSR RLNC RRNC DIV.U DIVF2®) LSR
DIV2.5®
DIV2.U®
Note 1: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C family devices.
2: This instruction is only available in PIC24E and dsPIC33E family devices.
3: This instruction is only available in dsPIC33C and some dsPIC33E family devices.
4: This instruction is only available in dsPIC33C family devices.
5: This instruction is only available in some dsPIC33C, dsPIC33E and PIC24F family devices.

SRIVISHISHIS Mo

9dUvl9jay '/ UOI1d=S

005 8b6ed-9/510000.SA

"oul ABojouyos | diyoosdlN 8102-500Z @

Table 7-1: Instruction Encoding (Continued)
Opcode<19:16>
0000 0001 0010 0011 0100 ‘ 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1110 | CPO cP CPO cP FLIM®) CcPBGT® | cPBeQ® INC DEC COM CLR INC DEC COM CLR
CPB CPB FLIM.V®) CPBLT® | CPBNE®@ INC2 DEC2 NEG SETM INC2 DEC2 NEG SETM
CPSGT CPSEQ
é CPSLT CPSNE
g | 1111 EDW — — — — PUSH POP LNK SE DISI DAW | BOOTSWP® | NOPR
Y EDACW ULNK ZE EXCH | CLRWDT
S MAC®) SWAP | CTXTSWP®
S MPY® MOVPAG®
e PWRSAV
POP.S
PUSH.S
RESET
Note 1: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C family devices.
2: This instruction is only available in PIC24E and dsPIC33E family devices.
3: This instruction is only available in dsPIC33C and some dsPIC33E family devices.
4: This instruction is only available in dsPIC33C family devices.
5: This instruction is only available in some dsPIC33C, dsPIC33E and PIC24F family devices.

[enuep adualiajay s, Jawweiboid DS pue NON 1g-9T

"ou] ABojouyos | dIyd0IIN 810Z-G00Z ©

10g @bed-9,510000.SA

7.2 INSTRUCTION SET SUMMARY TABLE
The complete 16-bit MCU and DSC device instruction set is summarized in Table 7-2. This table contains an alphabetized listing of the
instruction set. It includes instruction assembly syntax, description, size (in 24-bit words), execution time (in instruction cycles), affected
Status bits and the page number in which the detailed description can be found. Table 1-2 identifies the symbols that are used in the
Instruction Set Summary Table.
Note: The instruction cycle counts listed here are for PIC24F, PIC24H, dsPIC30F and dsPIC33F devices. Some instructions require
additional cycles in PIC24E and dsPIC33E devices. Refer to Section 3.3 “Instruction Set Summary Tables” and
Section 5.4 “Instruction Descriptions” for details.
Table 7-2: Instruction Set Summary Table
" r’?snii':iz"yospye':;x s Description Words | Cycles | 0A® | 0B®@ |sA®2|sB(2|0aB@|sABE?| Dc | N | ov | z | ¢C Nﬁﬁngeer
ADD f {, WVREG Destination = f + WREG 1 1 — — — — — — k3 ¢ k3 ¢ k3 102
ADD #it10, Wh Wn =1it10 + Wn 1 1 — — — — — — k)3 k)3 k)3 ¢ k)3 103
ADD W, #it5 W Wd = Wb + 1its 1 1 — — — — — — 3 $ g ¢ ¢ 105
ADD W, V¢, Wi Wd = Wb + Ws 1 1 — — — — — — 3 $ $ g g 105
ADD Acc® Add Accumulators 1 1 8 8 ¢ ¢ g Iy S [I N — 107
ADD V&, #Sl i t 4, Acc 16-Bit Signed Add to Accumulator 1 1 ¢ ¢ i) i ¢ i — — — — — 108
ADDC f {, WREG Destination = f + WREG + (C) 1 1 — | = — — — — $ 8 $ 3 $ 110
ADDC #it10, Wh Wn =1it10 + Wn + (C) 1 1 — — — — — — 3 $ $ ¢ ¢ 11
ADDC Wb, #lit5, W Wd = Wb + [it5 + (C) 1 1 — — — — — — k)3 k)3 k)3 4 k)3 112
ADDC W, V¢, Wi Wd =Wb + Ws + (C) 1 1 — — — — — — 3 $ $ ’ g 114
AND f {, WVREG Destination = f .AND. WREG 1 1 — — — — — — — ¢ — ¢ — 116
AND #1110, Wh Whn =1it10 .AND. Wn 1 1 — — — — — — — ¢ — ¢ — 117
AND Wb, #lit5, W Wd = Wb .AND. lit5 1 1 — — — — — — — ¢ — ¢ — 118
AND Vb, V&, Wi Wd = Wb .AND. Ws 1 1 — — — — — — — ¢ — k)3 — 119
ASR f {, WVREG Destination = Arithmetic Right Shift f, LSb — C 1 1 — — — — — — — k13 — k13 k13 121
ASR Ve, W Wd = Arithmetic Right Shift Ws, LSb — C 1 1 — — — — — — — k)3 — k)3 k3 123
ASR Wb, #lit4, wid Wnd = Arithmetic Right Shift Wb by lit4, LSb — C 1 1 — — — — — — — ¢ — ¢ — 125
ASR W, Wis, Wid Wnd = Arithmetic Right Shift Wb by Wns, LSb — C 1 1 — — — — — — — ¢ — k3 — 126
BCLR f,#bit4 Bit Clear f 1 1 — — — — — — — — — — — 127
Legend: ¢ setorcleared; { may be cleared, but never set; @ may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.
2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

SRIVISHISHIS Mo

9dUvl9jay '/ UOI1d=S

Z0s 8bed-9/510000.Sa

"ou| ABojouyoa] diyoololN 81.02-500Z @

Table 7-2: Instruction Set Summary Table (Continued)
" ?j{iiwiz"yoiye':ﬁd s Description Words | Cycles | OA® | 0B@ | sAL2)|sp2| 0AB@ | sABL2| DC ov Niﬁﬁfer

BCLR V§, #bi t 4 Bit Clear Ws 1 1 — — — — — — — — 128
BFEXT #bi t 4, #wi d5, V&, Vb(?) Bit Field Extract from Ws to Wb 2 2 — — — — — — — — 130
BFEXT #bit 4, #wi d5, f, Ww(? Bit Field Extract from f to Wb 2 2 — | = — — — — — — 131
BFINS #bit 4, #wi d5, Wb, V() Bit Field Insert from Wb into Ws 2 2 — | = — — — — — — 132
BFINS #bit4, #wids W, O Bit Field Insert from Wb into f 2 2 — | - | = | = — — — — 133
BFI NS #bi t 4, #wi d5, #l i t 8, V&) Bit Field Insert from #lit8 into Ws 2 2 — — — — — — — — 134
BaOTSWP) Swap Active and Inactive Program Flash Spaces 1 2 — — — — — —_ —_ — 135
BRA Expr Branch Unconditionally 1 2 — — — — — — — — 136
BRA wi® Computed Branch 1 2 — — — — — — — —_ 137
BRA wi® Computed Branch 1 2 — — — — — — — — 138
BRA C Expr Branch if Carry 1 1(2) — — — — — — — — 139
BRA GE Expr Branch if Signed Greater Than or Equal 1 1(2) — — — — — — — _ 141
BRA GEU Expr Branch if Unsigned Greater Than or Equal 1 1(2) — — — — — — — — 142
BRA GI' Expr Branch if Signed Greater Than 1 1(2) — — — — — — — — 143
BRA GIU Expr Branch if Unsigned Greater Than 1 1(2) — — — — — — — — 144
BRA LE Expr Branch if Signed Less Than or Equal 1 1(2) — — — — — — — _ 145
BRA LEU Expr Branch if Unsigned Less Than or Equal 1 1(2) — — — — — — — — 146
BRA LT Expr Branch if Signed Less Than 1 1(2) — — — — — — — — 147
BRA LTU Expr Branch if Unsigned Less Than 1 1(2) — — — — — — — — 148
BRA N Expr Branch if Negative 1 1(2) — — — — — — — — 149
BRA NC Expr Branch if Not Carry 1 1(2) — — — — — — — — 150
BRA NN Expr Branch if Not Negative 1 1(2) — — — — — — — — 151
BRA NOV Expr Branch if Not Overflow 1 1(2) — — — — — — — — 152
BRA NZ Expr Branch if Not Zero 1 1(2) — — — — — — — — 153
BRA QA Expr @ Branch if Accumulator A Overflow 1 1(2) — — — — — — — — 154
BRA B Expr @ Branch if Accumulator B Overflow 1 1(2) — — — — — — — — 155
BRA OV Expr Branch if Overflow 1 1(2) — — — — — — — — 156
BRA SA Expr @ Branch if Accumulator A Saturation 1 1(2) — — — — — . . _ 157
BRA SB Expr @ Branch if Accumulator B Saturation 1 1(2) — — — — — . . _ 158
BRA Z Expr Branch if Zero 1 1(2) — — — — — — — — 159
BSET f,#bit4 Bit Setin f 1 1 — — — — —_ — — — 160
Legend: ¢ setorcleared; I may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.

5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

7: These instructions are only available in dsPIC33C devices.

8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).

9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

[enuep adualiajay s, Jawweiboid DS pue NON 1g-9T

ou| ABojouyoa | diyoosolN 81.02-5002 ©®

€0g 9bed-9/51,0000.5d

Table 7-2: Instruction Set Summary Table (Continued)
M r’?:;iwi%"yospye“r;xd < Description Words | Cycles | 0A® | 0B@ |sa1:2 |sB(12 |0aB@ |sAB@2| Dc | N |ov | z | C Nﬁrangbeer
BSET ¢, #bi t 4 Bit Set in Ws 1 1 —_ —_ —_ — — — — — — — — 161
BSW Vé, W Bit Write in Ws<Wb> 1 1 — — — — — — — — — — — 163
BTG f,#bit4 Bit Toggle in f 1 1 — — — — — — — — — — — 165
BTG Vi, #bi t 4 Bit Toggle in Ws 1 1 — — — — — — — — — — — 166
BTSC f,#bit4 Bit Test f, Skip if Clear 1 1 — — — — — — — — — _ — 168
(2or3)
BTSC Vg, #bi t 4 Bit Test Ws, Skip if Clear 1 1 — — — — — — — — — _ — 170
(2or3)
BTSS f,#bita Bit Test f, Skip if Set 1 1 — — — — — — — — — — — 172
(2or3)
BTSS V&, #bi t 4 Bit Test Ws, Skip if Set 1 1 — — — — — — — — — — — 173
(20r3)
BTST f,#bit4 Bit Test in f 1 1 — — — — — —_ —_ — — i3 — 175
BTST Vg, #bi t 4 Bit Test in Ws 1 1 — — — — — — — — — — ¢ 176
BTST V¢, W Bit Test in Ws 1 1 — — — — — — — —_ —_ k13 — 178
BTSTS f,#bita Bit Test/Set in f 1 1 — — — — — — — — — i3 — 180
BTSTS V&, #bi t 4 Bit Test/Set in Ws 1 1 — — — — — — — — — — ¢ 181
CALL Expr © Call Subroutine 2 2 — — — — — — — — — — _ 183
CALL Expr © Call Subroutine 2 2 — — — — — — — — — — — 185
CALL wi® Call Indirect Subroutine 1 2 — — — — — — — — — — — 187
CALL wi®) Call Indirect Subroutine 1 2 — — — — — — — — — — — 189
CALL.L W@ Call Indirect Subroutine Long (long address) 1 4 — — — — — — — — — — — 191
CR f, WREG Clear f or WREG 1 1 — — — — — — — — — — — 192
CR v Clear Wd 1 1 — — — — — — — — — — — 193
CLR Acc, [W], Wd, [W], Wd, AvB® | Clear Accumulator 1 1 0 0 0 0 0 0 — | = = | = | = 194
CLRWDT Clear Watchdog Timer 1 1 — — — — — — — — — — — 196
oov f {, WREG Destination = f 1 1 — — — — — — — 2 — 2 — 197
oM Ve, Wi wd =Ws 1 1 — | — — — — — — 2 — | g — 198
cP f Compare (f — WREG) 1 1 — — — — — — g ¢ g ¢ ¢ 200
P W, # i t50) Compare (Wb — it5) 1 1 i i B — — 8 8 8 8 8 201
P W, #i t 86 Compare (Wb — it8) 1 1 - =1 =1= — — 8 8 8 8 8 202
Legend: ¢ setorcleared; § may be cleared, but never set; + may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.
2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

SRIVISHISHIS Mo

9dUvl9jay '/ UOI1d=S

¥0G 8bed-9,510000.SA

"oul ABojouyos | diyoosdlN 8102-500Z @

Table 7-2: Instruction Set Summary Table (Continued)
" ?j{f}iﬂiz"yoiye”rﬁ s Description Words | Cycles | 0A® | 0B@ |sa1:2|sg2)|0aB@|saB®?| pc | N |ov | z | ¢ Nﬁﬁﬁf’er
cP Vb, Vi Compare (Wb — Ws) 1 1 — — — — — — ¢ g ¢ g ¢ 203
CPO f Compare (f — 0x0) 1 1 — — — — — — 1 ¢ k3 ¢ 1 204
CPO é Compare (Ws — 0x0) 1 1 — — — — — — 1 ¢ k3 ¢ 1 205
CPB f Compare with Borrow (f - WREG — 6) 1 1 — — — — — — k13 k13 k13 4 k13 206
cPB Vb, #l it 56) Compare with Borrow (Wb — it5 — C) 1 1 — | = — — — — 8 $ 8 3 8 207
cPB Vb, #l i t8C) Compare with Borrow (Wb — it8 — C) 1 1 — | = — — — — 8 $ 8 3 8 208
CPB W, Compare with Borrow (Wb — Ws — 6) 1 1 — — — — — — k13 k13 k13 4 k13 209
CPBEQ W, W, Expr @ Compare Wb with Wn, Branch if = 1 16) | — | — — — — — — = = =1 = 211
CPBGT W, Wi, Expr @ Signed Compare Wb with Wn, Branch if > 1 16) | — | — — — — — — | = =1 =1 = 212
CPBLT W, Wi, Expr @ Signed Compare Wb with Wn, Branch if < 1 16) | — | — — — — — — | = =1 =1 = 213
CPBNE VB, W, Expr @ Compare Wb with Wn, Branch if = 1 16) | — | — — — — — — | = | = | =] = 214
CPSEQ Wb, w® Compare (Wb with Wn), Skip if = 1 1 — | = — — — — — | - = = = 215
(20r3)
CPSEQ Wb, wi® Compare (Wb with Wn), Skip if = 1 1 — | = — — — — — | — | = | =] = 216
(20r3)
CPSGT Wb, w® Signed Compare (Wb with Wn), Skip if > 1 1 — | = — — — — — | = = =1 = 217
(20r3)
CPSGT Wb, w® Signed Compare (Wb with Wn), Skip if > 1 1 — | = — — — — — | = = =1 = 218
(20r3)
oPSLT Wb, w® Signed Compare (Wb with Wn), Skip if < 1 1 — | = — — — — — | = | = =1 = 219
(20r3)
oPSLT Wb, w@® Signed Compare (Wb with Wn), Skip if < 1 1 — | = — — — — — | = | = | =] =] 22
(20r3)
CPSNE Vb, W®) Signed Compare (Wb with Wn), Skip if = 1 1 — | = — — — — — | = = =] = 22
(20r3)
CPSNE Vb, Wi® Signed Compare (Wb with Wn), Skip if = 1 1 — | = — — — — — | = | = | = | = | 222
(20r3)
CTXTSWP #1it3® CPU Register Context Swap Literal 1 2 — | = — — — — — | = = =1 = 223
cTXTSwW wi® CPU Register Context Swap Wn 1 2 — | = — — — — — | = | = | = | = | 224
DAW B W Whn = Decimal Adjust Wn 1 1 — — — — — — — — — — k13 225
DEC f {, WVREG Destination = f— 1 1 1 — — — — — — ¢ k)3 ¢ k)3 k)3 226
DEC Ve, Wi Wd =Ws -1 1 1 — — — — — — ¢ k)3 ¢ k)3 k)3 227
Legend: ¢ setorcleared; I may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.
2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

[enuep adualiajay s, Jawweiboid DS pue NON 1g-9T

"ou] ABojouyos | dIyd010IN 810Z-G00Z ©

G0g 9bed-9/51,0000.Sd

Table 7-2: Instruction Set Summary Table (Continued)

M r?(—frf](e)?it();l,yospyer:;ix s Description Words | Cycles | 0A® | 0B@ |sa(2)|sp2|0aB@|saB®@| pDc | N | ov | z c Nﬁrangbeer
DEC2 f {, WVREG Destination = f— 2 1 1 — — — — — — ¢ k3 k3 ¢ ¢ 229
DEC2 Ve, Wi Wd = Ws -2 1 1 — — — — — — b3 8 3 8 % 230
D sl #it14 Disable Interrupts for lit14 Instruction Cycles 1 1 — — — — — — — — — — — 232
DV.s Wh Wh Signed 16/16-Bit Integer Divide 1 18 — — — — — — — k)3 k)3 k)3 k)3 233
DV.U Wn WA Unsigned 16/16-Bit Integer Divide 1 18 — — — — — — — 0 0 k13 ¢ 235
D VF Wi wi® Signed 16/16-Bit Fractional Divide 1 18 — | — | = — — — — | ¢ 8 8 8 236
DI VF2 win w(® Signed 16/16-Bit Fractional Divide (W1:WO0 preserved) 1 6 — — — — — — — ¢ k3 k3 k3 238
DV2.S wnp w® Signed 16/16-Bit Integer Divide (W1:WO0 preserved) 1 6 — — — — — — — ¢ k3 k13 ¢ 240
DV2.U Wwnyw® Unsigned 16/16-Bit Integer Divide (W1:WO preserved) 1 6 — — — — — — — 0 0 ¢ k3 241
DO #it14, Expr ©® Do Code to PC + Expr, (lit14 + 1) Times 2 2 — | = — — — — — | =] = =1 = 242
DO #it15, Expr @ Do Code to PC + Expr, (lit15 + 1) Times 2 2 — | = — — — — — | =] = =1 = 244
DO W, Expr © Do Code to PC + Expr, (Wn + 1) Times 2 2 — | = — — — — — | =] = =1 = 246
DO Wi, Expr @ Do Code to PC + Expr, (Wn + 1) Times 2 2 — — — — — — — | = = | =] = 248
ED Wit Wn Acc, [W, [W], Wwd@ Euclidean Distance (no accumulate) 1 1 8 8 o by 8 by — | = =] =] = 250
EDAC Wit Wh Acc, [W], [W], Wwd® Euclidean Distance 1 1 $ $ o 2 8 2 — | = | = | = | = 252
EXCH Wis, Wid Swap Wns and Wnd 1 1 — — — — — — — — — — — 254
FBCL Vg, Wid Find First Bit Change from Left (MSb) Side 1 1 — — — — — — — — — — ¢ 255
FF1L V¢, Wid Find First One from Left (MSb) Side 1 1 — — — — — — — — — ¢ 257
FF1R V¢, Wwid Find First One from Right (LSb) Side 1 1 — — — — — — — — — — ¢ 259
FLIM w, g Force (signed) Data Range Limit 1 1 — — — — — — — 8 8 8 — 261
FLIMV W, V¢, wid® Force (signed) Data Range Limit with Limit Excess 1 1 — — — — — — — ¢ k3 k3 — 262
Result

Goro Expr Unconditional Jump 2 2 — — — — — — — — — — — 263
[co)0] wi® Unconditional Indirect Jump 1 2 — — — — — — — — — — — 264
QoTO wi® Unconditional Indirect Jump 1 2 — — — — — — S [I S - 265
coroL w® Unconditional Indirect Jump Long 1 4 — — — — — — — | - = | = | = 266
INC f {, WEG Destination = f + 1 1 1 — — — — — — 8 ¢ 8 ¢ g 267
INC V¢, Wi Wd=Ws+1 1 1 — — — — — — k3 k3 g ¢ k3 268
I NC2 f {, WVREG Destination =f + 2 1 1 — — — — — — k3 k3 ¢ ¢ k3 269
I NC2 V¢, Wi Wd =Ws + 2 1 1 — — — — — — ¢ k3 ¢ ¢ b3 270
IR f {, WVREG Destination = f .IOR. WREG 1 1 — — — — — — — ¢ — k)3 — 271
Legend: ¢ setorcleared; { may be cleared, but never set; @ may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged

Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.
2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
These instructions are only available in dsPIC33C devices.
These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©ONID AW

SRIVISHISHIS Mo

9dUvl9jay '/ UOI1d=S

906 8bed-9/510000.SA

"oul ABojouyos | diyoosdlN 8102-500Z @

Table 7-2: Instruction Set Summary Table (Continued)
" ?j{iiwiz"yoiy;ﬁd s Description Words | Cycles | 0A®@ | 0B® |sa:2 |52 |0aB@ |saB@d | pc | N |ov | z | ¢ Nﬁﬁﬁf’er
I CR #1110, Wh Wn =1it10 .IOR. Wn 1 1 — — — — —_ — — ¢ — ¢ — 272
I CR Vb, #lit5, Wi Wd = Wb .IOR. lit5 1 1 — — — — — — — ¢ — ¢ — 273
I CR Vb, V¢, Wi Wd = Wb .IOR. Ws 1 1 — — — — —_ —_ — ¢ — ¢ — 274
LAC Ve, {#9it4,}, Acc® Load Accumulator 1 1 8 8 o @ $ o — | — | = | =] — | 276
LACD V¢, [,#Sit4],Acc? Load Accumulator Double Word 1 2 8 8 o @ $ o — | = | = | =] = | 28
LOSLY [Ws], [Wid++], # i 1207 Move Single Instruction Word from Master to Slave 1 2 — | = | = — — _ =1 =1 =1 =1 279
PRAM
LNK #it140 Link Frame Pointer 1 1 — — — — — — — — — — _ 280
LNK #it140 Link Frame Pointer 1 1 — — — — — — — — — — _ 281
LSR f {, WVREG Destination = Logical Right Shift f, MSb — C 1 1 — — — — — — —_ 0 — ¢ ¢ 282
LSR v, Wi Wd = Logical Right Shift Ws, MSb — C 1 1 — — — — — — — 0 — g ¢ 284
LSR Vb, #l i t 4, Wwid Wnd = Logical Right Shift Wb by lit4, MSb — C 1 1 — — — — —_ —_ —_ ¢ — ¢ — 286
LSR W, Wis, Wad Wnd = Logical Right Shift Wb by Wns, MSb — C 1 1 — — — — — — — k3 — k3 — 287
MAC WiWh, Acc, [W], Wd, [W], Multiply and Accumulate 1 1 ¢ ¢ iy iy k3 iy — — — — — 288
wd, Avg®@
MAC Wit Wn Acc, [W], Wd, [W], Wd® | Square and Accumulate 1 1 8 8 o @ $ o — | — | = | = | —= | 29
MAX Acc® Force Accumulator Maximum Data Range Limit 1 1 — — — — — — k13 £ k13 k3 k13 292
MAX. V Acc, wi(? Force Accumulator Maximum Data Range Limit and 1 1 — — — — — — k13 £ k13 £ k13 293
Store Limit Excess Result
M N Acc) Force Accumulator Minimum Data Range Limit 1 1 — — — — — — $ g ki3 ¢ ki3 294
M N V Acc, wi(? Force Accumulator Minimum Data Range Limit and 1 1 — — — — — — k13 £ k13 £ k13 295
Store Limit Excess Result
M Nz Acc?) Conditionally Force Accumulator Minimum Data 1 1 — — — — — — $ g ki3 ¢ ki3 296
Range Limit if Z Flag is Set
MNZ. V Acc, wi(Conditionally Force Accumulator Minimum Data Range 1 1 — — — — — — k13 £ k13 £ k13 297
Limit and Store Limit Excess Result if Z Flag is Set
MV f {, W\REG Move f to Destination 1 1 — — — — — — — k3 — k3 — 299
MV WREG f Move WREG to f 1 1 — — — — — — — — | — — | = 300
MV f, wd Move f to Wnd 1 1 — — — — — — — — | = — | = 301
MV Wis, Move Wns to f 1 1 — — — — — — — — | = — | = 302
MOV. B #lit8, Wd Move 8-Bit Unsigned Literal to Wnd 1 1 — — — — — — — — — — — 303
MOV #it16, Wid Move 16-Bit Literal to Wnd 1 1 — — — — — — — — — — — 304

Legend: ¢ setorcleared; I may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.
2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
These instructions are only available in dsPIC33C devices.
These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©X NI R W

[enuep adualiajay s, Jawweiboid DS pue NON 1g-9T

"ou] ABojouyos | dIyd010IN 810Z-G00Z ©

206 9bed-9/51,0000.5d

Table 7-2:

Instruction Set Summary Table (Continued)

y ?:;i?i%"yospye“r;xd . Description Words | Cycles | 0A® | 0B®@ |sa2 |52 | 0aB®@|sABL| DC ov NSrangbeer
MOV [Vé+Slit10], Wid Move [Ws + Slit10] to Wnd 1 1 — | = — — — — — — 305
MV Wis, [WI+Sl i t 10] Move Wns to [Wd + Slit10] 1 1 — — — — — — — —_ 306
MV V¢, Wi Move Ws to Wd 1 1 — — — — — — —_ —_ 307
MOV. D Wis, Wid Move Double Wns:Wns + 1 to Wnd 1 2 — — — — — — — — 309
MOVPAG #l it 10, DSRPAG® Move 10-Bit Literal to DSRPAG 1 1 — | = — — — — — — 311
MOVPAG W, DSRPAG®) Move Wn to DSRPAG 1 1 — | — | = — — — — — 312
MOVSAC ~ Acc, [W], Wd, [W], Wd, AWB® | Move [Wx] to Wxd and [Wy] to Wyd 1 1 — — — — — — — — 313
MPY Wit W, Acc, [W], Wed, [W], Wd@ | Multiply Wm by Wn to Accumulator 1 1 8 8 o by 8 by — — 315
MPY Wit Wh Acc, [W], Wed, [W], Wd@ | Square to Accumulator 1 1 $ $ o 2 8 2 — — 317
MPY. N WitWi, Acc, [W], Wd, [W], Wd@ [-(Multiply Wn by Wm) to Accumulator 1 1 0 0 — — 0 — — — 319
MsC Wit Wh, Acc, [W], Wd, [W], Multiply and Subtract from Accumulator 1 1 k(s k(s @ i k3 @ — — 321
wd, AB@

ML f W3:W2 = f* WREG 1 1 — | - =] = = — — _ 323
ML.SS Wb, V¢, Wd {Wnd + 1,Wnd} = Signed(Wb) * Signed(Ws) 1 1 — — — — — — — — 325
ML.SS Wb, 8, Acc® Accumulator = Signed(Wb) * Signed(Ws) 1 1 — — — — — — — — 327
ML.SU Wb, #it5 Wd {Wnd + 1,Wnd} = Signed(Wb) * Unsigned(lit5) 1 1 — | = = — — — — _ 328
ML.SU W, V¢, Wid {Wnd + 1,Wnd} = Signed(Wb) * Unsigned(Ws) 1 1 — — — — — — — — 329
ML.SU Wb, Vi, Acc® Accumulator = Signed(Wb) * Unsigned(Ws) 1 1 — — — — — — — — 331
ML.SU Wb, #it5, Acc? Accumulator = Signed(Wb) * Unsigned(it5) 1 1 — | - - — — — — — 332
ML.US Wb, V¢, Wd {Wnd + 1,Wnd} = Unsigned(Wb) * Signed(Ws) 1 1 — — — — — — — — 333
ML.US Wb, V8, Acc® Accumulator = Unsigned(Wb) * Signed(Ws) 1 1 — — — — — — — — 335
ML. W W, #it5 Wd {Wnd + 1,Wnd} = Unsigned(Wb) * Unsigned(lit5) 1 1 — — — — — — — — 336
ML. W W, V¢, Wid {Wnd + 1,Wnd} = Unsigned(Wb) * Unsigned(Ws) 1 1 — — — — — — — — 337
ML WU Wb, Vi, Acc® Accumulator = Unsigned(Wb) * Unsigned(Ws) 1 1 — — — — — — — — 339
ML W W, #it5 Acc® Accumulator = Unsigned(Wb) * Unsigned(it5) 1 1 — — — — — — — — 340
MLWSS Wb, V6, wid® Wnd = Signed(Wb) * Signed(Ws) 1 1 — | -1 - — — — — — 341
MLWSU W, ¢, wid® Wnd = Signed(Wb) * Unsigned(Ws) 1 1 — — — — — — — — 343
MALWSU W, # it 5, wid® Wnd = Signed(Wb) * Unsigned(lit5) 1 1 — — — — — — — — 345
MLWUS W, V&, Wwid® Wnd = Unsigned(Wb) * Signed(Ws) 1 1 — — — — — — — — 346
MAW W Wb, V¢, wid® Wnd = Unsigned(Wb) * Unsigned(Ws) 1 1 — | =1 = — — — — — 348
MALWUWJ W, #it5, wid® Wnd = Unsigned(Wb) * Unsigned(lit5) 1 1 — — — — — — — — 349
Legend: ¢ setorcleared; { may be cleared, but never set; @ may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged

Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
This instruction/operand is only available in dsPIC33E and dsPIC33C devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

These instructions are only available in dsPIC33C devices.
These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).

3
4
5:
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7
8
9

These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

SRIVISHISHIS Mo

9dUvl9jay '/ UOI1d=S

806 8bed-9/510000.SA

"oul ABojouyos | diyoosdlN 8102-500Z @

Table 7-2: Instruction Set Summary Table (Continued)
" ?j{f}iﬂiz"yoiye”rﬁ s Description Words | Cycles | 0A® | 0B@ |sa1:2|sg2)|0aB@|saB®?| pc | N |ov | z | ¢ Nﬁﬁﬁf’er

NEG f {, WReG Destination = f + 1 1 1 — — — — — — k2 ¢ ki ¢ ki 350
NEG Ve, Wi Wd = Ws + 1 1 1 — — — — — — ES 4 ES ¢ ¢ 351
NEG Acc@ Negate Accumulator 1 1 ¢ ¢ ¢ 2 8 ¢ — | - = | = | = 353
NOP No Operation 1 1 — — — — — — — — — — — 354
NCPR No Operation 1 1 — — — — — — — — — — — 355
NORM Acc, Wi Normalize Accumulator 1 1 0 0 8 8 8 — — | = =] = | = | 35
PCP f POP TOS to f 1 1 — — — — — — — — — — — 357
PCP Wi POP TOS to Wd 1 1 — — — — — — — — — — — 358
PCP. D Wid POP Double from TOS to Wnd:Wnd + 1 1 2 — — — — — — — — — — — 359
PCP. S POP Shadow Registers 1 1 — — — — — — ¢ ¢ ¢ ¢ ¢ 360
PUSH f PUSH f to TOS 1 1 — — — — — — — — — — — 361
PUSH V¢ PUSH Ws to TOS 1 1 — — — — — — — — — — — 362
PUSH D Wis PUSH Double Wns:Wns + 1 to TOS 1 2 — — — — — — — — — — — 364
PUSH. S PUSH Shadow Registers 1 1 — — — — — — — — — — — 365
PWRSAV #lit1l Enter Power-Saving Mode 1 1 — — — — — — — — — — — 366
RCALL Expr® Relative Call 1 2 — | = — — — — — | = = =] = 367
RCALL Expr® Relative Call 1 2 — | = — — — — — = = =1 = 369
RCALL w©® Computed Relative Call 1 2 — | = — — — — — | - = = = 371
RCALL W@ Computed Relative Call 1 2 — | = — — — — — | - = = = 373
REPEAT #lit140) Repeat Next Instruction (lit14 + 1) Times 1 1 — | = — — — — — | = = =1 = 375
REPEAT #lit150) Repeat Next Instruction (lit15 + 1) Times 1 1 — | = — — — — — | = = =1 = 376
REPEAT W® Repeat Next Instruction (Wn + 1) Times 1 1 — — — — — — — — — — — 377
REPEAT W@ Repeat Next Instruction (Wn + 1) Times 1 1 — | = — — — — — = = =1 = 378
RESET Software Device Reset 1 1 — — — — — — — — — — — 379
RETFI E® Return from Interrupt Enable 1 30 | — | — — — — — — $ 8 $ 8 380
RETFI E® Return from Interrupt Enable 1 32 | — | — — — — — — 8 8 By 8 381
RETLW #lit10, wi® Return with 1it10 in Wn 1 32 | — | — — — — — — | =] = =1 = 382
RETLW #lit10, Wwi® Return with [it10 in Wn 1 3) | — | — — — — — — | = | = =] = 384
RETURN®) Return from Subroutine 1 3(2) — — — — — — — — — — — 386
RETURN®) Return from Subroutine 1 3(2) — — — — — — — — — — — 387
Legend: ¢ setorcleared; & may be cleared, but never set; {t may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.

5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

7: These instructions are only available in dsPIC33C devices.

8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).

9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

[enuep adualiajay s, Jawweiboid DS pue NON 1g-9T

"ou] ABojouyos | dIyd010IN 810Z-G00Z ©

60¢ 9bed-9/51,0000.5d

Table 7-2: Instruction Set Summary Table (Continued)

M r?(—frf](e)?it();l,yospyer:;ix s Description Words | Cycles | 0A® | 0B@ |sa(2)|sp2|0aB@|saB®@| pDc | N | ov | z c Nﬁrangbeer
RLC f {, WVREG Destination = Rotate Left through Carry f 1 1 — — — — — — — ¢ — ¢ k3 388
RLC V&, Wi Wd = Rotate Left through Carry Ws 1 1 — — — — — — — ¢ — ¢ ¢ 389
RLNC f {, WVREG Destination = Rotate Left (no Carry) f 1 1 — — — — — — — ¢ — ¢ — 391
RLNC Ve, Wi Wd = Rotate Left (no Carry) Ws 1 1 — — — — — — — k3 — ki3 — 392
RRC f {, WVREG Destination = Rotate Right through Carry f 1 1 — — — — — — — k3 — ki3 k(s 394
RRC Ve, Wi Wd = Rotate Right through Carry Ws 1 1 — — — — — — — k13 — k13 k13 396
RRN\C f {, WVREG Destination = Rotate Right (no Carry) f 1 1 — — — — — — — ¢ — ¢ — 398
RRN\C V¢, Wi Wd = Rotate Right (no Carry) Ws 1 1 — — — — — — — ¢ — ¢ — 399
SAC Acc, #Sl i t 4, wi® Store Accumulator 1 1 — — — — — — — — — — — 401
SAC D Acc, #9it4, wid(?) Store Accumulator Double Word 1 1 — | — | = — — — — | — | = | — | — | 403
SAC. R Acc, #9li t 4, W@ Store Rounded Accumulator 1 1 — — — — — — — — — — — 404
SE V¢, Wid Wd = Sign-Extended Ws 1 1 — — — — — — — $ — $ 8 406
SETM f f = OXFFFF 1 1 — — — — — — — — — — — 408
SETM Wi Wd = OxFFFF 1 1 — — — — — — — — — — — 409
SFTAC Acc, #Slit 6@ Arithmetic Shift Accumulator by Slit6 1 1 ¢ ¢ i) i ¢ i — — — — — 410
SFTAC Acc, W@ Arithmetic Shift Accumulator by (Wb) 1 1 13 k13 iy g k13 g — — — — — 411
SL f {, WVEG Destination = Arithmetic Left Shift 1 1 — — — — — — — k13 — k13 k13 412
SL Ve, W Wd = Arithmetic Left Shift Ws 1 1 — — — — — — — $ — $ 8 414
SL Vb, #1it4, Whd Wnd = Left Shift Wb by lit4 1 1 — — — — — — — ¢ — ¢ — 416
SL Wb, Wis, Wid Wnd = Left Shift Wb by Wns 1 1 — — — — — — — ¢ — ¢ — 417
SUB f {, WVREG Destination = f - WREG 1 1 — — — — — — g g 8 ¢ g 418
SUB #1110, W Wn = Wn —lit10 1 1 — — — — — — g $ g $ ¢ 419
SUB Wb, #lit5, W Wd = Wb — lit5 1 1 — — — — — — g $ ¢ $ ¢ 420
SUB Wb, V&, Wi Wd = Wb - Ws 1 1 — — — — — — 3 $ g g g 421
SuB Acc® Subtract Accumulators 1 1 8 8 ¢ @ g Iy — | = = | = | = 423
SuUBB f {, WREG Destination = f — WREG — (C) 1 1 — — — — — — ¢ ¢ ¢ 8 ¢ 424
SuUBB #it10, W Wn = Wn - it10 — (C) 1 1 — — — — — — ¢ ¢ ¢ 8 ¢ 425
SuUBB Vb, #lit5, Wi Wd = Wb — it5 — (C) 1 1 — — — — — — ¢ ¢ ¢ v ¢ 426
SUBB Vb, V&, Wi Wd = Wb — Ws — (C) 1 1 — — — — — — ¢ ¢ ¢ 8 ¢ 428
SUBBR f {, WREG Destination = WREG — f — (C) 1 1 — — — — — — ¢ ¢ ¢ 8 ¢ 430
Legend: ¢ setorcleared; { may be cleared, but never set; @ may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.

This instruction/operand is only available in dsPIC33E and dsPIC33C devices.

This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

These instructions are only available in dsPIC33C devices.

These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).

These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©CONI AW

SRIVISHISHIS Mo

9dUvl9jay '/ UOI1d=S

016 8bed-9,510000.SA

"oul ABojouyos | diyoosdlN 8102-500Z @

Table 7-2: Instruction Set Summary Table (Continued)
" ?j{f}iﬂiz"yoiye':ﬁ s Description Words | Cycles | 0A@ | 0B@ |sa?2) [sB®2|0aB®@ [saB®? | Dc | N | oOv | Zz | C Nﬁﬁﬂf’er

SUBBR Vb, #1it5, Wi wd = lit5 — Wb — (C) 1 1 — — — — — — ¢ ¢ ¢ U ki3 431
SUBBR Vb, V&, Wi Wd =Ws — Wb — (C) 1 1 — — — — — — ¢ ¢ ¢ U ¢ 433
SUBR f {, WREG Destination = WREG — f 1 1 — — — — — — ¢ ¢ ¢ ¢ ¢ 435
SUBR Vb, #1it5, Wl Wd = lit5 — Wb 1 1 — — — — — — ¢ ¢ ¢ ¢ ¢ 436
SUBR Vb, Vé, Wi Wd =Ws — Wb 1 1 — — — — — — $ g g $ ¢ 437
SWAP W Whn = Byte or Nibble Swap Wn 1 1 — — — — — — — — — — — 439
TBLRDH [V¢], W Read High Program Word to Wd 1 2 — — — — — — — — — — — 440
TBLROL [Wé], W Read Low Program Word to Wd 1 2 — — — — — — — — — — — 442
TBLWH V¢, [W] Write Ws to High Program Word 1 2 — — — — — — — — — — — 444
TBLWIL V¢, [W] Write Ws to Low Program Word 1 2 — — — — — — — — — — — 446
ULNK®) Deallocate Stack Frame 1 1 — | = — — — — B [e 448
ULNK®) Deallocate Stack Frame 1 1 — | = — — — — B [e 449
VFSLV Wis, Wd, #l i t 200 Verify Slave Processor Program RAM 1 1 — — — — — — — — — — — 450
XCR f {, WREG Destination = f XOR. WREG 1 1 — — — — — — — ¢ — ¢ — 451
XCR #it10, W Whn =it10 .XOR. Wn 1 1 — — — — — — — ¢ — ¢ — 452
XCR Vb, #1it5, Wl Wd = Wb .XOR. lit5 1 1 — — — — — — — ¢ — ¢ — 453
XCR Vb, Vé, Wi Wd = Wb .XOR. Ws 1 1 — — — — — — — 8 — g — 454
ZE W, Wid Wnd = Zero-Extended Ws 1 1 — — — — — — — 0 — ¢ 1 456
Legend: ¢ setorcleared; & may be cleared, but never set; { may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.

5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.

7: These instructions are only available in dsPIC33C devices.

8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).

9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

[enuep adualiajay s, Jawweiboid DS pue NON 1g-9T

Section 7. Reference

7.3 REVISION HISTORY
Revision A (May 2005)

This is the initial release of this document.

Revision B (September 2005)

This revision incorporates all known errata at the time of this document update.

Revision C (February 2008)

This revision includes the following corrections and updates:

!

« Instruction Updates:
- Updated BRA Instruction (see “BRA")
- Updated DI VF Instruction (see “DIVF")
- Updated DOInstruction (see “DO")
- Updated SUB instruction (see “SUB”)

Revision D (November 2009)

This revision includes the following corrections and updates:

SRV EIEIEYS

* Document renamed from dsPIC30F/33F Programmer’s Reference Manual to 16-bit MCU
and DSC Programmer’s Reference Manual

* Document has been completely redesigned to accommodate all current 16-bit families:
dsPIC30F, dsPIC33F, PIC24F and PIC24H

Revision E (June 2010)

This revision includes the following corrections and updates:

* Information specific to dsPIC33E and PIC24E devices has been added throughout the
document

Revision F (July 2011)

This revision includes the following corrections and updates:

* Added a new section “Built-in Functions”

» Added and updated the cross-references throughout the document

» Updated the bit characteristics from U to U-0 in Register 2-4 and Register 2-6

» Added a note throughout the document specifying the requirement of an additional cycle for
read and read-modify-write operations on non-CPU special function registers in dsPIC33E
and PIC24E devices

» Updates to formatting and minor text changes were incorporated throughout the document
Revision G (April 2018)

This revision includes the following corrections and updates:

* Information specific to dsPIC33C devices has been added throughout the document
» Updates to formatting and minor text changes were incorporated throughout the document

© 2005-2018 Microchip Technology Inc. DS70000157G-page 511

16-Bit MCU and DSC Programmer’s Reference Manual

NOTES:

DS70000157G-page 512 © 2005-2018 Microchip Technology Inc.

Index

INDEX

Symbols

_builtin_add.....c.ooi
__builtin_addab....
__builtin_btg......... .
L BUIIN_CIF e
__builtin_clr_prefetCh...........oooiiiiii s 465
__builtin_divf .
__builtin_divmodsd ... 467
__builtin_divmodudovviiiiiiie s 468
_ builtin_dived ..o 468
_ builtin_divud ... 469
__builtin_dmaoffset.. .
_ bUiltin_ed . 470
_builtin_edac ..o 471
__builtin_edsoffset472
__builtin_edspage....
__builtin_fbcl
 BUIIN_1C e
_ bUItIN_MaC ..o
__builtin_modsd...
__builtin_modud...
__builtin_movsac . .
_ BUIIN_MPY e
_ BUIIN_MPYN (e
__builtin_msc .
_ bUItIN_MUISS ..o
— BUIIN_MUISU e
_ bUItIN_MUIUS e
_bUiltin_mMUIUU .
__builtin_nop .
__builtin_psvoffset ...
__bUIltin_psSvpagecoooirieiie e
__builtin_readsfr................
__builtin_return_address...
__ builtin_sacc.ccoeeeeee .
 BUIIN_SACT ..
_ bUIItIN_SFAC .o
__builtin_subab........
__builtin_tbladdress
__builtin_tbloffset
__builtin_tblpagecccoooiiiiiiii e
_builtin_tblrdh ...
__builtin_tblrdl .
_ builtin_tbIwth ..o
_ bUItin_tbIWEl ...

A

Accumulator A, Accumulator Bcccceiniiiiiiniiniieneee
Accumulator ACCESS..........ccouiiiiiiiiiiiecie e
Accumulator Selectionccccoviiiiiiiiiiii .
Accumulator USAge.........c.covuieiririiiiiiie et
Addressing Modes for Wd Destination Register
Addressing Modes for Ws Source Registerccccuuee..
Architecture OVErvieWcccooviiiieiiieeie e 10
Assigned Working Register Usagecccoceveveinieinecnns 80

B

Bit Field Insert/Extract Instructionscccceeieieiieennnns 71
Block Diagrams
DO Stack Conceptualccoccuveiiiiriiinniieiieenieeiees 26
dsPIC30F/dsPIC33F Programmer’s Model 16
dsPIC33C Programmer’s Model............ccccvvveiieneennns
dsPIC33E Programmer’s Model ...
PIC24E Programmer’s Model..........ccccooiiiiiiiienennnn.
PIC24F/PIC24H Programmer’s Model............cc......... 14
Built-In Functions
__builtin_add
__builtin_addab .. .
_ bUIltin_btg .o
_ BUIIN_CIF e
__builtin_clr_prefetch. .
—buUiltin_div....eeee e
__builtin_divmodsd..........ocoeiiiiii e
__builtin_divmodud
__builtin_divsd....
__builtin_divud....... .
__builtin_dmaoffsetcocceviiiiiie
_builtin_ed ..o
__builtin_edac .
__builtin_edsoffset........cccccceeeeiiiiiie
__builtin_edspagecccovieiiiiiiiie
__builtin_fbcl..........
__builtin_lac.....
__builtin_mac .
__builtin_modsd ...
__builtin_modud ...
__builtin_movsac... .
_ BUIIN_MPY
_ builtin_mpyn ..o
__builtin_msc......
__builtin_mulss...
__builtin_mulsu... .
_ builtin_mulus ...
_builtin_muluu ...
__builtin_nop .
__builtin_psvoffset........cccvevieeiiiie e
__builtin_psvpage........c.ccoviiiiiiiiiie
__builtin_readsfr.................
__builtin_return_address.....
__builtin_sac......ccccceeveunnnns .
_ bUIltin_Sacr ..o
__builtin_sftac........ccooiiiiii
__builtin_subab .
__builtin_tbladdress..........cccccceviviiiiiieeeeee e
__builtin_tbloffset.........c.ccoiiiiiiii e
__builtin_tblpage ...
__builtin_tblrdh ...
__builtin_tblrdlI
__builtin_tblwth ..o
_builtin_tbIwtl ..o
Byte Operationscooiiiiiiiiiiiiee e

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 513

16-Bit MCU and DSC Programmer’s Reference Manual

C
Code Examples
'Z’ Status Bit Operation for 32-Bit Addition 79
32-Bit Signed Multiplication Using Implicit
Mixed-Sign Modecccooiiiiiiiiiiniieceee e,
Additional In-Line Functions...
Base MAC Syntax........cc.c.....
Divide_32_ by 16ccooviiiiiiii e
File Register Addressingccccocveeeiiieeiiieensiieeeees
File Register Addressing and WREG.. .
Frame Pointer Usage..........cccccveriinniiiiiienie e
lllegal Word Move Operations............cccoeeveenieneeenenn.
Immediate ADAressingcccoeeveeeiiieeinieeeeee e
Indirect Addressing with Effective Address
UPdate .o 57
Indirect Addressing with Register Offset..................... 58
Legal Word Move Operationsccccceeviveenniueeeennnes 69
MAC Accumulator WB Syntax ...
MAC Prefetch Syntax
Move with Literal Offset Instructionscccccene. 58
Moving Data with WREGccceeiiiiiiiiieeeeee 82
MSC Instruction with Two Prefetches and
Accumulator Write-Backcccccvevciniinninens 89
Normalizing with FBCLccccooiiiiiiiiicce 93
Register Direct AdAressingcccceevveveeniieenniieeennes 56
Sample Byte Math Operations...
Sample Byte Move Operationsccccccevcinieenneens 66
Scaling With FBCL........cooiiiiiiiiececieeecee e 91
Stack Pointer Usageccccevviiiiiiiiiciiiiececceeee 73
Unsigned f and WREG Multiply (Legacy MULWF
INSErUCHION) ... 82
Using 10-Bit Literals for Byte Operands...................... 71
Using the Default Working Register, WREG............... 81
Conditional Branch Instructions
Core Control Register
D
Data Addressing Mode Treecccoccvveneiniieiieciecneceenn 61
Data Addressing Modes............ceeeiiiiiiiieieiiieceeeee e 54
Data Range Limit InStructionscccooeinviiniiiiiciecee 92
FLIM/FLIM.V e
MAXIMAX.V .ot
MIN/MIN.V/MINZ....
DCOUNT REGISEreeiiiiiiiiirieiiece et
Default Working Register (WREG)........c.cccoccveeceenennen. 20, 81

Destination Addressing Modes for
MCU Multiplications

Development Support
DO StACK...ueeiieiece et
DOEND REGISEN ...ttt
DOSTART Register .
DSP Accumulator Instructionsccccooooeiiiiiiiiiiics 90
DSP Data FOrmatscoocuvieiiieiiiiiiiiieee e 83
DSP MAC Indirect Addressing Modescccccceverniennee. 59
DSP MAC Instructionscoeeeeiiiiieiiieiieieeeie e 86
E
Extended Precision Arithmetic using Mixed-Sign
Multiplicationsccciiiiie e 94
F
File Register Adressingcccccuvueeiniiiiiiiiee e 54

Immediate AdAresSingccocuveeeerieiriiiniece e 60
Operands in the Instruction Set...........ccccceviiniinnncne 60
Implied DSP Operands...........cccoeeriiiriiinnieiie e 80
Implied Frame and Stack Pointercocccoveiiiiiiciceens 81
Instruction Bit Mapccccvvevieeniiiiiee e
Instruction Description Example . .
Instruction Descriptionscccocviiiiiiinnie i
ADD (16-Bit Signed Add to Accumulator)................. 108
ADD (Add Accumulators) .
ADD (Add f to WREG).....
ADD (Add Literal to Wn).......... .
ADD (Add Wb to Short Literal).........cccceeviieiiiiiernnnns
ADD (Add Wb t0 WS)....coiiiiiiiicieniieee e
ADDC (Add f to WREG with Carry)
ADDC (Add Literal to Wn with Carry)cccecueenee.
ADDC (Add Wb to Short Literal with Carry)..............
ADDC (Add Wb to Ws with Carry)................ .
AND (AND f and WREG).....
AND (AND Literal and Wn).............. .
AND (AND Wb and Short Literal)ccceevereencnen.
AND (AND Wb and WS).......ccccoveiuemiinineeieneeeen.
ASR (Arithmetic Shift Right by Short Literal)
ASR (Arithmetic Shift Right by Wns)ccoceeee.
ASR (Arithmetic Shift Right f)c.ccoceeiiiiiienne
ASR (Arithmetic Shift Right Ws)...
BCLR (Bit Clearinf)........
BCLR (Bit Clear in Ws)c.cccocvevciinnennicnnne .
BFEXT (Bit Field Extract from f into Wnd).................
BFEXT (Bit Field Extract from Ws into Wnd)............ 130
BFINS (Bit Field Insert from Wb into Wd) .
BFINS (Bit Field Insert from Wns into f)....................
BFINS (Bit Field Insert Literal into Ws)...........c..c......
BOOTSWP (Swap Active and Inactive
Flash Address Panel).........
BRA (Branch Unconditionally) ...
BRA (Computed Branch).........ccccceeevieieinnneenn.
BRA C (Branch if Carry)ccceeveveeinieeeniiee s
BRA GE (Branch if Signed Greater Than
Or EQUa) ..o 141
BRA GEU (Branch if Unsigned Greater Than
OF EQUAI) . 142
BRA GT (Branch if Signed Greater Than)....... .. 143
BRA GTU (Branch if Unsigned Greater Than).......... 144
BRA LE (Branch if Signed Less Than or Equal)....... 145
BRA LEU (Branch if Unsigned Less Than
Or EQUa) ..o 146
BRA LT (Branch if Signed Less Than)...................... 147
BRA LTU (Branch if Unsigned Less Than)............... 148
BRA N (Branch if Negative)..........cccccovueeenne .. 149
BRA NC (Branch if Not Carry)......... .. 150
BRA NN (Branch if Not Negative).... .
BRA NOV (Branch if Not Overflow)ccccoeveeennes 152
BRA NZ (Branch if Not Zero).........cccoceveeivieeniineens 153
BRA OA (Branch if Overflow Accumulator A)...
BRA OB (Branch if Overflow Accumulator B)........... 155
BRA OV (Branch if Overflow)cccceviiieeiniiennns 156
BRA SA (Branch if Saturation Accumulator A) 157
BRA SB (Branch if Saturation Accumulator B) 158
BRA Z (Branch if Zero) .
BSET (Bit Setin f).....ccocvvoveiiiiiieiieeeeeneeee
BSET (Bit Setin WS) ..o
BSW (Bit Write in WS).....c.coooiiiiiiiiecceceeeee

DS70000157G-page 514

© 2005-2018 Microchip Technology Inc.

BTG (Bit Toggle in) ..ccooiveiiiii e 165
BTG (Bit Toggle in WS)ccooiiiiiniiiieceeiieciees 166
BTSC (Bit Test f, Skip if Clear)ccccceeeeieniiceens 168
BTSC (Bit Test Ws, Skip if Clear) .. .170

BTSS (Bit Test f, Skip if Set)....... 172

BTSS (Bit Test Ws, Skip if Set) ... 173
BTST (Bit TeStin f) oo 175
BTST (Bit Testin WS) ...cccooceeviviiiiiiceeee. 176, 178
BTSTS (Bit Test/Set in f)....

BTSTS (Bit Test/Set in WS)coccooviiiiiiieeieeee, 181
CALL (Call Indirect Subroutine)c.cccccuee.. 187, 189
CALL (Call Subrouting)cccccevrvennnne. ..183, 185
CALL.L (Call Indirect Subroutine Long) 191
CLR (Clear Accumulator, Prefetch Operands)...

CLR (Clear f or WREG)cceiiiiiiiniiiienieesieece
CLR (Clear W)ccceveeiinierieienecnece e
CLRWDT (Clear Watchdog Timer)
COM (Complement f)........cocuveiiiiiiiniiiie e
COM (Complement WS)........ccccuieiiiniiniienieesiee e
CP (Compare f with WREG, Set Status Flags).........
CP (Compare Wb with lit5, Set Status Flags)...........
CP (Compare Wb with lit8, Set Status Flags)..........
CP (Compare Wb with Ws, Set Status Flags)
CPO (Compare f with 0x0, Set Status Flags)............
CPO (Compare Ws with 0x0, Set Status Flags)........
CPB (Compare f with WREG Using Borrow,

Set Status Flags)ccccveveveiiiiinieiieciecees 206
CPB (Compare Wb with lit5 Using Borrow,

Set Status Flags)cocooverviiiiiiiie e 207
CPB (Compare Wb with lit8 Using Borrow,

Set Status Flags)ccccveveveiriiinieiiecieeces 208
CPB (Compare Ws with Wb Using Borrow,

Set Status Flags)cocooverviiiiiie e 209
CPBEQ (Compare Wb with Wn,

Branch if EQual)cccooieiiiiniiiiccee 211
CPBGT (Signed Compare Wb with Wn, Branch if

Greater Than)ccoeevvieeeinieie e 212
CPBLT (Signed Compare Wb with Wn, Branch if

Less Than) ..o 213
CPBNE (Compare Wb with Wn,

Branch if Not Equal).......cccceeeiiiiiiiiiiiiecs 214
CPSEQ (Compare Wb with Wn,

Skip if EQUal).....cooviiiiiiiieieeee e 215, 216
CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than)ccoccceeviiiiniieee 217
CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than)ccccocivviiiiiiicices 218
CPSLT (Signed Compare Wb with Wn,

Skip if Less Than)ccocovvieiniinnenene 219, 220
CPSNE (Signed Compare Wb with Wn,

Skip if Not Equal)c.cocoeviiiiiiiiie, 221, 222
CTXTSWP (CPU Register Context

Swap Literal)oooviiiiiii e 223
CTXTSWP (CPU Register Context Swap Wn)......... 224
DAW.B (Decimal Adjust Wn)ccceeoiiiiinneiiieens 225
DEC (Decrement)c.ooooiiiiriiiiiiiiie e 226
DEC (Decrement Ws)....
DEC2 (Decrement fby 2)......cccoviiiiiiiieiiiiiicciees 229
DEC2 (Decrement WS by 2)c.ecovivieiiiiieiiiieens 230
DISI (Disable Interrupts Temporarily)232

DIV.S (Signed Integer Divide)...............233

DIV.U (Unsigned Integer Divide).235
DIV2.S (Signed Integer Divide)........ccccevvveeeniieeennnnes 240
DIV2.U (Unsigned Integer Divide)..........ccceevivreennns 241
DIVF (Fractional Divide)

DIVF2 (Signed Fractional Divide, 16/16) 238
DO (Initialize Hardware Loop Literal)................ 242,244

DO (Initialize Hardware Loop Wn)............ccc.... 246, 248
ED (Euclidean Distance...........ccccceeiveerieenciinniennes 250
ED (Euclidean Distance, No Accumulate)................ 250
EDAC (Euclidean Distance)cccccu..... e 252
EXCH (Exchange Wns and Wnd)...... . 254
FBCL (Find First Bit Change from Left) 255
FF1L (Find First One from Left).........ccooeiviiniininens 257
FF1R (Find First One from Right)..........cccccoveeinnnen. 259
FLIM (Force (Signed) Data Range Limit) 261
FLIM.V (Force (Signed) Data Range Limit with

Limit Excess Result)..........cccccvveiiiiiniicnccee 262
GOTO (Unconditional Indirect Jump) 265
GOTO (Unconditional JUmMP)covvveiernieieniieenns 263

GOTO.L (Unconditional Indirect Jump Long)
INC (Increment f)coooieiiiiiiiiniecece e
INC (Increment WS).......ccueviiiiiiiniieeiieeeeeeee e
INC2 (Increment f by 2)
INC2 (Increment Ws by 2)cooeiiiiiiiiiiiiieee 270

IOR (Inclusive OR fand WREG)cccccvvirneennn. 271
IOR (Inclusive OR Literal and Wn).......... . 272
IOR (Inclusive OR Wb and Short Literal). . 273
IOR (Inclusive OR Wb and Ws)............... ... 274
LAC (Load Accumulator)cccceeveercieeniiennieeineene 276
LAC.D (Load Accumulator Double)ccccueeeneen. 278
LDSLV (Load Slave Processor Program RAM)........ 279
LNK (Allocate Stack Frame)...........c.cccceeveenne. 280, 281
LSR (Logical Shift Right by Short Literal).................. 286
LSR (Logical Shift Right by Wns) 287
LSR (Logical Shift Right f) 282
LSR (Logical Shift Right Ws)....... ... 284
MAC (Multiply and Accumulate)cccccveeveennenns 288
MAC (Square and Accumulate)..........cccceervneeennen. 290
MAX (Accumulator Force Maximum

Data Range Limit)........cccccceniinniniiiiiicccene 292
MAX.V (Accumulator Force Maximum Data Range

Limit with Limit Excess Result)..........c..ccceeuee. 293
MIN (Accumulator Force Minimum

Data Range Limit)........cccccceniinniiiiiiiiccene 294
MIN.V (Accumulator Force Minimum Data Range

Limit with Limit Excess Result)..........c..cccceu.e. 295
MINZ (Accumulator Force Minimum

Data Range Limit)........ccccccenvinniiiiiinicecee 296
MINZ.V (Accumulator Force Minimum Data Range

Limit with Limit Excess Result)..........c.cccceeueee. 297
MOV (Move 16-Bit Literal to Wnd) ... 304
MOV (Move f to Destination) 299
MOV (Move fto WNd)......cccoveiiiiiiiieeiiecieeeeeeeee 301
MOV (Move WNS 10 f) ...oeiiiiiiiiiieceeec e 302
MOV (Move WREG to f). ... 300
MOV (Move Ws to Wd)........coooiiiiiniiciiecieceeeiees 307
MOV.B (Move 8-Bit Literal to Wnd)c.cccoeeneennes 303
MOQOV.D (Double-Word Move from

Source 1o Wnd).......oeviiiiiiiiiieieeeieeeeee e 309
MOVPAG (Move Literal to Page Register).. o 311
MOVPAG (Move Wn to Page Register) 312
MOVSAC (Prefetch Operands and

Store AccumuIator).........ooeoviviriieieniieeeeeees 313
MPY (Multiply Wm by Wn to Accumulator)............... 315
MPY (Square to Accumulator)..........cccoeveervneeennnen. 317
MPY.N (Multiply -Wm by Wn to Accumulator).......... 319

MSC (Multiply and Subtract from Accumulator) 321
MUL (Integer Unsigned Multiply f and WREG)......... 323
MUL.SS (Integer 16x16-Bit Signed Multiply with

Accumulator Destination)ccccceevnienieeen. 327
MUL.SS (Integer 16x16-Bit Signed Multiply)............ 325
MUL.SU (Integer 16x16-Bit Signed-Unsigned Multiply

with Accumulator Destination)...........cccccovueeee 331

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 515

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.SU (Integer 16x16-Bit

Signed-Unsigned Multiply)cccccoviniennenne 329
MUL.SU (Integer 16x16-Bit Signed-Unsigned Short

Literal Multiply with Accumulator Destination)...... 332
MUL.SU (Integer 16x16-Bit

Signed-Unsigned Short Literal Multiply)............ 328
MUL.US (Integer 16x16-Bit Unsigned-Signed Multiply

with Accumulator Destination)cccccceeenne 335
MUL.US (Integer 16x16-Bit

Unsigned-Signed Multiply)cccccoeoiiiiniinns 333
MUL.UU (Integer 16x16-Bit Unsigned Multiply

with Accumulator Destination)cccccceeee 339

MUL.UU (Integer 16x16-Bit Unsigned Multiply)........ 337
MUL.UU (Integer 16x16-Bit Unsigned Short Literal

Multiply with Accumulator Destination) 340
MUL.UU (Integer 16x16-Bit Unsigned

Short Literal MUltiply)coooiiiiiniiiiiieeiiee. 336
MULW.SS (Integer 16x16-Bit Signed Multiply

with 16-Bit Result).........ccooviiiniiiiiiee, 341
MULW.SU (Integer 16x16-Bit Signed-Unsigned

Multiply with 16-Bit Result)............cccccveineennne 343
MULW.SU (Integer 16x16-Bit Signed-Unsigned Short

Literal Multiply with 16-Bit Result)..................... 345
MULW.US (Integer 16x16-Bit Unsigned-Signed

Multiply with 16-Bit Result)............ccccvinneennns 346
MULW.UU (Integer 16x16-Bit Unsigned

Multiply with 16-Bit Result)...........cccccoeeniniinns 348

MULW.UU (Integer 16x16-Bit Unsigned Short Literal

Multiply with 16-Bit Result)
NEG (Negate Accumulator)
NEG (Negate f) ...oooeeeiiiiiiiiciceeeee e
NEG (Negate WS)ccoiiiiiiiiiiiiiieeciee e
NOP (No Operation)
NOPR (No Operation)........c.ccceeeemieenieiieeieeneeeeen
NORM (Normalize Accumulator)cccccoveveenneene 356

POP (Pop TOS to f) .eeveeeenne .357
POP (Pop TOS to Wd).. ..358
POP.D (Double Pop TOS to Wnd/Wnd+1) ... 359

POP.S (Pop Shadow Registers)ccccoceeniernene 360
PUSH (Push ft0 TOS)ccccviiiirieierecincecnieseee
PUSH (Push Ws to TOS)

PUSH.D (Double Push Wns/Wns+1 to TOS)............ 364
PUSH.S (Push Shadow Registers).........c..cccooueeueene 365
PWRSAYV (Enter Power-Saving Mode) 366

RCALL (Computed Relative Call)371,373
RCALL (Relative Call)......ccccooeeriieiiiiiiiiieee 367, 369
REPEAT (Repeat Next Instruction

Tit14417 TIMES).ccvicieeiicie e 375
REPEAT (Repeat Next Instruction

Tit15+1 TIMES).oveiieiiiie e 376
REPEAT (Repeat Next Instruction

Wn+1 Times) .eeeviiiiicieeeceece e 377,378

RESET (RESEt) ...oeeeiiiiicieiiieeeeeee e 379
RETFIE (Return from Interrupt)

RETLW (Return with Literal in Wn)..................

RETURN (Return)........ccccceviiiieiiiccenieeeeieen

RLC (Rotate Left f through Carry)....
RLC (Rotate Left Ws through Carry).........cccceeeeneene
RLNC (Rotate Left f without Carry).........ccceevvieenne
RLNC (Rotate Left Ws without Carry). .
RRC (Rotate Right f through Carry)....
RRC (Rotate Right Ws through Carry) .
RRNC (Rotate Right f without Carry)cccoeeeennee

RRNC (Rotate Right Ws without Carry).................... 399
SAC (Store Accumulator) .

SAC.D (Store Accumulator Double)..............cccec...... 403
SAC.R (Store Rounded Accumulator)ccccueee. 404

Instruction Set Summary Table ...

SE (Sign-Extend WS)......ccooiiiiiiiniiieiieceieeeecieeee
SETM (Set f or WREG).......coceiviiiiiiiieiieeieesi e
SETM (Set WS)....oiiiiiiieiieciee e
SFTAC (Arithmetic Shift Accumulator by Slit6).
SFTAC (Arithmetic Shift Accumulator by Wb)
SL (Shift Left by Short Literal)............cccccceeneee. .
SL (Shift Left by WNS)....cccoiiiiiieiieee e
SL (Shift Left f)..cueeeiricieiieereeee e
SL (Shift Left Ws) .
SUB (Subtract Accumulators)...........cccceeceerniinneeenene.
SUB (Subtract Literal from Wn)ccccoeceiiniinnneenn.
SUB (Subtract Short Literal from Wb).. .
SUB (Subtract WREG from f).............. .
SUB (Subtract Ws from WD)........ccccovvviiiiniennneen.
SUBB (Subtract Short Literal from Wb

With BOITOW)....coiiiiiiiiiie e
SUBB (Subtract Wn from Literal with Borrow)..
SUBB (Subtract WREG and Carry Bit from f)...........
SUBB (Subtract Ws from Wb with Borrow)...............
SUBBR (Subtract f from WREG with Borrow)
SUBBR (Subtract Wb from Short Literal

With BOITOW)....coiiiiiiiicieiicceee e 431
SUBBR (Subtract Wb from Ws with Borrow)............ 433
SUBR (Subtract f from WREG).........cccoccevvvevernennn.
SUBR (Subtract Wb from Short Literal) .
SUBR (Subtract Wb from Ws)ccccceviiniiinenennn.
SWAP (Byte or Nibble Swap Wn).........cccconiennennenn.
TBLRDH (Table Read High)............ .
TBLRDL (Table Read Low)
TBLWTH (Table Write High)... .
TBLWTL (Table Write LOW)ccocviiiiiiieciieieciees
ULNK (Deallocate Stack Frame)c.cc.c.....
VFSLV (Verify Slave Processor Program RAM)....... 450
XOR (Exclusive OR fand WREG)..........c.ccooueevieennn.
XOR (Exclusive OR Literal and Wn)...........cccceeveenee.
XOR (Exclusive OR Wb and Short Literal)
XOR (Exclusive OR Wb and WSs)
ZE (Zero-Extend WS).......cccevveeneee.

Instruction ENcodingcccceiriiinieiiii e
Instruction Encoding Field Descriptors Introduction
Instruction Set Overview.............cccooviiiiiiiiinn.

Bit INStructionsccoooiviiiieiiiice e

Compare/Skip and Compare/Branch Instructions 48
Control Instructions
DSP Instructions....
Instruction Groups .
Logic Instructions
Math Instructions
Move Instructions
Program Flow InStructions.............cccocevvieiiienieeceens 49
Rotate/Shift Instructions............ccccoeiveeiiiiiiiceeees 46
Shadow/Stack/Context Instructions.

DS70000157G-page 516

© 2005-2018 Microchip Technology Inc.

RAW Dependency Detection ... 64
Instruction SymboOIS.........ccooiiiiiiiiiiie e 96
Integer and Fractional Dataccccocueeiiiniiiniiiic e, 83

Representation..........cccceiiieeiiiiiiiiiie e 84
M
MAC

OPEratioNSccocveiiiiiiee et

Prefetch Register Updates

Prefetches.......ccccoeieeenis

SYNEAX .t

WItE-BaCKeeiiiiiiicieie e
MAC Accumulator Write-Back Selection.............ccccceeeue. 100
MAC or MPY Source Operands

(Different Working Register)ccoccvvvieniiineennenene. 99
MAC or MPY Source Operands

(Same Working Register)..........coocvvveiiieiiiieeiiiieeeees 99
Manual ObjJECHIVEcoiiiiiiiiiiiece e 6
Modulo and Bit-Reversed Addressing Modes..................... 59
MOVPAG Destination Selectioncccocceeviieiiiiieennnes 100
Multicycle Instructions...............

Multiword Instructions ..

N
Normalizing the Accumulator with the

FBCL INStruCtioNcooiiie e 93
Normalizing the Accumulator with the

NORM INStructionccccooiiiiiiiiiiiiii e, 93
(0]
Offset Addressing Modes for Wd Destination Register

(with Register Offset)cooovveiiiiiiiiiieeeceeee 98
Offset Addressing Modes for Ws Source Register

(with Register Offset)cccociiiiniiiieni e, 98

P
PIC Microcontroller Compatibility............ccooeeeviiniiiiiiies 81
PRODH
PRODL Register Paircccccovueiiiiieeiiiiee e 81
Program Addressing Modescccccovirniniiienie e 63
Methods of Modifying FIOW............cccceeiiiieiiiiiice. 63
Program Counter (PC) .
Programmer’s Modelccccooiiiiiiiiiiie e
Register Descriptionsccocceeiieniiecieiieeeeeeeen 19
PSVPAG REGIStEr.....ccoiiiiiiiiieiiee e 21
R
RCOUNT REQISIEr ..ottt 21
Register Direct Addressing. .. 55
Register Indirect Addressing... .. 56
and the Instruction Set.... .. 59

MOAES ..t 56
Registers
CORCON (Core Control - dsPIC30F, dsPIC33F)....... 34
CORCON (Core Control - dsPIC33E, dsPIC33C)...... 36
CORCON (Core Control - PIC24E)ccocvecuerienne 33
CORCON (Core Control - PIC24F, PIC24H).. .32
SR (CPU STATUS - dsPIC30F, dsPIC33F)... .. 28
SR (CPU STATUS - dsPIC33E, dsPIC33C)...... .. 30
SR (CPU STATUS - PIC24H, PIC24F, PIC24E)........ 27
ReVisSion HiStory.........oooiiiiiiiiiiiee e 511
S
Scaling Data with the FBCL Instructioncc.ccovienneene 90
Scaling EXxamplescccooiiiiiiiiiine s 91
Shadow Registers .
Automatic USagecccvvvuiiriiiiiecieeeceeeeeee e 25
Software Stack Frame Pointer...........ccccccooeeveiiinieenen. 20, 74
Example.......ccccoveeveinnnnns
Overflow
Underflow .
Software Stack Pointerccoocciiiiiiiniiiie
EXamPle.....ocuoiiii e
Software Stack Pointer (SSP) .
Stack Frame Active (SFA) Control...........cccoeeveiniiinneenncne 77
Stack Pointer Limit Register (SPLIM)cccccoviiiniineinnn. 20
STATUS Register.......ooiiiiiiiiiie e 22
DO Loop Active (DA) Status Bit..........cccceecueerernceeennen. 23
DSP ALU Status Bits .
Interrupt Priority Level Bits ..o 24
MCU ALU Status Bitsccccoveriiniiiiieiccecee 22
REPEAT Loop Active (RA) Status Bit... .23
Style and Symbol Conventions..................... 4
Document Conventionsccceeecueeiiceiecnieeniee e 7
T
TBLPAG ReGIStErooiiiiiiciii e 21
HO WNA) o 305
U
Using 10-Bit Literal Operands.........c..cccoevviiiiiiieeeniieeeinennn 71
10-Bit Literal Codingccovvervieiiiiniceeeneeseee e 71

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 517

16-Bit MCU and DSC Programmer’s Reference Manual

W
Instruction Descriptions
MOV (Move WNS 0......oooiuiiiiiiiieiie e 306
Word Move Operations
Data Alignment in Memory.........c.cccovcvviienieeecneeeee. 68
Working Register Arraycccccoceeieeiieenieecceneeesee e 19
Instruction Descriptions
MOV (MOVE ...t 305

X
X Data Space Prefetch Operationc.cccccveiiiiiiincnens 98
Y
Y Data Space Prefetch Destinationccccoeviiieeininen. 99
Y Data Space Prefetch Operationccccoveveeeiiiiinnnn.n. 99
A
ZStatus Bit.......ooeeeiiiie 79

DS70000157G-page 518

© 2005-2018 Microchip Technology Inc.

Index

NOTES:

© 2005-2018 Microchip Technology Inc. DS70000157G-page 519

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2005-2018 Microchip Technology Inc.

DS70000157G-page 520

10/25/17

http://support.microchip.com
http://www.microchip.com

	Table of Contents
	Section 1. Introduction
	Highlights
	1.1 Introduction
	1.2 Manual Objective
	1.3 Development Support
	1.4 Style and Symbol Conventions
	Table 1-1: Document Conventions

	1.5 Instruction Set Symbols
	Table 1-2: Symbols Used in Instruction Summary Tables and Descriptions

	Section 2. Programmer’s Model
	Highlights
	2.1 16-Bit MCU and DSC Core Architecture Overview
	2.1.1 Features Specific to 16-Bit MCU and DSC Core
	2.1.1.1 Registers
	2.1.1.2 Instruction Set
	2.1.1.3 Data Space Addressing
	2.1.1.4 Addressing Modes
	2.1.1.5 Arithmetic and Logic Unit
	2.1.1.6 Exception Processing

	2.1.2 PIC24E, dsPIC33E and dsPIC33C Features
	2.1.2.1 Data Space Addressing
	2.1.2.2 Automatic Mixed-Sign Multiplication Mode (dsPIC33E and dsPIC33c Only)
	2.1.2.3 MCU Multiplications with 16-Bit Result
	2.1.2.4 Hardware Stack for DO Loops (dsPIC33E and dsPIC33C Only)
	2.1.2.5 DSP Context Switch Support (dsPIC33E and dsPIC33C Only)
	2.1.2.6 Extended CALL and GOTO Instructions (PIC24E, dsPIC33E and dsPIC33C Only)
	2.1.2.7 Compare/Branch Instructions (PIC24E, dsPIC33E and dsPIC33C Only)

	2.1.3 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Features
	2.1.3.1 Programming Loop Constructs
	2.1.3.2 DSP Instruction Class
	2.1.3.3 Data Space Addressing
	2.1.3.4 Modulo and Bit-Reversed Addressing
	2.1.3.5 DSP Engine
	2.1.3.6 Exception Processing

	2.2 Programmer’s Model
	Figure 2-1: PIC24F and PIC24H Programmer’s Model Diagram
	Figure 2-2: PIC24E Programmer’s Model Diagram
	Figure 2-3: dsPIC30F and dsPIC33F Programmer’s Model Diagram
	Figure 2-4: dsPIC33E Programmer’s Model Diagram
	Figure 2-5: dsPIC33C Programmer’s Model
	Table 2-1: Programmer’s Model Register Descriptions

	2.3 Working Register Array
	2.4 Default Working Register (WREG)
	2.5 Software Stack Frame Pointer
	2.6 Software Stack Pointer
	2.7 Stack Pointer Limit Register (SPLIM)
	2.8 Accumulator A and Accumulator B (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.9 Program Counter
	2.10 TBLPAG Register
	2.11 PSVPAG Register (PIC24F, PIC24H, dsPIC30F and dsPIC33F)
	2.12 RCOUNT Register
	2.13 DCOUNT Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.14 DOSTART Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.15 DOEND Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.16 STATUS Register
	2.16.1 MCU ALU Status Bits
	2.16.2 REPEAT Loop Active (RA) Status Bit
	2.16.3 DO Loop Active (DA) Status Bit (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.16.4 DSP ALU Status Bits (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.16.5 Interrupt Priority Level Status Bits

	2.17 Core Control Register
	2.17.1 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Specific Bits
	2.17.1.1 PIC24E, dsPIC33E and dsPIC33C Specific Bits

	2.18 Shadow Registers
	Table 2-2: Automatic Shadow Register Usage

	2.19 DO Stack (dsPIC33E and dsPIC33C Devices)
	Figure 2-6: DO Stack Conceptual Diagram
	Register 2-1: SR: CPU STATUS Register (PIC24H, PIC24F and PIC24E Devices)
	Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices)
	Register 2-3: SR: CPU STATUS Register (dsPIC33E and dsPIC33C Devices)
	Register 2-4: CORCON: Core Control Register (PIC24F and PIC24H Devices)
	Register 2-5: CORCON: Core Control Register (PIC24E Devices)
	Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices)
	Register 2-7: CORCON: Core Control Register (dsPIC33E and dsPIC33C Devices)

	Section 3. Instruction Set Overview
	Highlights
	3.1 Introduction
	3.2 Instruction Set Overview
	Table 3-1: Instruction Groups
	3.2.1 Multicycle Instructions
	3.2.2 Multiword Instructions

	3.3 Instruction Set Summary Tables
	Table 3-2: Move Instructions
	Table 3-3: Math Instructions
	Table 3-4: Logic Instructions
	Table 3-5: Rotate/Shift Instructions
	Table 3-6: Bit Instructions
	Table 3-7: Compare/Skip and Compare/Branch Instructions
	Table 3-8: Program Flow Instructions
	Table 3-9: Shadow/Stack/Context Instructions
	Table 3-10: Control Instructions
	Table 3-11: DSP Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)

	Section 4. Instruction Set Details
	Highlights
	4.1 Data Addressing Modes
	Table 4-1: 16-Bit MCU and DSC Addressing Modes
	4.1.1 File Register Addressing
	Example 4-1: File Register Addressing
	Example 4-2: File Register Addressing and WREG

	4.1.2 Register Direct Addressing
	Example 4-3: Register Direct Addressing

	4.1.3 Register Indirect Addressing
	Table 4-2: Indirect Addressing Modes
	Example 4-4: Indirect Addressing with Effective Address Update
	Example 4-5: Indirect Addressing with Register Offset
	Example 4-6: Move with Literal Offset Instructions
	4.1.3.1 Register Indirect Addressing and the Instruction Set
	4.1.3.2 DSP MAC Indirect Addressing Modes (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-3: DSP MAC Indirect Addressing Modes

	4.1.3.3 Modulo and Bit-Reversed Addressing Modes (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)

	4.1.4 Immediate Addressing
	Table 4-4: Immediate Operands in the Instruction Set
	Example 4-7: Immediate Addressing

	4.1.5 Data Addressing Mode Tree
	Figure 4-1: Data Addressing Mode Tree (PIC24F, PIC24H, PIC24E)
	Figure 4-2: Data Addressing Mode Tree (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)

	4.2 Program Addressing Modes
	Table 4-5: Methods of Modifying Program Flow

	4.3 Instruction Stalls
	4.3.1 RAW Dependency Detection
	Table 4-6: Raw Dependency Rules (Detection By Hardware)

	4.3.2 Instruction Stalls and Exceptions
	4.3.3 Instruction Stalls and Instructions that Change Program Flow
	4.3.4 Instruction Stalls and DO/REPEAT Loops
	4.3.5 Instruction Stalls and PSV

	4.4 Byte Operations
	Example 4-8: Sample Byte Move Operations
	Example 4-9: Sample Byte Math Operations

	4.5 Word Move Operations
	Figure 4-3: Data Alignment in Memory
	Example 4-10: Legal Word Move Operations
	Example 4-11: Illegal Word Move Operations

	4.6 Using 10-Bit Literal Operands
	Table 4-7: 10-Bit Literal Coding
	Example 4-12: Using 10-Bit Literals for Byte Operands

	4.7 Bit Field Insert/Extract Instructions (dsPIC33C Devices Only)
	4.7.1 BFEXT
	4.7.2 BFINS

	4.8 Software Stack Pointer and Frame Pointer
	4.8.1 Software Stack Pointer
	Figure 4-4: Stack Operation for CALL Instruction
	4.8.1.1 Stack Pointer Example
	Example 4-13: Stack Pointer Usage
	Figure 4-5: Stack Pointer Before the First PUSH
	Figure 4-6: Stack Pointer After “PUSH W0” Instruction
	Figure 4-7: Stack Pointer After “PUSH W1” Instruction
	Figure 4-8: Stack Pointer After “POP W3” Instruction

	4.8.2 Software Stack Frame Pointer
	4.8.2.1 Stack Frame Pointer Example
	Example 4-14: Frame Pointer Usage
	Figure 4-9: Stack at the Beginning of Example 4-14
	Figure 4-10: Stack After “CALL COMPUTE” Executes
	Figure 4-11: Stack After “LNK #4” Executes

	4.8.3 Stack Pointer Overflow
	4.8.4 Stack Pointer Underflow
	4.8.5 Stack Frame Active (SFA) Control (dsPIC33E, dsPIC33C and PIC24E Devices)

	4.9 Conditional Branch Instructions
	Table 4-8: Conditional Branch Instructions

	4.10 Z Status Bit
	Example 4-15: ‘Z’ Status Bit Operation for 32-Bit Addition

	4.11 Assigned Working Register Usage
	Table 4-9: Special Working Register Assignments
	4.11.1 Implied DSP Operands (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	4.11.2 Implied Frame and Stack Pointer
	4.11.3 PIC® Microcontroller Compatibility
	4.11.3.1 Default Working Register (WREG)
	Example 4-16: Using the Default Working Register, WREG

	4.11.3.2 PRODH:PRODL Register Pair
	Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

	4.11.3.3 Moving Data with WREG
	Example 4-18: Moving Data with WREG

	4.12 DSP Data Formats (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	4.12.1 Integer and Fractional Data
	Table 4-10: dsPIC30F/33F/33E/33CData Ranges

	4.12.2 Integer and Fractional Data Representation
	Figure 4-12: Different Representations of 0x4001
	Figure 4-13: Different Representations of 0xC002

	4.13 Accumulator Usage (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Figure 4-14: Accumulator Alignment and Usage

	4.14 Accumulator Access (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	4.15 DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-11: DSP MAC Instructions
	4.15.1 MAC Prefetches
	4.15.2 MAC Prefetch Register Updates
	4.15.3 MAC Operations
	4.15.4 MAC Write-Back
	4.15.5 MAC Syntax
	Example 4-19: Base MAC Syntax
	Example 4-20: MAC Prefetch Syntax
	Example 4-21: MAC Accumulator WB Syntax
	Example 4-22: MSC Instruction with Two Prefetches and Accumulator Write-Back

	4.16 DSP Accumulator Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-12: DSP Accumulator Instructions

	4.17 Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-13: Scaling Examples
	Example 4-23: Scaling with FBCL

	4.18 Data Range Limit Instructions (dsPIC33C Devices Only)
	4.18.1 FLIM/FLIM.V
	4.18.2 MAX/MAX.V
	4.18.3 MIN/MIN.V/MINZ

	4.19 Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Example 4-24: Normalizing with FBCL

	4.20 Normalizing the Accumulator with the NORM Instruction (dsPIC33C Devices Only)
	4.21 Extended Precision Arithmetic Using Mixed-Sign Multiplications (dsPIC33E and dsPIC33C Only)
	Example 4-25: 32-Bit Signed Multiplication Using Implicit Mixed-Sign Mode

	Section 5. Instruction Descriptions
	Highlights
	5.1 Instruction Symbols
	5.2 Instruction Encoding Field Descriptors Introduction
	Table 5-1: Instruction Encoding Field Descriptors
	Table 5-2: Addressing Modes for Ws Source Register
	Table 5-3: Addressing Modes for Wd Destination Register
	Table 5-4: Destination Addressing Modes for MCU Multiplications
	Table 5-5: Offset Addressing Modes for Ws Source Register (with Register Offset)
	Table 5-6: Offset Addressing Modes for Wd Destination Register (with Register Offset)
	Table 5-7: X Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-8: X Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-9: Y Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-10: Y Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-11: MAC or MPY Source Operands – Same Working Register (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-12: MAC or MPY Source Operands – Different Working Register (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-13: MAC Accumulator Write-Back Selection (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C)
	Table 5-14: MOVPAG Destination Selection (dsPIC33E, dsPIC33C and PIC24E)
	Table 5-15: Accumulator Selection (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C)

	5.3 Instruction Description Example
	5.4 Instruction Descriptions

	Section 6. Built-in Functions
	Highlights
	6.1 Introduction
	6.2 Built-in Function List
	Example 6-1: Additional In-Line Functions
	Example 6-2: Divide_32_by_16

	Section 7. Reference
	Highlights
	7.1 Instruction Bit Map
	Table 7-1: Instruction Encoding

	7.2 Instruction Set Summary Table
	Table 7-2: Instruction Set Summary Table

	7.3 Revision History
	Revision A (May 2005)
	Revision B (September 2005)
	Revision C (February 2008)
	Revision D (November 2009)
	Revision E (June 2010)
	Revision F (July 2011)
	Revision G (April 2018)

	INDEX
	Worldwide Sales and Service

