
A Fast Compact CRC5 Checker For
Microcontrollers

Dipl.-Ing. Michael Joost
Research and Development, 47829 Krefeld, Germany, EU

Abstract—This paper proposes a fast and compact software
implementation for checking the validity of Cyclic Redundancy
Codes of order five (CRC5), such as used in the USB protocol.
The algorithm is adapted to the memory- and clock cycle
restrictions found in small microcontrollers.

I. I NTRODUCTION

Cyclic Redundancy Codes (CRC) are commonly used for
detecting payload corruption arising from transmission errors
[1]. In particular, the Universal Serial Bus (USB [2, sect.
8]) uses CRC16 for securing payload data and CRC5 for
securing address/endpoint information in SETUP/IN/OUT
token packets. We will focus on the latter in this paper.

Efficient software implementations of CRC calculations
have been known for a long time, usually deploying a lookup
table using a 8-bit-wise processing of the payload (see [3]).
However, the size of the byte-wise lookup table (256 entries
of one byte each for CRC5) puts a rather significant memory
footprint for small microcontrollers controlling a device.
Bitwise algorithms avoid the memory required for the lookup-
table at the expense of excessively more clock cycles. For
microcontrollers supporting nibble operations, a table lookup
of significantly smaller size with two lookup operations per
byte can be implemented.

In USB the address/endpoint information is eleven bits
wide, and secured by the five bit wide CRC. Since the validity
checking is accomplished by calculating the CRC over both
these fields, and comparing to a known residual, our algorithm
can operate on an integral number of bytes, in particular, two
bytes.

II. CRC ALGEBRA

A CRC algorithm treats the bits of a payload data of length
l bits, padded by appendingg zero bits, as the coefficients of a
binary polynomialB(x) of degreeb = l + g − 1, and divides
that by a constant generator polynomialG(x) of degreeg.
Appending the padding bits reserves space for adding the
CRC lateron, and enforces all payload bits up to the least-
significant bit (LSB) being mangled thru the division.
The quotient Q(x) of the division is not relevant. The
remainder

R(x) = B(x) mod G(x)

http://www.michael-joost.de/tech.html
Copyright c© 2013 Michael Joost. All rights reserved.

of this operation, a polynomial of degreer = g−1, is the CRC
that is appended to the payload data, replacing the padded
zero-bits:

B(x) = Q(x) · G(x) + R(x)

⇔ B(x) − R(x)
︸ ︷︷ ︸

message

= Q(x) · G(x)

Since the message (payload+CRC) is always divisible by
the generator polynomialG(x), we can check validity by
calculating the CRC on the entire message, which should
leave a zero remainder. This is enabled by the appending of
the zero bits when originally calculating the CRC.

The division is calculated on the finite Galois field of two
elements, GF(2). In this finite field the operations are carry-
less, so the field’s addition and subtraction operations degen-
erate to the exclusive-OR (XOR) of just the corresponding
elements (bit-wise).

The generator polynomial for CRC5 used in USB is (see
[2, sect 8.3.5.1])

G(x) = x5 + x2 + x0 of degreeg = 5

= 1 · x5 + 0 · x4 + 0 · x3 + 1 · x2 + 0 · x1 + 1 · x0

This generator polynomial can therefore be interpreted as a
bitstring of six bits length:100101.

A. CRC Compostion Operation

The division is a linear, distributive operation, so

(x ⊕ y) mod G = (x mod G) ⊕ (y mod G)

or

crc(x ⊕ y) = crc(x) ⊕ crc(y)

where⊕ denotes the bit-wise XOR operation.

However, many real-world CRC functions add a constant to
the remainder, as we will discuss soon. In this case the above
equation does not hold:

CRC(x) = (x mod G) ⊕ c with c 6= 0

CRC(x ⊕ y) = ((x ⊕ y) mod G) ⊕ c

= (x mod G) ⊕ (y mod G) ⊕ c

6= ((x mod G) ⊕ c) ⊕ ((y mod G) ⊕ c)

= CRC(x) ⊕ CRC(y)

JOOST,M.: A FAST COMPACT CRC5 CHECKER FOR MICROCONTROLLERS 2

B. Bit Sequence Operation

Assume a bit sequence consisting of two parts, a prefix
sequenceP and a suffix sequenceS. The partial CRC over
P is already known as

Rp = P mod G ⇒ P · 2g = QpG + Rp

The CRC over the sequenceB(x) = [P (x) : S(x)] is
calculated as

R = [P : S] mod G = (P · 2slen ⊕ S) mod G

whereslen denotes the length ofS in bits.

Substituting the partial CRC we get

R = ((QpG ⊕ Rp) · 2
slen ⊕ S) mod G

= ((QpG · 2slen) ⊕ (Rp · 2slen ⊕ S)) mod G

= ((QpG · 2slen) mod G) ⊕ ((Rp · 2slen ⊕ S) mod G)

= (Rp · 2slen ⊕ S) mod G = [Rp : S] mod G

We find thatcrc([P : S]) = crc([crc(P) : S]). The prefix
sequence can be substituted for its partial CRC residual
without changing the overall CRC residual.

C. An Example

To clarify on the long division used in the CRC caclculation
we consider anExample.
We consider the 11-bit payload string 10100111010 (53A).
By padding five zero bits at the end we get the polynomial
B(x) of degree 15:

b=15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0

l=11 g=5

Fig. 1. Message Example

The polynomial division of that message string by the
CRC5 polynomial on GF(2) can be evaluated manually much
the same as in conventional math. We start with the current
remainder initialized to the firstg + 1 bits of the divisor.
Whenever the most significant bit of the current remainder
is 1, we subtract (using modulo-2 operation) the generator
polynomial from the remainder. Then any leading zero-bits
are discarded from the remainder, and a corresponding
number of bits is fed from the dividend to the right end of
the current remainder. The calculation stops when no further
bits are left from the dividend.

10100111010 00000 mod 100101
-100101 | |

------ | |
0110011 |
-100101 |

------ |
101100 |

-100101

0100110 |
-100101 |

------ |
00011 0000|

-10 0101|
-- ----|

1 01010
-1 00101

- -----
01111 remainder

10100111010 01111 message

A problem with this simple approach is that any leading
zero-bits in the payload do not affect the remainder, thus
are not protected. Inserted zero-bits at the beginning could
not be detected, as well as a replacement by zero of both,
the payload and the CRC (a long burst error). Therefore,
typical CRC algorithms demand that a constant value is
added (modulo-2) to the head of the payload message. This
is usually a bit-string of all-1 bits with the size of the CRC
polynomial’s degree, effectively inverting the firstg bits of
the payload. In case of CRC5 in USB this is defined as the
5-bit string 11111. Likewise, the USB standard demands that
the remainder is inverted when inserted into the message, so
that trailing zero-bits in the payload are protected.

As a consequence of these modifications, the division
of the complete message (payload+CRC) by the generator
polynomial no longer leaves a zero remainder. Both these
operations have the effect of adding a constant (though
depending on the message length) value to the division’s
remainder.
Furthermore, the USB standard demands that all data is
sent with the least-significant bit first. An interesting side
effect of the carry-less modulo-2 operation on GF(2) is that
reversing the payload (but not the generator polynomial)
results in the same, but reversed, remainder value from the
polynomial division. Therefore, we can neglect the bit-order
dependencies from our considerations.

Incorporating the above modifications now gives the
correct results as expected by the USB standard:

10100111010 00000 mod 100101
11111

101111 |
-100101 |

------ |
0101010 |
-100101 |

------ |
0111110 |
-100101 |

------ |
11011 0 |

-10010 1 |
----- - |

1001 10 |
-1001 01 |

---- -- |
000 11000 remainder

inv: 00111 CRC

JOOST,M.: A FAST COMPACT CRC5 CHECKER FOR MICROCONTROLLERS 3

For checking the validity of a received message we use the
exact same mechanism as in calculating the CRC at the
sender, just on a longer ’payload’ field of 16 bit, comprising
the original payload and the appended CRC. That also
includes inverting the top-most five bits and appending five
zero-bits.
Appending the zero-bits isn’t strictly necessary for validity
checking. The reason is just to use the same algorithm as
for generating the CRC, and to retrieve the same residual
as defined in the USB standard. We could also check for a
remainder of11111 after processing the last bit of the CRC.
The effect of processing the subsequent trailing zero-bits
is independent of the payload and the CRC, thus, results
always in the same values.

10100111010 00111 00000 mod 100101
11111

0101111
-100101

0101010
-100101

0111110
-100101

11011 0

-10010 1
----- -

1001 10
-1001 01

---- --
000 11111 0 if CRC valid, this is 11111

-10010 1
----- -

1101 10
-1001 01

---- --
100 110

-100 101
--- ---

00 01100
01100 remainder

This is the residual specified in the USB standard for any
CRC-valid message.

III. O PTIMIZATIONS

A. Tail-Cutting

As indicated before, the processing of the trailing zero-bits
in validity checking isn’t really necessary. Also, when
calculating the CRC, the final value is only dependent on
the remainder achieved after processing the last payload bit.
This gives reason to have a closer look at the XOR-and-shift
operations we do in the long division:

Check the most significant bit (MSB) of the current
remainder, and eventually subtract (XOR) the generator
polynomial from the remainder if the MSB had been one,
which results in the MSB being cleared. Then shift the
remainder left by one bit position, leaving the LSB zero.
Finally, feed (XOR) the next payload bit into the LSB
position.

In the carry-less calculations the feeded payload bit has no
effect unless it reaches the MSB position of the remainder,
and is used there for the decision about the eventual XORing
of the generator polynomial. Until then it is just shifted
left for one place in each step. Therefore, we can delay

XORing the payload bit until its position has reached the
MSB position. Furthermore, when the last payload bit has
been processed in that position, the trailing padded zero-bits
can be ignored, respectively, XORed alltogether into the
remainder without having any effect on its value.
The instructions for division are now:

XOR the next payload bit with the most significant bit of
the current remainder, and if the result is one, then subtract
(XOR) the generator polynomial from the remainder. Shift
the remainder left by one bit position, leaving the LSB zero.

The CRC calculation now is somewhat shorter:

10100111010 mod 100101

11111 initial
111110 shift (0) <---

+1 payload

011110

111100 shift
+0 payload

111100

-100101 poly

11001
110010 shift

+1 payload

010010

100100 shift
+0 payload

100100

-100101 poly

00001
000010 shift (4) <---

+0 payload

000010

000100 shift
+1 payload

100100

-100101 poly

00001
000010 shift

+1 payload

100010

-100101 poly

00111
001110 shift

+1 payload

101110

-100101 poly

01011
010110 shift

+0 payload

010110

101100 shift
+1 payload

001100

011000 shift
+000000 payload+trailer

011000

11000 remainder

inv: 00111 CRC

B. Size of Remainder

In this calculation the current remainder seems to be of
size g + 1 bits. However, we can separate the MSB-and-
payload processing from the remainder. The result of that
operation is not retained anyway:
As the MSB of the generator polynomial is always equal

JOOST,M.: A FAST COMPACT CRC5 CHECKER FOR MICROCONTROLLERS 4

to one, subtracting that fromMSBremainder ⊕ payload is
always zero if the subtraction is executed, and is already zero
otherwise. Thus, we only need to take care of the rightmost
g bits of the remainder, in addition to the bit that pops out
on the left in the shift operation.

C. Table-Lookup

Next we consider using a lookup-table for compressing
several steps of the calculation, using a lookup of pre-
calculated values. In the above example, to alter the
current remainder from step (0) to (4) we need to perform
the combination of all the subtractions of the generator
polynomial in that area (marked ingreen), which can be
expressed as a single operand. Lets first append (virtually)to
the initial remainder all the zero-bits that are caused by the
shift operations, and the non-subtractions of the generator
polynom.

111110 0000
-100101 poly

-000000 no poly
-100101 poly

-000000 no poly

10100 00010

or, looking only at the remainder’s value, we can do

11110 (0) initial remainder
ˆ11100 some magic value

00010 (4) final reminder

It is obvious that in thosen = 4 steps there are2n = 16
possibilities to subtract or not subtract the generator
polynomial at its respective fixed offset, thus, a table of that
many entries suffices to calculate the transition from any
given remainder value to the remainder value 4 steps ahead,
by XORing the appropriate pre-calculated table value.
What is left is to determine which of those table entries to
use. Obviously, this depends on the starting value of the
remainder and on the four payload bits that are processed in
those steps. We consider now all the operations modifying
the remainder value that have been left out in the above table
approach, in particular, the XOR of the remainder’s MSB
with the next payload bit (marked inred):

1111 10
+1 payload

+0 payload
+1 payload

+0 payload

0101 10

These top-most four bits are used as the index into our
lookup-table: The top-most four bits of the remainder before
the initial shift operation, XORed with the next four bits of
the payload.
Once we have calculated the new remainder we can repeat
the process on the next four bits of the input, until the end
of input is reached.
Of course, any other number of steps can be compressed

into an appropriate table lookup. In particular, eight bitsare
frequently used, requiring a lookup-table of 256 entries. The
number of bits in the payload should be an integral multiple
of the portion size, or otherwise the last (or the first) portion
needs to be handled bit-wise or with lookups in a separately
designed table lookup.

D. Constructing the Lookup-Table

Since the values in the lookup-table are constant, they
can be pre-calculated without any timing pressure using the
slow bit-wise algorithm. For any possible payload of the
portion size the difference (in modulo-2 arithmetic) to the
final remainder is recorded in the appropriate table entry.
Obviously, the table only considers the pure division, so the
inversion of initial payload bits and the CRC must be disabled
here.

E. In-Byte Operation

As a consequence of the linear, distributive property of the
CRC division we can calculate the CRC of a byte consisting
of two nibblesAB as

crc(A0 ∧ 0B) = crc(A0) ∧ crc(0B)

The terms on the right can be looked up in two tables of 16
entries. So, instead of a 256 byte sized table for byte-mode
operation, we only need two tables with a total extension of
32 bytes, of course at the cost of two table lookup operations
per payload byte, plus a XOR and some nibble operations.
We are still reading the payload in natural byte-wise mode.

F. Unrolled Loop

In the case of CRC5-checking in USB the payload is fixed
at 16 bits, so the loop running thru the two payload bytes can
be unrolled into explicit invocations.

IV. CODE IMPLEMENTATIONS

For better explanation we first present a nibble-mode
implementation in C++.

Listing 1. C++ code

const unsigned char UsbCrc::crc5Table4[] =
{

0x00, 0x0E, 0x1C, 0x12, 0x11, 0x1F, 0x0D, 0x03,
0x0B, 0x05, 0x17, 0x19, 0x1A, 0x14, 0x06, 0x08

};

const unsigned char UsbCrc::crc5Table0[] =
{

0x00, 0x16, 0x05, 0x13, 0x0A, 0x1C, 0x0F, 0x19,
0x14, 0x02, 0x11, 0x07, 0x1E, 0x08, 0x1B, 0x0D

};

//---------------
bool
UsbCrc::crc5Check(const unsigned char* data)
//---------------
{
unsigned char b = data[0] ˆ 0x1F;
unsigned char crc = crc5Table4[b & 0x0F]

ˆ crc5Table0[(b >> 4) & 0x0F];
b = data[1] ˆ crc;
return (crc5Table4[b & 0x0F]

ˆ crc5Table0[(b>>4) & 0x0F]) == 0x06;
} // crc5Check

JOOST,M.: A FAST COMPACT CRC5 CHECKER FOR MICROCONTROLLERS 5

Likewise, an optimized code fragment for Atmel’s AVRR©

microcontroller family ([5], via avr-gcc):

Listing 2. Atmel AVR Assembler code

; check the CRC5
; footprint: 56+32 bytes, 38 clock cycles
; - - - - - - - - - - - - - - - - - - -
; both these tables have to be located in the
; same 256-byte segment !

.section .progmem.data.crc5Table4,"a", @progbits
.type crc5Table4, @object
.size crc5Table4, 16

crc5Table4:
.byte 0x00, 0x0E, 0x1C, 0x12, 0x11, 0x1F, 0x0D, 0x03
.byte 0x0B, 0x05, 0x17, 0x19, 0x1A, 0x14, 0x06, 0x08

.section .progmem.data.crc5Table0,"a", @progbits
.type crc5Table0, @object
.size crc5Table0, 16

crc5Table0:
.byte 0x00, 0x16, 0x05, 0x13, 0x0A, 0x1C, 0x0F, 0x19
.byte 0x14, 0x02, 0x11, 0x07, 0x1E, 0x08, 0x1B, 0x0D

.text
; check the CRC5
; assume Y points to received message, with
; payload/crc5 in Y+1 and Y+2
; uses 2 registers: rxByte, crc5 for calculation
; uses Z registers for progmem pointer
ldi ZH, hi8(crc5Table4) ; 1 clock cycle
ldd rxByte, Y+1 ; 2 clock cycles
; xor with the initial CRC value of 0x1F
ldi crc5, 0x1F ; 1 clock cycle
eor rxByte, crc5 ; 1 clock cycle
mov ZL, rxByte ; 1 clock cycle
andi ZL, 0x0F ; 1 clock cycle
subi ZL, lo8(-(crc5Table4)) ; 1 clock cycle
lpm crc5, Z ; 3 clock cycles
mov ZL, rxByte ; 1 clock cycle
swap ZL ; 1 clock cycle
andi ZL, 0x0F ; 1 clock cycle
subi ZL, lo8(-(crc5Table0)) ; 1 clock cycle
lpm rxByte, Z ; 3 clock cycles
eor crc5, rxByte ; 1 clock cycle
; now for the second byte
ldd rxByte, Y+2 ; 2 clock cycles
; xor with the current CRC5 value
eor rxByte, crc5 ; 1 clock cycle
mov ZL, rxByte ; 1 clock cycle
andi ZL, 0x0F ; 1 clock cycle
subi ZL, lo8(-(crc5Table4)) ; 1 clock cycle
lpm crc5, Z ; 3 clock cycles
mov ZL, rxByte ; 1 clock cycle
swap ZL ; 1 clock cycle
andi ZL, 0x0F ; 1 clock cycle
subi ZL, lo8(-(crc5Table0)) ; 1 clock cycle
lpm rxByte, Z ; 3 clock cycles
eor crc5, rxByte ; 1 clock cycle
; check for valid residual: reverse of 0x0C = 0x06
cpi crc5, 0x06 ; 1 clock cycle
brne ignore ; 1 clock cycle (nobranch)

V. RESOURCEUSAGE

As already stated, several other implementations of the
CRC5-Checker can be considered, with separate goals.

The byte-mode implementation performs a lookup in a
table of 256 bytes for each payload byte. While the CPU
clock-cycle consumption of this strategy is only 42% of the
nibble-mode’s utilization, this comes at the cost of 314%
memory usage, possibly further increased by alignment
offcuts on the large table.

The bit-mode implementation avoids the memory overhead
of a lookup-table, so its memory utilization is only 45% of

the nibble-mode’s usage, but at the cost of 279% the CPU
clock-cycle consumption.

Which implementation to choose depends on the weighting
of the restrictions to consider. If both, the memory and the
clock cycles, are equally of concern, the solution with the
least distance from the origin (null-algorithm) might be the
most appropriate, hence, the nibble-mode implementation.

 0

 100

 200

 300

 0 25 50 75 100

m
em

or
y

[b
yt

es
]

clock cycles

Time-Memory Footprint

bit

nibble

byte

Fig. 2. Memory/Time Tradeoffs for CRC5 Checker Implementations

All resource figures are based on implementations for the
AVR R© microcontroller architecture with optimized assembly
code inlined similar to the code implementation given in
listing 2. For other architectures the footprint/performance
results might be different, of course.

VI. CONCLUSION

We proposed an implementation for checking the validity
of CRC5-secured message fields, as used in the USB
protocol. An implementation based on 4-bit-wide lookup
tables provides an optimal trade-off between memory usage
and CPU utilization, compared to other implementation
strategies.
While we focus in this paper on the needs of the USB
protocol for excatly two bytes long messages (payload+CRC),
the algorithm can be easily extended to longer messages.

REFERENCES

[1] W. W. Peterson, D. T. Brown
Cyclic Codes for Error Detection
Proceedings of the IRE, Vol. 49 pg. 228, 1961

[2] Universal Serial Bus Specification, Rev. 2.0
http://www.usb.org

[3] D.V. Sarwate:
Computation of Cyclic Redundancy Checks via Table-Lookup
Comm. ACM, vol. 31, no. 8, pp. 1008-1013, Aug. 1988

JOOST,M.: A FAST COMPACT CRC5 CHECKER FOR MICROCONTROLLERS 6

[4] M. E. Kounavis, F. L. Berry:
A Systematic Approach to Building High Performance,
Software-based, CRC Generators
Proc. 10th IEEE Symp. Computers and Comm. (ISCC ’05),
pp. 855-862, June 2005

[5] Atmel R©:
8-bit AVRR© Instruction Set
http://www.atmel.com/images/doc0856.pdf

[6] Ross N. Williams:
A Painless Guide To CRC Error Detection Algorithms
v3, Aug 1993
http://www.ross.net/crc/download/crcv3.txt

Copyright c© 2013 Michael Joost. All rights reserved.

THIS DOCUMENT IS PROVIDED ”AS IS”, WITH NO WAR-
RANTIES OF ANY KIND EXPRESSED OR IMPLIED. The author
disclaims all responsibilty or liability for any inaccuracies, errors,
infringment of proprietary rights, merchantibility or fitness for any
particular purpose arising out of the information herein.

