
 2005-2018 Microchip Technology Inc. DS70000157G

16-Bit MCU and DSC
Programmer’s Reference Manual

High-Performance Microcontrollers (MCU)
and Digital Signal Controllers (DSC)

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
DS70000157G-page 2
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2005-2018, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-2896-1
 2005-2018 Microchip Technology Inc.

PAGE

Table of Contents
SECTION 1. INTRODUCTION 5

Introduction ... 6
Manual Objective .. 6
Development Support ... 6
Style and Symbol Conventions ... 7
Instruction Set Symbols .. 8

SECTION 2. PROGRAMMER’S MODEL 9

16-Bit MCU and DSC Core Architecture Overview ... 10
Programmer’s Model ... 14
Working Register Array ... 19
Default Working Register (WREG) .. 20
Software Stack Frame Pointer .. 20
Software Stack Pointer .. 20
Stack Pointer Limit Register (SPLIM) .. 20
Accumulator A and Accumulator B (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 20
Program Counter ... 21
TBLPAG Register .. 21
PSVPAG Register (PIC24F, PIC24H, dsPIC30F and dsPIC33F) ... 21
RCOUNT Register .. 21
DCOUNT Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) ... 21
DOSTART Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) ... 22
DOEND Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) ... 22
STATUS Register .. 22
Core Control Register ... 25
Shadow Registers ... 25
DO Stack (dsPIC33E and dsPIC33C Devices) .. 26

SECTION 3. INSTRUCTION SET OVERVIEW 39

Introduction ... 40
Instruction Set Overview ... 40
Instruction Set Summary Tables ... 42

SECTION 4. INSTRUCTION SET DETAILS 53

Data Addressing Modes .. 54
Program Addressing Modes .. 63
Instruction Stalls .. 64
Byte Operations .. 66
Word Move Operations ... 68
Using 10-Bit Literal Operands ... 71
Bit Field Insert/Extract Instructions (dsPIC33C Devices Only) .. 71
Software Stack Pointer and Frame Pointer ... 72
Conditional Branch Instructions .. 78
Z Status Bit .. 79
Assigned Working Register Usage .. 80
DSP Data Formats (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) .. 83
Accumulator Usage (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) ... 85
Accumulator Access (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) .. 86
DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) .. 86
 2005-2018 Microchip Technology Inc. DS70000157G-page 3

16-Bit MCU and DSC Programmer’s Reference Manual
DSP Accumulator Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 90
Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 90
Data Range Limit Instructions (dsPIC33C Devices Only) ... 92
Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E

and dsPIC33C Devices) .. 93
Normalizing the Accumulator with the NORM Instruction (dsPIC33C Devices Only) .. 93
Extended Precision Arithmetic Using Mixed-Sign Multiplications (dsPIC33E and dsPIC33C Only) 94

SECTION 5. INSTRUCTION DESCRIPTIONS 95

Instruction Symbols ... 96
Instruction Encoding Field Descriptors Introduction .. 96
Instruction Description Example .. 101
Instruction Descriptions ... 102

SECTION 6. BUILT-IN FUNCTIONS 459

Introduction .. 460
Built-in Function List .. 461

SECTION 7. REFERENCE 497

Instruction Bit Map ... 498
Instruction Set Summary Table ... 501
Revision History .. 511

SECTION 8. INDEX 513

SECTION 9. WORLDWIDE SALES AND SERVICE 520
DS70000157G-page 4  2005-2018 Microchip Technology Inc.

In
tro

d
u

ctio
n

1

Section 1. Introduction
HIGHLIGHTS

This section of the manual contains the following major topics:

1.1 Introduction ... 6

1.2 Manual Objective .. 6

1.3 Development Support ... 6

1.4 Style and Symbol Conventions ... 7

1.5 Instruction Set Symbols .. 8
© 2005-2018 Microchip Technology Inc. DS70000157G-page 5

16-Bit MCU and DSC Programmer’s Reference Manual
1.1 INTRODUCTION

Microchip Technology focuses on products for the embedded control market. Microchip is a
leading supplier of the following devices and products:

• 8-Bit General Purpose Microcontrollers (PIC® MCUs)
• 16-Bit Digital Signal Controllers (dsPIC® DSCs)

• 16-Bit and 32-Bit Microcontrollers (MCUs)
• Specialty and Standard Nonvolatile Memory Devices
• Security Devices (KEELOQ® Security ICs)
• Application-Specific Standard Products

Information about these devices and products, with corresponding technical documentation, is
available on the Microchip web site (www.microchip.com).

1.2 MANUAL OBJECTIVE

This manual is a software developer’s reference for the 16-bit MCU and DSC device families. It
describes the Instruction Set in detail and also provides general information to assist the
development of software for the 16-bit MCU and DSC device families.

This manual does not include detailed information about the core, peripherals, system integration
or device-specific information. The user should refer to the specific device family reference
manual for information about the core, peripherals and system integration. For device-specific
information, the user should refer to the specific device data sheets. The information that can be
found in the data sheets includes:

• Device memory map
• Device pinout and packaging details
• Device electrical specifications
• List of peripherals included on the device

Code examples are given throughout this manual. These examples are valid for any device in
the 16-bit MCU and DSC families.

1.3 DEVELOPMENT SUPPORT
Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:

• Code Generation
• Hardware/Software Debug
• Device Programmer
• Product Evaluation Boards

Information about the latest tools, product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from your local Microchip Sales Office.

Microchip offers other reference tools to speed up the development cycle. These include:

• Application Notes
• Reference Designs
• Microchip Web Site
• Local Sales Offices with Field Application Support
• Corporate Support Line

The Microchip web site also lists other sites that may be useful references.
DS70000157G-page 6 © 2005-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 1. Introduction
In

tro
d

u
ctio

n

1

1.4 STYLE AND SYMBOL CONVENTIONS

Throughout this document, certain style and font format conventions are used. Table 1-1
provides a description of the conventions used in this document.

Table 1-1: Document Conventions

Symbol or Term Description

set To force a bit/register to a value of logic ‘1’.

clear To force a bit/register to a value of logic ‘0’.

Reset 1. To force a register/bit to its default state.

2. A condition in which the device places itself after a device Reset
occurs. Some bits will be forced to ‘0’ (such as interrupt enable bits),
while others will be forced to ‘1’ (such as the I/O data direction bits).

0xnnnn Designates the number ‘nnnn’ in the hexadecimal number system. These
conventions are used in the code examples. For example, 0x013F or
0xA800.

: (colon) Used to specify a range or the concatenation of registers/bits/pins.
One example is ACCAU:ACCAH:ACCAL, which is the concatenation of
three registers to form the 40-bit Accumulator.
Concatenation order (left-right) usually specifies a positional relationship
(MSb to LSb, higher to lower).

< > Specifies bit locations in a particular register.
One example is SR<7:5> (or IPL<2:0>), which specifies the register and
associated bits or bit locations.

LSb, MSb Indicates the Least Significant or Most Significant bit in a field.

LSB, MSB Indicates the Least/Most Significant Byte in a field of bits.

lsw, msw Indicates the least/most significant word in a field of bits

Courier New
Font

Used for code examples, binary numbers and for Instruction mnemonics
in the text.

Times New
Roman Font, Italic

Used for equations and variables.

Times New
Roman Font,
Bold Italic

Used in explanatory text for items called out from a figure, equation or
example.

Note: A Note presents information that we want to re-emphasize, either to help
you avoid a common pitfall or make you aware of operating differences
between some device family members. A Note can be in a box, or when
used in a table or figure, it is located at the bottom of the table or figure.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 7

16-Bit MCU and DSC Programmer’s Reference Manual
1.5 INSTRUCTION SET SYMBOLS

The summary tables in Section 3.2 “Instruction Set Overview” and Section 7.2 “Instruction
Set Summary Table”, and the instruction descriptions in Section 5.4 “Instruction
Descriptions” utilize the symbols shown in Table 1-2.

Table 1-2: Symbols Used in Instruction Summary Tables and Descriptions

Symbol(1) Description

{ } Optional field or operation

[text] The location addressed by text

(text) The contents of text

#text The literal defined by text

a  [b, c, d] “a” must be in the set of [b, c, d]

<n:m> Register bit field

{label:} Optional label name

Acc Accumulator A or Accumulator B

AWB Accumulator Write-Back

bit4 4-bit wide bit position (0:7 in Byte mode, 0:15 in Word mode)

Expr Absolute address, label or expression (resolved by the linker)

f File register address

lit1 1-bit literal (0:1)

lit4 4-bit literal (0:15)

lit5 5-bit literal (0:31)

lit8 8-bit literal (0:255)

lit10 10-bit literal (0:255 in Byte mode, 0:1023 in Word mode)

lit14 14-bit literal (0:16383)

lit16 16-bit literal (0:65535)

lit23 23-bit literal (0:8388607)

Slit4 Signed 4-bit literal (-8:7)

Slit6 Signed 6-bit literal (-32:31) (range is limited to -16:16)

Slit10 Signed 10-bit literal (-512:511)

Slit16 Signed 16-bit literal (-32768:32767)

TOS Top-of-Stack

Wb Base Working register

Wd Destination Working register (Direct and Indirect Addressing)

Wdo Destination Working register (Direct and Indirect Addressing, including Indirect Addressing with Offset)

Wm, Wn Working register divide pair (dividend, divisor)

Wm * Wm Working register multiplier pair (same source register)

Wm * Wn Working register multiplier pair (different source registers)

Wn Both source and destination Working register (Direct Addressing)

Wnd Destination Working register (Direct Addressing)

Wns Source Working register (Direct Addressing)

WREG Default Working register (assigned to W0)

Ws Source Working register (Direct and Indirect Addressing)

Wso Source Working register (Direct and Indirect Addressing, including Indirect Addressing with Offset)

Wx Source Addressing mode and Working register for X data bus prefetch

Wxd Destination Working register for X data bus prefetch

Wy Source Addressing mode and Working register for Y data bus prefetch

Wyd Destination Working register for Y data bus prefetch

Note 1: The range of each symbol is instruction-dependent. Refer to Section 5. “Instruction Descriptions” for
the specific instruction range.
DS70000157G-page 8 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P
ro

g
ram

m
e

r’s
M

o
d

el

2

HIGHLIGHTS

This section of the manual contains the following major topics:

2.1 16-Bit MCU and DSC Core Architecture Overview... 10

2.2 Programmer’s Model... 14

2.3 Working Register Array... 19

2.4 Default Working Register (WREG) ... 20

2.5 Software Stack Frame Pointer .. 20

2.6 Software Stack Pointer.. 20

2.7 Stack Pointer Limit Register (SPLIM).. 20

2.8 Accumulator A and Accumulator B (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
Devices) .. 20

2.9 Program Counter .. 21

2.10 TBLPAG Register.. 21

2.11 PSVPAG Register (PIC24F, PIC24H, dsPIC30F and dsPIC33F) 21

2.12 RCOUNT Register .. 21

2.13 DCOUNT Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 21

2.14 DOSTART Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)............ 22

2.15 DOEND Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)................ 22

2.16 STATUS Register .. 22

2.17 Core Control Register ... 25

2.18 Shadow Registers... 25

2.19 DO Stack (dsPIC33E and dsPIC33C Devices) .. 26
© 2005-2018 Microchip Technology Inc. DS70000157G-page 9

16-Bit MCU and DSC Programmer’s Reference Manual
2.1 16-BIT MCU AND DSC CORE ARCHITECTURE OVERVIEW

This section provides an overview of the 16-bit architecture features and capabilities for the
following families of devices:

• 16-Bit Microcontrollers (MCU):

- PIC24F

- PIC24H

- PIC24E

• 16-Bit Digital Signal Controllers (DSC):

- dsPIC30F

- dsPIC33F

- dsPIC33E

- dsPIC33C

2.1.1 Features Specific to 16-Bit MCU and DSC Core

The core of the 16-bit MCU and DSC devices is a 16-bit (data) modified Harvard architecture with
an enhanced instruction set. The core has a 24-bit instruction word, with an 8-bit opcode field.
The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program
memory space. An instruction prefetch mechanism is used to help maintain throughput and
provides predictable execution. The majority of instructions execute in a single cycle.

2.1.1.1 REGISTERS

The 16-bit MCU and DSC devices have sixteen 16-bit Working registers. Each of the Working
registers can act as a data, address or offset register. The 16th Working register (W15) operates
as a Software Stack Pointer (SSP) for interrupts and calls.

2.1.1.2 INSTRUCTION SET

The instruction set is almost identical for the 16-bit MCU and DSC architectures. The instruction
set includes many addressing modes and was designed for optimum C compiler efficiency.

2.1.1.3 DATA SPACE ADDRESSING

The data space can be addressed as 32K words or 64 Kbytes. The upper 32 Kbytes of the data
space memory map can optionally be mapped into program space at any 16K program word
boundary, which is a feature known as Program Space Visibility (PSV). The program to data
space mapping feature lets any instruction access program space as if it were the data space,
which is useful for storing data coefficients.

2.1.1.4 ADDRESSING MODES

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct,
Register Indirect and Register Offset Addressing modes. Each instruction is associated with a
predefined addressing mode group, depending upon its functional requirements. As many as
seven addressing modes are supported for each instruction.

For most instructions, the CPU is capable of executing a data (or program data) memory read, a
Working register (data) read, a data memory write and a program (instruction) memory read per
instruction cycle. As a result, 3-operand instructions can be supported, allowing A + B = C
operations to be executed in a single cycle.

Note: Some devices families support Extended Data Space (EDS) Addressing. See the
specific device data sheet and family reference manual for more details on this
feature.
DS70000157G-page 10 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.1.1.5 ARITHMETIC AND LOGIC UNIT

A high-speed, 17-bit by 17-bit multiplier is included to significantly enhance the core’s arithmetic
capability and throughput. The multiplier supports Signed, Unsigned, and Mixed modes, as well
as 16-bit by 16-bit, or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a
single cycle.

The 16-bit Arithmetic Logic Unit (ALU) is enhanced with integer divide assist hardware that
supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT
instruction looping mechanism, and a selection of iterative divide instructions, to support 32-bit
(or 16-bit) divided by 16-bit integer signed and unsigned division. All divide operations require
19 cycles to complete, but are interruptible at any cycle boundary.

2.1.1.6 EXCEPTION PROCESSING

The 16-bit MCU and DSC devices have a vectored exception scheme with support for up to
eight sources of non-maskable traps and up to 246 interrupt sources. In both families, each
interrupt source can be assigned to one of seven priority levels.

2.1.2 PIC24E, dsPIC33E and dsPIC33C Features

In addition to the information provided in Section 2.1.1 “Features Specific to 16-Bit MCU and
DSC Core”, this section describes the enhancements that are available in the PIC24E,
dsPIC33E and dsPIC33C families of devices.

2.1.2.1 DATA SPACE ADDRESSING

The Base Data Space address is used in conjunction with a Read or Write Page register
(DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address, which can also be
used for PSV access. The EDS can be addressed as 8M words or 16 Mbytes. Refer to “Data
Memory” (DS70595) in the “dsPIC33/PIC24 Family Reference Manual” for more details on EDS,
PSV and table accesses.

2.1.2.2 AUTOMATIC MIXED-SIGN MULTIPLICATION MODE
(dsPIC33E AND dsPIC33C ONLY)

In addition to signed and unsigned DSP multiplications, dsPIC33E and dsPIC33C devices
support mixed-sign (unsigned-signed and signed-unsigned) multiplications without the need to
dynamically reconfigure the Multiplication mode and shift data to account for the difference in
operand formats. This mode is particularly beneficial for dsPIC33C executing extended precision
(32-bit and 64-bit) algorithms. Besides DSP instructions, MCU multiplication (MUL) instructions
can also utilize either accumulator as a result destination, thereby enabling faster extended
precision arithmetic. Refer to Section 4.11.1 “Implied DSP Operands (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)” and Section 4.21 “Extended Precision Arithmetic
Using Mixed-Sign Multiplications (dsPIC33E and dsPIC33C Only)” for more details on
mixed-sign DSP multiplications.

2.1.2.3 MCU MULTIPLICATIONS WITH 16-BIT RESULT

16x16-bit MUL instructions include an option to store the product in a single 16-bit Working register
rather than a pair of registers. This feature helps free up a register for other purposes, in cases where
the numbers being multiplied are small in magnitude, and therefore, expected to provide a 16-bit
result. See the individual MUL instruction descriptions in Section 5.4 “Instruction Descriptions” for
more details.

Note: Some PIC24F devices also support Extended Data Space. Refer to “CPU with
Extended Data Space (EDS)” (DS39732) and “Data Memory with Extended
Data Space (EDS)” (DS39733) in the “dsPIC33/PIC24 Family Reference Manual”
for details.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 11

16-Bit MCU and DSC Programmer’s Reference Manual
2.1.2.4 HARDWARE STACK FOR DO LOOPS (dsPIC33E AND dsPIC33C ONLY)

The single-level DO Loop Shadow register set has been replaced by a 4-level deep DO loop
hardware stack. This provides automatic DO Loop register save/restore for up to 3 levels of DO
loop nesting, resulting in more efficient implementation of nested loops. Refer to Section 2.19
“DO Stack (dsPIC33E and dsPIC33C Devices)” for more details on DO loop nesting in
dsPIC33E and dsPIC33C devices.

2.1.2.5 DSP CONTEXT SWITCH SUPPORT (dsPIC33E AND dsPIC33C ONLY)

In dsPIC33E and dsPIC33C devices, the DSP Overflow and Saturation Status bits are writable.
This allows the state of the DSP engine to be efficiently saved and restored while switching
between DSP tasks. See Section 2.16.4 “DSP ALU Status Bits (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)” for more details on DSP Status bits. In addition, dsPIC33C
devices have up to four additional sets of DSP Accumulators A and B for fast context switching.
Please see the specific device data sheet for details.

2.1.2.6 EXTENDED CALL AND GOTO INSTRUCTIONS (PIC24E, dsPIC33E AND
dsPIC33C ONLY)

The CALL.L Wn and GOTO.L Wn instructions extend the capabilities of the CALL Wn and GOTO Wn
by enabling 32-bit addresses for computed branch/call destinations. In these enhanced instruc-
tions, the destination address is provided by a pair of Working registers, rather than a single
16-bit register. See the CALL.L and GOTO.L instruction descriptions in Section 5.4 “Instruction
Descriptions” for more details.

2.1.2.7 COMPARE/BRANCH INSTRUCTIONS (PIC24E, dsPIC33E AND
dsPIC33C ONLY)

PIC24E/dsPIC33E/dsPIC33C devices feature conditional Compare/Branch (CPBxx) instruc-
tions. These instructions extend the capabilities of the Compare/Skip (CPSxx) instructions by
allowing branches, rather than only skipping over a single instruction. See the CPBEQ, CPBNE,
CPBGT and CPBLT instruction descriptions in Section 5.4 “Instruction Descriptions” for more
details on Compare/Branch instructions.

2.1.3 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Features

In addition to the information provided in Section 2.1.1 “Features Specific to 16-Bit MCU and
DSC Core”, this section describes the DSP enhancements that are available in the dsPIC30F,
dsPIC33F, dsPIC33E and dsPIC33C families of devices.

2.1.3.1 PROGRAMMING LOOP CONSTRUCTS

Overhead-free program loop constructs are supported using the DO instruction, which is
interruptible.

2.1.3.2 DSP INSTRUCTION CLASS

The DSP class of instructions are seamlessly integrated into the architecture and execute from
a single execution unit.

2.1.3.3 DATA SPACE ADDRESSING

The data space is split into two blocks, referred to as X and Y data memory. Each memory block
has its own independent Address Generation Unit (AGU). The MCU class of instructions oper-
ates solely through the X memory AGU, which accesses the entire memory map as one linear
data space. The DSP dual source class of instructions operates through the X and Y AGUs,
which splits the data address space into two parts. The X and Y data space boundary is arbitrary
and device-specific.
DS70000157G-page 12 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.1.3.4 MODULO AND BIT-REVERSED ADDRESSING

Overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address
spaces. The Modulo Addressing removes the software boundary checking overhead for DSP
algorithms. Furthermore, the X AGU Circular Addressing can be used with any of the MCU class
of instructions. The X AGU also supports Bit-Reversed Addressing, to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

2.1.3.5 DSP ENGINE

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit
saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of
shifting a 40-bit value, up to 16 bits right or up to 16 bits left, in a single cycle. The DSP
instructions operate seamlessly with all other instructions and have been designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two Working registers. This requires that
the data space be split for these instructions and linear for all others. This is achieved in a
transparent and flexible manner through dedicating certain Working registers to each address
space.

2.1.3.6 EXCEPTION PROCESSING

The dsPIC30F devices have a vectored exception scheme with support for up to eight sources of
non-maskable traps and up to 54 interrupt sources. The dsPIC33F, dsPIC33E and dsPIC33C have
a similar exception scheme, but support up to 118, and up to 246 interrupt sources, respectively. In
all three families, each interrupt source can be assigned to one of seven priority levels.

Refer to “Interrupts” (DS70000600) of the “dsPIC33/PIC24 Family Reference Manual” for more
details on exception processing.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 13

16-Bit MCU and DSC Programmer’s Reference Manual
2.2 PROGRAMMER’S MODEL

Figure 2-1 through Figure 2-5 show the programmer’s model diagrams for the 16-bit MCU and
DSC families of devices.

Figure 2-1: PIC24F and PIC24H Programmer’s Model Diagram

22 0

7 0

015

Program Counter

Data Table Page Address

STATUS Register

Working Registers

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14/Frame Pointer

W15/Stack Pointer

7 0

Program Space Visibility Page Address

Z— — — —

RCOUNT

13 0

REPEAT Loop Counter

IPL2 IPL1

SPLIM Stack Pointer Limit Register

SRL

— —

15 0

CPU Core Control RegisterCORCON

— DC RA N C

TBLPAG

PSVPAG

IPL0 OV

W0/WREG

SRH

DIV and MUL
Result Registers

0

PUSH.S

Legend

Shadow
Register
DS70000157G-page 14 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

Figure 2-2: PIC24E Programmer’s Model Diagram

22 0

7 0

015

Program Counter

Data Table Page Address

STATUS Register

Working Registers

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14/Frame Pointer

W15/Stack Pointer

9 0

Data Space Read Page Address

Z— — — —

RCOUNT

15 0

REPEAT Loop Counter

IPL2 IPL1

SPLIM Stack Pointer Limit Register

SRL

PUSH.S and

— —

15 0

CPU Core Control Register

Legend

CORCON

— DC RA N C

TBLPAG

DSRPAG

IPL0 OV

W0/WREG

SRH

DIV and MUL
Result Registers

0

POP.S Shadow
Registers

8 0

Data Space Write Page AddressDSWPAG
© 2005-2018 Microchip Technology Inc. DS70000157G-page 15

16-Bit MCU and DSC Programmer’s Reference Manual
Figure 2-3: dsPIC30F and dsPIC33F Programmer’s Model Diagram

22 0

7 0

015

Program Counter

Data Table Page Address

STATUS Register

Working Registers

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14/Frame Pointer

W15/Stack Pointer

7 0

Program Space Visibility Page Address

ZOA OB SA SB

RCOUNT

13 0

REPEAT Loop Counter

IPL2 IPL1

SPLIM Stack Pointer Limit Register

SRL

OAB SAB

13 0

DO Loop Counter DCOUNT

DA DC RA N C

TBLPAG

PSVPAG

IPL0 OV

W0/WREG

SRH

DIV and MUL
Result Registers

0

PUSH.S Shadow

Legend

DO Shadow
Register

39 031

DSP
Accumulators

ACCA

ACCB

15

DOSTART

24 0

DO Loop Start Address

15 0

CPU Core Control RegisterCORCON

DO Loop End AddressDOEND

24 0

00

00

MAC Operand
Registers

MAC Address
Registers

Register
DS70000157G-page 16 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

Figure 2-4: dsPIC33E Programmer’s Model Diagram

RCOUNT

15 0

REPEAT Loop Counter

15 0

DO Loop Counter DCOUNT

DOSTART

24 0

DO Loop Start Address

15 0

CPU Core Control Register CORCON

DO Loop End AddressDOEND

24 0

00

00

015

Working Registers(1)

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14/Frame Pointer

W15/Stack Pointer

SPLIM Stack Pointer Limit Register

W0/WREG

DIV and MUL
Result Registers

Legend

Nested DO

39 031

DSP
Accumulators

ACCA

ACCB

15

MAC Operand
Registers

MAC Address
Registers

STATUS RegisterZIPL2 IPL1

SRL

RA N CIPL0 OV

SRH

Stack

PUSH.S and
POP.S Shadow
Registers

22 0

7 0

Program Counter

Data Table Page Address

9 0

X Data Space Read Page Address

TBLPAG

DSRPAG

0

8 0

X Data Space Write Page AddressDSWPAG

OA OB SA SB OAB SAB DA DC

Note 1: Some dsPIC33E devices have up to four additional sets of Working registers (W0-W14) for context switching. Please see the
specific device data sheet for details.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 17

16-Bit MCU and DSC Programmer’s Reference Manual
Figure 2-5: dsPIC33C Programmer’s Model

N OV Z C

TBLPAG

PC23 PC0

7 0

D0D15

Program Counter

Data Table Page Address

STATUS Register

Working/Address
Registers

DSP Operand
Registers

W0 (WREG)

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

 Frame Pointer/W14

Stack Pointer/W15

DSP Address
Registers

AD39 AD0AD31

DSP
Accumulators

ACCA

ACCB

DSRPAG

9 0

RA

0

OA OB SA SB

RCOUNT
15 0

REPEAT Loop Counter

DCOUNT

15 0

DO Loop Counter and Stack

DOSTART

23 0

DO Loop Start Address and Stack

0

DOEND DO Loop End Address and Stack

IPL2 IPL1

SPLIM Stack Pointer Limit

AD15

23 0

SRL

IPL0

PUSH.S and POP.S Shadows

Nested DO Stack

0

0

OAB SAB

X Data Space Read Page Address

DA DC

0

0

0

0

CORCON
15 0

CPU Core Control Register

W0-W3

D15 D0

W0

W1

W2

W3

W4

W13

W14

W12

W11

W10

W9

W5

W6

W7

W8

W0

W1

W2

W3

W4

W13

W14

W12

W9

W5

W6

W7

W8

W10

W11

D0

Alternate
Working/Address
Registers

D15

D15

D15

D0

D0

W0 W0

W1 W1

W2 W2

W3 W3

W4 W4

W5 W5

W6 W6

W7 W7

W8 W8

W9 W9

W10 W10

W11 W11

W12 W12

W13 W13

W14 W14

AD39 AD31 AD15 AD0
AD39 AD31 AD15 AD0

AD39 AD31 AD15 AD0
AD39 AD31 AD15 AD0
DS70000157G-page 18 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

All registers in the programmer’s model are memory-mapped and can be manipulated directly by
the instruction set. A description of each register is provided in Table 2-1.

2.3 WORKING REGISTER ARRAY

The 16 Working (W) registers can function as data, address or offset registers. The function of a
W register is determined by the instruction that accesses it.

Byte instructions, which target the Working register array, only affect the Least Significant Byte
(LSB) of the target register. Since the Working registers are memory-mapped, the Least and
Most Significant Bytes can be manipulated through byte-wide data memory space accesses.

Note: Unless otherwise specified, the Programmer’s Model register descriptions in
Table 2-1 apply to all MCU and DSC device families.

Table 2-1: Programmer’s Model Register Descriptions

Register Description

CORCON CPU Core Configuration register

PC 23-Bit Program Counter

PSVPAG(1) Program Space Visibility Page Address register

DSRPAG(2) Extended Data Space (EDS) Read Page register

DSWPAG(2) Extended Data Space (EDS) Write Page register

RCOUNT REPEAT Loop Counter register

SPLIM Stack Pointer Limit Value register

SR ALU and DSP Engine STATUS Register

TBLPAG Table Memory Page Address register

W0-W15(4) Working register array

ACCA, ACCB(3,5) 40-Bit DSP Accumulators

DCOUNT(3) DO Loop Counter register

DOSTART(3) DO Loop Start Address register

DOEND(3) DO Loop End Address register

Note 1: This register is only available on PIC24F, PIC24H, dsPIC30F and dsPIC33F
devices.

2: This register is only available on PIC24E, dsPIC33E and dsPIC33C devices.

3: This register is only available on dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
devices.

4: dsPIC33C devices and some dsPIC33E devices have up to four additional sets of
Working registers for context switching. Please see the device data sheet for details.

5: dsPIC33C devices have up to four additional sets of accumulators for context
switching. Please see the device data sheet for details.

Note: dsPIC33C devices and some dsPIC33E devices have up to four additional sets of
Working registers for context switching. Please see the device data sheet to find out
the exact number of register contexts available on a device. The context switching
can be performed quickly using the CTXTSWP instruction.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 19

16-Bit MCU and DSC Programmer’s Reference Manual
2.4 DEFAULT WORKING REGISTER (WREG)

The instruction set can be divided into two instruction types: Working register instructions and file
register instructions. The Working register instructions use the Working register array as data
values or as addresses that point to a memory location. In contrast, file register instructions
operate on a specific memory address contained in the instruction opcode.

File register instructions that also utilize a Working register do not specify the Working register that
is to be used for the instruction. Instead, a default Working register (WREG) is used for these file
register instructions. Working register, W0, is assigned to be the WREG. The WREG assignment
is not programmable.

2.5 SOFTWARE STACK FRAME POINTER

A frame is a user-defined section of memory in the stack, used by a function to allocate memory
for local variables. W14 has been assigned for use as a Stack Frame Pointer with the link (LNK)
and unlink (ULNK) instructions. However, if a Stack Frame Pointer and the LNK and ULNK
instructions are not used, W14 can be used by any instruction in the same manner as all other
W registers. On dsPIC33E, dsPIC33C and PIC24E devices, a Stack Frame Active (SFA) Status
bit is used to support nested stack frames. See Section 4.8.2 “Software Stack Frame Pointer”
for detailed information about the Frame Pointer.

2.6 SOFTWARE STACK POINTER

W15 serves as a dedicated Software Stack Pointer, and will be automatically modified by function
calls, exception processing and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
Stack Pointer. Refer to Section 4.8.1 “Software Stack Pointer” for detailed information about
the Stack Pointer.

2.7 STACK POINTER LIMIT REGISTER (SPLIM)

The SPLIM is a 16-bit register associated with the Stack Pointer. It is used to prevent the Stack
Pointer from overflowing and accessing memory beyond the user allocated region of stack
memory. Refer to Section 4.8.3 “Stack Pointer Overflow” for detailed information about the
SPLIM.

2.8 ACCUMULATOR A AND ACCUMULATOR B
(dsPIC30F, dsPIC33F, dsPIC33E AND dsPIC33C DEVICES)

Accumulator A (ACCA) and Accumulator B (ACCB) are 40-bit wide registers, utilized by DSP
instructions to perform mathematical and shifting operations. Each accumulator is composed of
three memory-mapped registers:

• AccxU (bits 39-32)

• AccxH (bits 31-16)

• AccxL (bits 15-0)

In dsPIC33E devices, Accumulator A and Accumulator B can also be used as destination
registers in MCU MUL.xx instructions. This helps reduce the execution time of extended
precision arithmetic operations.

Refer to Figure 4-13 for details on using ACCA and ACCB.

Note: dsPIC33C devices have up to four additional sets of accumulators for context
switching. Please see the device data sheet to find out the exact number of register
contexts available on a device. The context switching can be performed quickly
using the CTXTSWP instruction.
DS70000157G-page 20 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.9 PROGRAM COUNTER

The Program Counter (PC) is 23 bits wide. Instructions are addressed in the 4M x 24-bit user
program memory space by PC<22:1>, where PC<0> is always set to ‘0’ to maintain instruction
word alignment and provide compatibility with Data Space Addressing. This means that during
normal instruction execution, the PC increments by two.

Program memory, located at 0x800000 and above, is utilized for device configuration data,
Unit ID and Device ID. This region is not available for user code execution and the PC cannot
access this area. However, one may access this region of memory using table instructions. For
details on accessing the configuration data, Unit ID and Device ID, refer to the specific device
family reference manual.

2.10 TBLPAG REGISTER

The TBLPAG register is used to hold the upper eight bits of a program memory address during
table read and write operations. Table instructions are used to transfer data between program
memory space and data memory space. For details on accessing program memory with the table
instructions, refer to the family reference manual of the specific device.

2.11 PSVPAG REGISTER (PIC24F, PIC24H, dsPIC30F AND dsPIC33F)

Program Space Visibility (PSV) allows the user to map a 32-Kbyte section of the program
memory space into the upper 32 Kbytes of data address space. This feature allows transparent
access of constant data through instructions that operate on data memory. The PSVPAG register
selects the 32-Kbyte region of program memory space that is mapped to the data address space.
For details on Program Space Visibility, refer to the specific device family reference manual.

2.12 RCOUNT REGISTER

The 14-bit RCOUNT register (16-bit for PIC24E, dsPIC33E and dsPIC33C devices) contains the
loop counter for the REPEAT instruction. When a REPEAT instruction is executed, RCOUNT is
loaded with the repeat count of the instruction, either “lit14” for the “REPEAT #lit14” instruction
(“lit15” for the “REPEAT #lit15” instruction for PIC24E, dsPIC33E and dsPIC33C devices) or
the 14 LSbs of the Wn register for the “REPEAT Wn” instruction (entire Wn for PIC24E, dsPIC33E
and dsPIC33C devices). The REPEAT loop will be executed RCOUNT + 1 time.

2.13 DCOUNT REGISTER (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The 14-bit DCOUNT register (16-bit for dsPIC33E and dsPIC33C devices) contains the loop
counter for hardware DO loops. When a DO instruction is executed, DCOUNT is loaded with the
loop count of the instruction, either “lit14” for the “DO #lit14, Expr” instruction (“lit15”
for the “DO #lit15, Expr” instruction for dsPIC33E devices) or the 14 LSbs of the Ws register
for the “DO Ws, Expr” instruction (entire Wn for dsPIC33E devices). The DO loop will be
executed DCOUNT + 1 time.

Note 1: If a REPEAT loop is executing and gets interrupted, RCOUNT may be cleared by
the Interrupt Service Routine (ISR) to break out of the REPEAT loop when the
foreground code is re-entered.

2: Refer to the specific device family reference manual for complete details about
REPEAT loops.

Note 1: In dsPIC30F and dsPIC33F devices, the DCOUNT register contains a shadow register.
See Section 2.18 “Shadow Registers” for information on shadow registers.

2: The dsPIC33E devices have a 4-level deep, nested DO stack instead of a shadow
register.

3: Refer to the specific device family reference manual for complete details about DO
loops.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 21

16-Bit MCU and DSC Programmer’s Reference Manual
2.14 DOSTART REGISTER (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The DOSTART register contains the starting address for a hardware DO loop. When a DO instruc-
tion is executed, DOSTART is loaded with the address of the instruction that follows the DO
instruction. This location in memory is the start of the DO loop. When looping is activated,
program execution continues with the instruction stored at the DOSTART address after the last
instruction in the DO loop is executed. This mechanism allows for zero overhead looping.

2.15 DOEND REGISTER (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The DOEND register contains the ending address for a hardware DO loop. When a DO instruction
is executed, DOEND is loaded with the address specified by the expression in the DO instruction.
This location in memory specifies the last instruction in the DO loop. When looping is activated
and the instruction stored at the DOEND address is executed, program execution will continue
from the DO loop start address (stored in the DOSTART register).

2.16 STATUS REGISTER

The 16-bit STATUS Register maintains status information for the instructions which have been
executed most recently. Operation Status bits exist for MCU operations, loop operations and
DSP operations. Additionally, the STATUS Register contains the CPU Interrupt Priority Level bits,
IPL<2:0>, which are used for interrupt processing.

Depending on the MCU and DSC family, one of the following STATUS Registers is used:

• Register 2-1 for PIC24F, PIC24H and PIC24E devices

• Register 2-2 for dsPIC30F and dsPIC33F devices

• Register 2-3 for dsPIC33E and dsPIC33C devices

2.16.1 MCU ALU Status Bits

The MCU operation Status bits are either affected or used by the majority of instructions in the
instruction set. Most of the logic, math, rotate/shift and bit instructions modify the MCU Status bits
after execution, and the conditional branch instructions use the state of individual Status bits to deter-
mine the flow of program execution. All conditional branch instructions are listed in Section 4.9
“Conditional Branch Instructions”.

The Carry (C), Zero (Z), Overflow (OV), Negative (N) and Digit Carry (DC) bits show the imme-
diate status of the MCU ALU by indicating whether an operation has resulted in a Carry, Zero,
Overflow, Negative result or Digit Carry. When a subtract operation is performed, the C flag is
used as a Borrow flag.

Note 1: For dsPIC30F and dsPIC33F devices, DOSTART has a shadow register. See
Section 2.18 “Shadow Registers” for information on shadowing.

2: The dsPIC33E and dsPIC33C devices have a 4-level deep, nested DO stack
instead of a shadow register. The DOSTART register is read-only in dsPIC33E and
dsPIC33C devices.

3: Refer to the specific device family reference manual for complete details about DO
loops.

Note 1: For dsPIC30F and dsPIC33F devices, DOEND has a shadow register. See
Section 2.18 “Shadow Registers” for information on shadow registers.

2: The dsPIC33E and dsPIC33C devices have a 4-level deep, nested DO stack
instead of a shadow register.

3: Refer to the specific device family reference manual for complete details about DO
loops.
DS70000157G-page 22 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

The Z Status bit is useful for extended precision arithmetic. The Z Status bit functions like a
normal Z flag for all instructions except those that use a carry or borrow input (ADDC, CPB, SUBB
and SUBBR). See Section 4.10 “Z Status Bit” for more detailed information.

2.16.2 REPEAT Loop Active (RA) Status Bit

The REPEAT Loop Active bit (RA) is used to indicate when looping is active. The RA flag indicates
that a REPEAT instruction is being executed and it is only affected by the REPEAT instructions.
The RA flag is set to ‘1’ when the instruction being repeated begins execution and it is cleared
when the instruction being repeated completes execution for the last time.

Since the RA flag is also read-only, it may not be directly cleared. However, if a REPEAT or its
target instruction is interrupted, the Interrupt Service Routine may clear the RA flag of the SRL,
which resides on the stack. This action will disable looping once program execution returns from
the Interrupt Service Routine, because the restored RA will be ‘0’.

2.16.3 DO Loop Active (DA) Status Bit (dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C Devices)

The DO Loop Active bit (DA) is used to indicate when looping is active. The DO instructions affect
the DA flag, which indicates that a DO loop is active. The DA flag is set to ‘1’ when the first instruc-
tion of the DO loop is executed and it is cleared when the last instruction of the loop completes
final execution.

The DA flag is read-only. This means that looping is not initiated by writing a ‘1’ to DA, nor is it
terminated by writing a ‘0’ to DA. If a DO loop must be terminated prematurely, the EDT bit
(CORCON<11>) should be used.

2.16.4 DSP ALU Status Bits (dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C Devices)

The high byte of the STATUS Register (SRH) is used by the DSP class of instructions and it is
modified when data passes through one of the adders. The SRH provides status information about
overflow and saturation for both accumulators. The Saturate A, Saturate B, Overflow A and Overflow
B (SA, SB, OA, OB) bits provide individual accumulator status, while the Saturate AB and Overflow
AB (SAB, OAB) bits provide combined accumulator status. The SAB and OAB bits provide an
efficient method for the software developer to check the register for saturation or overflow.

The OA and OB bits are used to indicate when an operation has generated an overflow into the
guard bits (bits 32 through 39) of the respective accumulator. This condition can only occur when
the processor is in Super Saturation mode or if saturation is disabled. It indicates that the
operation has generated a number which cannot be represented with the lower 31 bits of the
accumulator. The OA and OB bits are writable in dsPIC33E and dsPIC33C devices.

The SA and SB bits are used to indicate when an operation has generated an overflow out of the
MSb of the respective accumulator. The SA and SB bits are active, regardless of the Saturation
mode (Disabled, Normal or Super) and may be considered “sticky”. Namely, once the SA or SB
bit is set to ‘1’, it can only be cleared manually by software, regardless of subsequent DSP
operations. When it is required, the BCLR instruction can be used to clear the SA or SB bit.

In addition, the SA and SB bits can be set by software in dsPIC33E and dsPIC33C devices,
enabling efficient context state switching.

For convenience, the OA and OB bits are logically ORed together to form the OAB flag, and the
SA and SB bits are logically ORed to form the SAB flag. These cumulative Status bits provide
efficient overflow and saturation checking when an algorithm is implemented. Instead of interro-
gating the OA and OB bits independently for arithmetic overflows, a single check of OAB can be
performed. Likewise, when checking for saturation, SAB may be examined instead of checking
both the SA and SB bits. Note that clearing the SAB flag will clear both the SA and SB bits.

Note 1: All MCU bits are shadowed during execution of the PUSH.S instruction and they
are restored on execution of the POP.S instruction.

2: All MCU bits, except the DC flag (which is not in the SRL), are stacked during
exception processing (see Section 4.8.1 “Software Stack Pointer”).
© 2005-2018 Microchip Technology Inc. DS70000157G-page 23

16-Bit MCU and DSC Programmer’s Reference Manual
2.16.5 Interrupt Priority Level Status Bits

The three Interrupt Priority Level (IPL) bits of the SRL (SR<7:5>) and the IPL3 bit (CORCON<3>)
set the CPU’s IPL, which is used for exception processing. Exceptions consist of interrupts and
hardware traps. Interrupts have a user-defined priority level between 0 and 7, while traps have a
fixed priority level between 8 and 15. The fourth Interrupt Priority Level bit, IPL3, is a special IPL
bit that may only be read or cleared by the user. This bit is only set when a hardware trap is
activated and it is cleared after the trap is serviced.

The CPU’s IPL identifies the lowest level exception which may interrupt the processor. The
interrupt level of a pending exception must always be greater than the CPU’s IPL for the CPU to
process the exception. This means that if the IPL is 0, all exceptions at Priority Level 1 and above
may interrupt the processor. If the IPL is 7, only hardware traps may interrupt the processor.

When an exception is serviced, the IPL is automatically set to the priority level of the exception
being serviced, which will disable all exceptions of equal and lower priority. However, since the
IPL field is read/write, one may modify the lower three bits of the IPL in an Interrupt Service
Routine to control which exceptions may preempt the exception processing. Since the SRL is
stacked during exception processing, the original IPL is always restored after the exception is
serviced. If required, one may also prevent exceptions from nesting by setting the NSTDIS bit
(INTCON1<15>).

Note: For more detailed information on exception processing, refer to the family reference
manual of the specific device.
DS70000157G-page 24 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

2.17 CORE CONTROL REGISTER

For all MCU and DSC devices, the 16-bit CPU Core Control register (CORCON) is used to set the
configuration of the CPU. This register provides the ability to map program space into data space.

In addition to setting CPU modes, the CORCON register contains status information about the
IPL<3> Status bit, which indicates if a trap exception is being processed.

Depending on the MCU and DSC family, one of the following CORCON registers is used:

• Register 2-4 for PIC24F and PIC24H devices
• Register 2-5 for PIC24E devices
• Register 2-6 for dsPIC30F and dsPIC33F devices
• Register 2-7 for dsPIC33E and dsPIC33C devices

2.17.1 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Specific Bits

In addition to setting CPU modes, the following features are available through the CORCON register:

• Sets the ACCA and ACCB saturation enable
• Sets the Data Space Write Saturation mode
• Sets the Accumulator Saturation and Rounding modes
• Sets the Multiplier mode for DSP operations
• Terminates DO loops prematurely
• Provides status information about the DO loop nesting level (DL<2:0>)
• Selects fixed or variable interrupt latency (dsPIC33E and dsPIC33C only)

2.17.1.1 PIC24E, dsPIC33E AND dsPIC33C SPECIFIC BITS

A Status bit (SFA) is available that indicates whether the stack frame is active.

2.18 SHADOW REGISTERS

A shadow register is used as a temporary holding register and can transfer its contents to or from
the associated host register when instructed. Some of the registers in the programmer’s model
have a shadow register, which is utilized during the execution of a DO, POP.S or PUSH.S
instruction. Shadow register usage is shown in Table 2-2.

For dsPIC30F and dsPIC33F devices, since the DCOUNT, DOSTART and DOEND registers are
shadowed, the ability to nest DO loops without additional overhead is provided. Since all shadow
registers are one register deep, up to one level of DO loop nesting is possible. Further nesting of
DO loops is possible in software, with support provided by the DO Loop Nesting Level Status bits
(DL<2:0>) in the CORCON register (CORCON<10:8>).

Note: PIC24E, dsPIC33E and dsPIC33C devices do not have a PSV control bit; it has
been replaced by the SFA bit.

Note: The DO instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.

Table 2-2: Automatic Shadow Register Usage

Location DO(1) POP.S/PUSH.S

DCOUNT(1) Yes —

DOSTART(1) Yes —

DOEND(1) Yes —

STATUS Register – DC, N, OV, Z and C bits — Yes

W0-W3 — Yes

Note 1: The DO Shadow registers are only available in dsPIC30F and dsPIC33F devices.

Note: All shadow registers are one register deep and not directly accessible. Additional
shadowing may be performed in software using the software stack.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 25

16-Bit MCU and DSC Programmer’s Reference Manual
2.19 DO STACK (dsPIC33E AND dsPIC33C DEVICES)

The DO stack is used to preserve the following elements associated with a DO loop underway
when another DO loop is encountered (i.e., a nested DO loop).

• DOSTART register value

• DOEND register value

• DCOUNT register value

Note that the DO Level Status field (DL<2:0>) also acts as a pointer to address the DO stack. After
the DO instruction is executed, the DO Level Status field (DL<2:0>) points to the next free entry.

The DOSTART, DOEND, and DCOUNT registers each have an associated hardware stack that
allows the DO loop hardware to support up to three levels of nesting. A conceptual representation
of the DO stack is shown in Figure 2-6.

Figure 2-6: DO Stack Conceptual Diagram

DCOUNTDOENDDOSTARTDL<2:0>

Empty000

001

010

011

100

Note 1: For DO register entries, DL<2:0> bits represent the value before the DO stack is executed.
2: For DO instruction buffer entries, DL<2:0> bits represent the value after the DO stack is executed.
3: If DL<2:0> = 000, no DO loops are active (DA = 0).

Level 1 Registers

Level 2 Registers

Level 3 Registers
DS70000157G-page 26 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

Register 2-1: SR: CPU STATUS Register (PIC24H, PIC24F and PIC24E Devices)

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0

— — — — — — — DC

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

IPL2(1,2) IPL1(1,2) IPL0(1,2) RA N OV Z C

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-9 Unimplemented: Read as ‘0’

bit 8 DC: MCU ALU Half Carry/Borrow bit

1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred

0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

bit 4 RA: REPEAT Loop Active bit

1 = REPEAT loop is in progress
0 = REPEAT loop is not in progress

bit 3 N: MCU ALU Negative bit

1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2 OV: MCU ALU Overflow bit

This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit

1 = An operation that affects the Z bit has set it at some time in the past
0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry-out from the MSb occurred
0 = No carry-out from the MSb occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when
IPL<3> = 1.

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 27

16-Bit MCU and DSC Programmer’s Reference Manual
Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices)

R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R-0 R/W-0

OA OB SA(1,2) SB(1,2) OAB SAB(1,2,3) DA(4) DC

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

IPL2(5) IPL1(5) IPL0(5) RA N OV Z C

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 OA: Accumulator A Overflow bit

1 = Accumulator A overflowed
0 = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow bit

1 = Accumulator B overflowed
0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation bit(1,2)

1 = Accumulator A is saturated or has been saturated since this bit was last cleared
0 = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation bit(1,2)

1 = Accumulator B is saturated or has been saturated at since this bit was last cleared
0 = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow bit

1 = Accumulator A or B has overflowed
0 = Neither Accumulator A nor B has overflowed

bit 10 SAB: SA || SB Combined Accumulator bit(1,2,3)

1 = Accumulator A or B is saturated or has been saturated since this bit was last cleared
0 = Neither Accumulator A nor B is saturated

bit 9 DA: DO Loop Active bit(4)

1 = DO loop is in progress
0 = DO loop is not in progress

bit 8 DC: MCU ALU Half Carry bit

1 = A carry-out from the MSb of the lower nibble occurred
0 = No carry-out from the MSb of the lower nibble occurred

Note 1: This bit may be read or cleared, but not set.

2: Once this bit is set, it must be cleared manually by software.

3: Clearing this bit will clear SA and SB.

4: This bit is read-only.

5: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1.
DS70000157G-page 28 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

bit 7-5 IPL<2:0>: Interrupt Priority Level bits(5)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

bit 4 RA: REPEAT Loop Active bit

1 = REPEAT loop is in progress
0 = REPEAT loop is not in progress

bit 3 N: MCU ALU Negative bit

1 = The result of the operation was negative
0 = The result of the operation was not negative

bit 2 OV: MCU ALU Overflow bit

1 = Overflow occurred
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit

1 = The result of the operation was zero
0 = The result of the operation was not zero

bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry-out from the MSb occurred
0 = No carry-out from the MSb occurred

Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices) (Continued)

Note 1: This bit may be read or cleared, but not set.

2: Once this bit is set, it must be cleared manually by software.

3: Clearing this bit will clear SA and SB.

4: This bit is read-only.

5: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 29

16-Bit MCU and DSC Programmer’s Reference Manual

Register 2-3: SR: CPU STATUS Register (dsPIC33E and dsPIC33C Devices)

R/W-0 R/W-0 R/W-0 R/W-0 R/C-0 R/C-0 R-0 R/W-0

OA OB SA(3) SB(3) OAB SAB DA DC

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

IPL2(1,2) IPL1(1,2) IPL0(1,2) RA N OV Z C

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 OA: Accumulator A Overflow Status bit

1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed

bit 14 OB: Accumulator B Overflow Status bit

1 = Accumulator B has overflowed
0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation Status bit(3)

1 = Accumulator A is saturated or has been saturated since this bit was last cleared
0 = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation Status bit(3)

1 = Accumulator B is saturated or has been saturated since this bit was last cleared
0 = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit

1 = Accumulator A or B has overflowed
0 = Neither Accumulator A nor B has overflowed

bit 10 SAB: SA || SB Combined Accumulator Status bit

1 = Accumulator A or B is saturated or has been saturated since this bit was last cleared
0 = Neither Accumulator A nor B is saturated

bit 9 DA: DO Loop Active bit

1 = DO loop is in progress
0 = DO loop is not in progress

bit 8 DC: MCU ALU Half Carry/Borrow bit

1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred

0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when IPL3 = 1.

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.

3: A data write to SR can modify the SA or SB bits by either a data write to SA and SB or by clearing the SAB
bit. To avoid a possible SA/SB bit write race condition, the SA and SB bits should not be modified using bit
operations.
DS70000157G-page 30 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

bit 4 RA: REPEAT Loop Active bit

1 = REPEAT loop is in progress
0 = REPEAT loop is not in progress

bit 3 N: MCU ALU Negative bit

1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2 OV: MCU ALU Overflow bit

This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit

1 = The result of the operation was zero
0 = The result of the operation was not zero

bit 0 C: MCU ALU Carry/Borrow bit

1 = A carry-out from the MSb of the result occurred
0 = No carry-out from the MSb of the result occurred

Register 2-3: SR: CPU STATUS Register (dsPIC33E and dsPIC33C Devices) (Continued)

Note 1: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL3 = 1. User interrupts are disabled when IPL3 = 1.

2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1. Refer to the family
reference manual of the specific device family to see the associated interrupt register.

3: A data write to SR can modify the SA or SB bits by either a data write to SA and SB or by clearing the SAB
bit. To avoid a possible SA/SB bit write race condition, the SA and SB bits should not be modified using bit
operations.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 31

16-Bit MCU and DSC Programmer’s Reference Manual
Register 2-4: CORCON: Core Control Register (PIC24F and PIC24H Devices)

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 R/C-0 R/W-0 U-0 U-0

— — — — IPL3(1,2) PSV — —

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-4 Unimplemented: Read as ‘0’

bit 3 IPL3: Interrupt Priority Level 3 Status bit(1,2)

1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

bit 2 PSV: Program Space Visibility in Data Space Enable bit

1 = Program space is visible in data space
0 = Program space is not visible in data space

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This bit may be read or cleared, but not set.

2: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
DS70000157G-page 32 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

Register 2-5: CORCON: Core Control Register (PIC24E Devices)

R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

VAR — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 R/C-0 R-0 U-0 U-0

— — — — IPL3(1,2) SFA — —

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable (bounded deterministic) exception processing latency
0 = Fixed (fully deterministic) exception processing latency

bit 14-4 Unimplemented: Read as ‘0’

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(1,2)

1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less

bit 2 SFA: Stack Frame Active Status bit

1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
DSWPAG values

0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This bit may be read or cleared, but not set.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 33

16-Bit MCU and DSC Programmer’s Reference Manual
Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices)

U-0 U-0 U-0 R/W-0 R(0)/W-0 R-0 R-0 R-0

— — — US EDT(1) DL2(2,3) DL1(2,3) DL0(3)

bit 15 bit 8

R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0

SATA SATB SATDW ACCSAT IPL3(4,5) PSV RND IF

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’

bit 12 US: Unsigned or Signed Multiplier Mode Select bit

1 = Unsigned mode enabled for DSP multiply operations
0 = Signed mode enabled for DSP multiply operations

bit 11 EDT: Early DO Loop Termination Control bit(1)

1 = Terminates executing DO loop at the end of current iteration
0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits(2,3)

111 = DO looping is nested at 7 levels
110 = DO looping is nested at 6 levels
110 = DO looping is nested at 5 levels
110 = DO looping is nested at 4 levels
011 = DO looping is nested at 3 levels
010 = DO looping is nested at 2 levels
001 = DO looping is active, but not nested (just 1 level)
000 = DO looping is not active

bit 7 SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation is enabled
0 = Accumulator A saturation is disabled

bit 6 SATB: ACCB Saturation Enable bit

1 = Accumulator B saturation is enabled
0 = Accumulator B saturation is disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit

1 = Data space write saturation is enabled
0 = Data space write saturation is disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit

1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3 IPL3: Interrupt Priority Level 3 Status bit(4,5)

1 = CPU Interrupt Priority Level is 8 or greater (trap exception is activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception is activated)

Note 1: This bit will always read as ‘0’.

2: DL<2:1> bits are read-only.

3: The first two levels of DO loop nesting are handled by hardware.

4: This bit may be read or cleared, but not set.

5: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
DS70000157G-page 34 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

bit 2 PSV: Program Space Visibility in Data Space Enable bit

1 = Program space is visible in data space
0 = Program space is not visible in data space

bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding is enabled
0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit

1 = Integer mode enabled for DSP multiply operations
0 = Fractional mode enabled for DSP multiply operations

Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices) (Continued)

Note 1: This bit will always read as ‘0’.

2: DL<2:1> bits are read-only.

3: The first two levels of DO loop nesting are handled by hardware.

4: This bit may be read or cleared, but not set.

5: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 35

16-Bit MCU and DSC Programmer’s Reference Manual
Register 2-7: CORCON: Core Control Register (dsPIC33E and dsPIC33C Devices)

R/W-0 U-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0

VAR — US1 US0 EDT(1) DL2 DL1 DL0

bit 15 bit 8

R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R-0 R/W-0 R/W-0

SATA SATB SATDW ACCSAT IPL3(2,3) SFA RND IF

bit 7 bit 0

Legend: C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable (bounded deterministic) exception processing latency
0 = Fixed (fully deterministic) exception processing latency

bit 14 Unimplemented: Read as ‘0’

bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits

11 = Reserved
10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed

bit 11 EDT: Early DO Loop Termination Control bit(1)

1 = Terminates executing DO loop at end of current loop iteration
0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits

111 = 7 DO loops are active
•
•
•
001 = 1 DO loop is active
000 = 0 DO loops are active

bit 7 SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation is enabled
0 = Accumulator A saturation is disabled

bit 6 SATB: ACCB Saturation Enable bit

1 = Accumulator B saturation is enabled
0 = Accumulator B saturation is disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit

1 = Data space write saturation is enabled
0 = Data space write saturation is disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit

1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(2,3)

1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less

Note 1: This bit always reads as ‘0’.

2: This bit may be read or cleared, but not set.

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
DS70000157G-page 36 © 2005-2018 Microchip Technology Inc.

Section 2. Programmer’s Model
P

ro
g

ram
m

er’s
M

o
d

el

2

bit 2 SFA: Stack Frame Active Status bit

1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
DSWPAG values

0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space

bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding is enabled
0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit

1 = Integer mode is enabled for DSP multiply
0 = Fractional mode is enabled for DSP multiply

Register 2-7: CORCON: Core Control Register (dsPIC33E and dsPIC33C Devices) (Continued)

Note 1: This bit always reads as ‘0’.

2: This bit may be read or cleared, but not set.

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 37

16-Bit MCU and DSC Programmer’s Reference Manual
NOTES:
DS70000157G-page 38 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In
stru

ctio
n

 S
e

t
O

ve
rvie

w

3

HIGHLIGHTS

This section of the manual contains the following major topics:

3.1 Introduction ... 40

3.2 Instruction Set Overview ... 40

3.3 Instruction Set Summary Tables ... 42
© 2005-2018 Microchip Technology Inc. DS70000157G-page 39

16-Bit MCU and DSC Programmer’s Reference Manual
3.1 INTRODUCTION

The 16-bit MCU and DSC instruction set provides a broad suite of instructions that support
traditional microcontroller applications and a class of instructions that support math-intensive
applications. Since almost all of the functionality of the 8-bit PIC® MCU instruction set has been
maintained, this hybrid instruction set allows an easy 16-bit migration path for users already
familiar with the PIC microcontroller.

3.2 INSTRUCTION SET OVERVIEW

Depending on the device family, the 16-bit MCU and DSC instruction set contains up to
105 instructions, which can be grouped into the functional categories shown in Table 3-1. Table 1-2
defines the symbols used in the instruction summary tables. Table 3-2 through Table 3-11 define
the syntax, description, storage and execution requirements for each instruction. Storage require-
ments are represented in 24-bit instruction words and execution requirements are represented in
instruction cycles.

Table 3-1: Instruction Groups

Most instructions have several different addressing modes and execution flows, which require
different instruction variants. For instance, depending on the device family, there are up to six
unique ADD instructions and each instruction variant has its own instruction encoding. Instruction
format descriptions and specific instruction operation are provided in Section 5. “Instruction
Descriptions”. Additionally, a composite alphabetized instruction set table is provided in
Section 7. “Reference”.

Functional Group Summary Table Page Number

Move Instructions Table 3-2 42

Math Instructions Table 3-3 43

Logic Instructions Table 3-4 45

Rotate/Shift Instructions Table 3-5 46

Bit Instructions Table 3-6 47

Compare/Skip and Compare/Branch Instructions Table 3-7 48

Program Flow Instructions Table 3-8 49

Shadow/Stack Instructions Table 3-9 51

Control Instructions Table 3-10 51

DSP Instructions(1) Table 3-11 52

Note 1: DSP instructions are only available in the dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C device families.
DS70000157G-page 40 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

e
t

O
ve

rvie
w

3

3.2.1 Multicycle Instructions

As shown in the instruction summary tables, most instructions execute in a single cycle with the
following exceptions:

• Instructions, DO, MOV.D, POP.D, PUSH.D, TBLRDH, TBLRDL, TBLWTH and TBLWTL,
require two cycles to execute.

• Instructions, DIV.S, DIV.U and DIVF, are single-cycle instructions, which should be
executed 18 consecutive times as the target of a REPEAT instruction.

• Instructions that change the Program Counter also require two cycles to execute, with the
extra cycle executed as a NOP. Compare/Skip instructions, which skip over a two-word
instruction, require three instruction cycles to execute, with two cycles executed as a NOP.
Compare/Branch instructions (dsPIC33E/dsPIC33C/PIC24E devices only) require
five instruction cycles to execute when the branch is taken.

• The RETFIE, RETLW and RETURN are a special case of an instruction that changes the
Program Counter. These execute in three cycles, unless an exception is pending, and then
they execute in two cycles.

3.2.2 Multiword Instructions

As defined by Table 3-2, almost all instructions consume one instruction word (24 bits), with the
exception of the CALL, DO and GOTO instructions, which are program flow Instructions listed in
Table 3-8. These instructions require two words of memory because their opcodes embed large
literal operands.

Note: The DO and DIVF instructions are only available in the dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C device families.

Note 1: Instructions which access program memory as data, using Program Space Visibility
(PSV), will incur a one or two-cycle delay for PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices, whereas using PSV in dsPIC33E and PIC24E devices incurs a
four-cycle delay based on Flash memory access time. However, regardless of
which device is being used, when the target instruction of a REPEAT loop accesses
program memory as data, only the first execution of the target instruction is subject
to the delay. See the specific device family reference manual for details.

2: All instructions may incur an additional delay on some device families depending
on Flash memory access time. For example, PIC24E, dsPIC33E and dsPIC33C
devices have a three-cycle Flash memory access time. However, instruction
pipelining increases the effective instruction execution throughput. Refer to “CPU”
in the “dsPIC33/PIC24 Family Reference Manual” for details on instruction timing.

3: All read and Read-Modify-Write (RMW) operations (including bit operations) on
non-CPU Special Function Registers (e.g., I/O Port, Peripheral Control or STATUS
Registers; interrupt flags, etc.) in PIC24E, dsPIC33E and dsPIC33C devices require
two instruction cycles to execute. However, all write operations on both CPU and
non-CPU Special Function Registers, and all read and Read-Modify-Write operations
on CPU Special Function Registers, require one instruction cycle.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 41

16-Bit MCU and DSC Programmer’s Reference Manual
3.3 INSTRUCTION SET SUMMARY TABLES

Table 3-2: Move Instructions

Assembly Syntax Description Words Cycles
Page

Number

EXCH Wns,Wnd Swap Wns and Wnd 1 1 254

LDSLV Wns,Wnd,#lit2(5) Move a single instruction word from Master to
Slave PRAM

1 1 279

MOV f {,WREG}(1) Move f to destination 1 1 299

MOV WREG,f Move WREG to f 1 1 300

MOV f,Wnd Move f to Wnd 1 1(4) 301

MOV Wns,f Move Wns to f 1 1 302

MOV.B #lit8,Wnd Move 8-bit literal to Wnd 1 1 303

MOV #lit16,Wnd Move 16-bit literal to Wnd 1 1 304

MOV [Ws+Slit10],Wnd Move [Ws with offset] to Wnd 1 1(4) 305

MOV Wns,[Wd+Slit10] Move Wns to [Wd with offset] 1 1 306

MOV Ws,Wd Move Ws to Wd 1 1(4) 307

MOV.D Wns,Wnd Move double Wns to Wnd:Wnd + 1 1 2(4) 309

MOV.D Ws,Wnd Move double Ws:Ws + 1 to Wnd 1 2(4) 309

MOVPAG #lit10,DSRPAG(2) Move 10-bit literal to DSRPAG 1 1 311

MOVPAG #lit9,DSWPAG(2) Move 9-bit literal to DSWPAG 1 1 311

MOVPAG #lit8,TBLPAG(2) Move 8-bit literal to TBLPAG 1 1 311

MOVPAG Wn, DSRPAG(2) Move Wn to DSRPAG 1 1 312

SWAP Wn Wn = byte or nibble swap Wn 1 1 439

TBLRDH [Ws],Wd Read high program word to Wd 1 2(3) 440

TBLRDL [Ws],Wd Read low program word to Wd 1 2(3) 442

TBLWTH Ws,[Wd] Write Ws to high program word 1 2(4) 444

TBLWTL Ws,[Wd] Write Ws to low program word 1 2(4) 446

VFSLV Wns,Wnd,#lit2(5) Verify Slave processor program RAM 1 1 450

Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is WREG. When
{,WREG} is not specified, the destination of the instruction is the file register f.

2: The MOVPAG instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

3: In dsPIC33E and PIC24E devices, and in dsPIC33C Master cores, these instructions require three
additional cycles – compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices and in dsPIC33C
Slave cores.

4: In dsPIC33E, dsPIC33C and PIC24E devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F
and PIC24H devices.

5: These instructions are only available in dsPIC33C devices.
DS70000157G-page 42 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

e
t

O
ve

rvie
w

3

Table 3-3: Math Instructions

Assembly Syntax Description Words Cycles
Page

Number

ADD f {,WREG}(1) Destination = f + WREG 1 1(5) 102

ADD #lit10,Wn Wn = lit10 + Wn 1 1 103

ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 104

ADD Wb,Ws,Wd Wd = Wb + Ws 1 1(5) 105

ADDC f {,WREG}(1) Destination = f + WREG + (C) 1 1(5) 110

ADDC #lit10,Wn Wn = lit10 + Wn + (C) 1 1 111

ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 112

ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1(5) 114

DAW.B Wn Wn = decimal adjust Wn 1 1 225

DEC f {,WREG}(1) Destination = f – 1 1 1(5) 226

DEC Ws,Wd Wd = Ws – 1 1 1(5) 227

DEC2 f {,WREG}(1) Destination = f – 2 1 1(5) 229

DEC2 Ws,Wd Wd = Ws – 2 1 1(5) 230

DIV.S Wm,Wn Signed 16/16-bit integer divide, Q  W0, R  W1 1 18/6(2) 233

DIV.U Wm,Wn Unsigned 16/16-bit integer divide, Q – W0, R  W1 1 18/6(2) 235

DIVF Wm,Wn Signed 16/16-bit fractional divide, Q – W0, R  W1 1 18/6(2) 236

DIVF2 Wm,Wn(6) Signed 16/16-bit fractional divide (W1:W0 preserved) 1 6 238

DIV2.S Wm,Wn(6) Signed 16/16-bit fractional divide (W1:W0 preserved) 1 6 240

DIV2.U Wm,Wn(6) Unsigned 16/16-bit integer divide (W1:W0 preserved) 1 6 241

FLIM Wb,Ws(6) Force data (upper and lower) range limit without limit
excess result

1 1 261

FLIM.V Wb,Ws,Wnd(6) Force data (upper and lower) range limit with limit
excess result

1 1 262

INC f {,WREG}(1) Destination = f + 1 1 1(5) 267

INC Ws,Wd Wd = Ws + 1 1 1(5) 268

INC2 f {,WREG}(1) Destination = f + 2 1 1(5) 269

INC2 Ws,Wd Wd = Ws + 2 1 1(5) 270

MUL f W3:W2 = f * WREG 1 1(5) 323

MUL.SS Wb,Ws,Wnd {Wnd + 1,Wnd} = signed(Wb) * signed(Ws) 1 1(5) 325

MUL.SS Wb,Ws,Acc(4) Accumulator = signed(Wb) * signed(Ws) 1 1(5) 327

MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 328

Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is WREG. When {,WREG}
is not specified, the destination of the instruction is the file register f.

2: In PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F and dsPIC33E devices, the divide instructions must be
preceded with a “REPEAT #17” instruction, such that they are executed 18 consecutive times, thus taking
18 instruction cycles. In dsPIC33C devices, the divide instructions must be preceded with a
“REPEAT #5” instruction, such that they are executed six consecutive times, thus taking six instruction
cycles.

3: These instructions are only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: These instructions are only available in dsPIC33E and dsPIC33C devices.

5: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU Special
Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and dsPIC33F
devices.

6: These instructions are only available in dsPIC33C devices.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 43

16-Bit MCU and DSC Programmer’s Reference Manual
MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 1(5) 329

MUL.SU Wb,Ws,Acc(4) Accumulator = signed(Wb) * unsigned(Ws) 1 1(5) 331

MUL.SU Wb,#lit5,Acc(4) Accumulator = signed(Wb) * unsigned(lit5) 1 1 332

MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 1(5) 333

MUL.US Wb,Ws,Acc(4) Accumulator = unsigned(Wb) * signed(Ws) 1 1(5) 335

MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5) 1 1 336

MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws) 1 1(5) 337

MUL.UU Wb,Ws,Acc(4) Accumulator = unsigned(Wb) * unsigned(Ws) 1 1(5) 339

MUL.UU Wb,#lit5,Acc(4) Accumulator = unsigned(Wb) * unsigned(lit5) 1 1 340

MULW.SS Wb,Ws,Wnd(3) Wnd = signed(Wb) * signed(Ws) 1 1(5) 341

MULW.SU Wb,Ws,Wnd(3) Wnd = signed(Wb) * unsigned(Ws) 1 1(5) 343

MULW.SU Wb,#lit5,Wnd(3) Wnd = signed(Wb) * unsigned(lit5) 1 1 345

MULW.US Wb,Ws,Wnd(3) Wnd = unsigned(Wb) * signed(Ws) 1 1(5) 346

MULW.UU Wb,Ws,Wnd(3) Wnd = unsigned(Wb) * unsigned(Ws) 1 1(5) 348

MULW.UU Wb,#lit5,Wnd(3) Wnd = unsigned(Wb) * unsigned(lit5) 1 1 349

SE Ws,Wnd Wnd = sign-extended Ws 1 1(5) 406

SUB f {,WREG}(1) Destination = f – WREG 1 1(5) 418

SUB #lit10,Wn Wn = Wn – lit10 1 1 419

SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 420

SUB Wb,Ws,Wd Wd = Wb – Ws 1 1(5) 421

SUBB f {,WREG}(1) Destination = f – WREG – (C) 1 1(5) 424

SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 425

SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 426

SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1(5) 428

SUBBR f {,WREG}(1) Destination = WREG – f – (C) 1 1(5) 430

SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 431

SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1(5) 433

SUBR f {,WREG}(1) Destination = WREG – f 1 1(5) 435

SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 436

SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1(5) 437

ZE Ws,Wnd Wnd = zero-extended Ws 1 1(5) 456

Table 3-3: Math Instructions (Continued)

Assembly Syntax Description Words Cycles
Page

Number

Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is WREG. When {,WREG}
is not specified, the destination of the instruction is the file register f.

2: In PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F and dsPIC33E devices, the divide instructions must be
preceded with a “REPEAT #17” instruction, such that they are executed 18 consecutive times, thus taking
18 instruction cycles. In dsPIC33C devices, the divide instructions must be preceded with a
“REPEAT #5” instruction, such that they are executed six consecutive times, thus taking six instruction
cycles.

3: These instructions are only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: These instructions are only available in dsPIC33E and dsPIC33C devices.

5: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU Special
Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and dsPIC33F
devices.

6: These instructions are only available in dsPIC33C devices.
DS70000157G-page 44 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

e
t

O
ve

rvie
w

3

Table 3-4: Logic Instructions

Assembly Syntax Description Words Cycles
Page

Number

AND f {,WREG}(1) Destination = f .AND. WREG 1 1(2) 116

AND #lit10,Wn Wn = lit10 .AND. Wn 1 1 117

AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 118

AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1(2) 119

CLR f f = 0x0000 1 1 192

CLR WREG WREG = 0x0000 1 1 192

CLR Wd Wd = 0x0000 1 1 193

COM f {,WREG}(1) Destination = f 1 1(2) 197

COM Ws,Wd Wd = Ws 1 1(2) 198

IOR f {,WREG}(1) Destination = f .IOR. WREG 1 1(2) 271

IOR #lit10,Wn Wn = lit10 .IOR. Wn 1 1 272

IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 273

IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1(2) 274

NEG f {,WREG}(1) Destination = f + 1 1 1(2) 350

NEG Ws,Wd Wd = Ws + 1 1 1(2) 351

SETM f f = 0xFFFF 1 1 408

SETM WREG WREG = 0xFFFF 1 1 409

SETM Wd Wd = 0xFFFF 1 1 409

XOR f {,WREG}(1) Destination = f .XOR. WREG 1 1(2) 451

XOR #lit10,Wn Wn = lit10 .XOR. Wn 1 1 452

XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 453

XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1(2) 454

Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is WREG. When
{,WREG} is not specified, the destination of the instruction is the file register f.

2: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 45

16-Bit MCU and DSC Programmer’s Reference Manual
Table 3-5: Rotate/Shift Instructions

Assembly Syntax Description Words Cycles
Page

Number

ASR f {,WREG}(1) Destination = arithmetic right shift f, LSb  C 1 1(2) 121

ASR Ws,Wd Wd = arithmetic right shift Ws, LSb  C 1 1(2) 123

ASR Wb,#lit4,Wnd Wnd = arithmetic right shift Wb by lit4 1 1 125

ASR Wb,Wns,Wnd Wnd = arithmetic right shift Wb by Wns 1 1 126

LSR f {,WREG}(1) Destination = logical right shift f, LSb  C 1 1(2) 282

LSR Ws,Wd Wd = logical right shift Ws, LSb  C 1 1(2) 284

LSR Wb,#lit4,Wnd Wnd = logical right shift Wb by lit4 1 1 286

LSR Wb,Wns,Wnd Wnd = logical right shift Wb by Wns 1 1 287

RLC f {,WREG}(1) Destination = rotate left through Carry f 1 1(2) 388

RLC Ws,Wd Wd = rotate left through Carry Ws 1 1(2) 389

RLNC f {,WREG}(1) Destination = rotate left (no Carry) f 1 1(2) 391

RLNC Ws,Wd Wd = rotate left (no Carry) Ws 1 1(2) 392

RRC f {,WREG}(1) Destination = rotate right through Carry f 1 1(2) 394

RRC Ws,Wd Wd = rotate right through Carry Ws 1 1(2) 396

RRNC f {,WREG}(1) Destination = rotate right (no Carry) f 1 1(2) 398

RRNC Ws,Wd Wd = rotate right (no Carry) Ws 1 1(2) 399

SL f {,WREG}(1) Destination = left shift f, MSb  C 1 1(2) 412

SL Ws,Wd Wd = left shift Ws, MSb  C 1 1(2) 414

SL Wb,#lit4,Wnd Wnd = left shift Wb by lit4 1 1 416

SL Wb,Wns,Wnd Wnd = left shift Wb by Wns 1 1 417

Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is WREG. When
{,WREG} is not specified, the destination of the instruction is the file register f.

2: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices.
DS70000157G-page 46 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

e
t

O
ve

rvie
w

3

Table 3-6: Bit Instructions

Assembly Syntax Description Words Cycles(1) Page
Number

BCLR f,#bit4 Bit clear in f 1 1 127

BCLR Ws,#bit4 Bit clear in Ws 1 1 128

BFEXT #bit4,#wid5,Ws,Wb(2) Bit field extract from Ws to Wb 2 2 130

BFEXT #bit4,#wid5,f,Wb(2) Bit field extract from f to Wb 2 2 131

BFINS #bit4,#wid5,Wb,Ws(2) Bit field insert from Wb into Ws 2 2 132

BFINS #bit4,#wid5,Wb,f(2) Bit field insert from Wb into f 2 2 133

BFINS #bit4,#wid5,#lit8,Ws(2) Bit field insert from #lit8 into Ws 2 2 134

BSET f,#bit4 Bit set in f 1 1 160

BSET Ws,#bit4 Bit set in Ws 1 1 161

BSW Ws,Wb Write C bit to Ws<Wb> 1 1 163

BTG f,#bit4 Bit toggle in f 1 1 165

BTG Ws,#bit4 Bit toggle in Ws 1 1 166

BTST f,#bit4 Bit test in f 1 1 175

BTST Ws,#bit4 Bit test in Ws 1 1 176

BTST Ws,Wb Bit test in Ws 1 1 178

BTSTS f,#bit4 Bit test f to Z, then set f 1 1 180

BTSTS Ws,#bit4 Bit test Ws to C, then set Ws 1 1 181

FBCL Ws,Wnd Find bit change from left (MSb) side 1 1 255

FF1L Ws,Wnd Find first one from left (MSb) side 1 1 257

FF1R Ws,Wnd Find first one from right (LSb) side 1 1 259

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F
and PIC24H devices.

2: These instructions are only available in dsPIC33C devices.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 47

16-Bit MCU and DSC Programmer’s Reference Manual
Table 3-7: Compare/Skip and Compare/Branch Instructions

Assembly Syntax Description Words Cycles(1) Page
Number

BTSC f,#bit4 Bit test f, skip if clear 1 1 (2 or 3)(5) 168

BTSC Ws,#bit4 Bit test Ws, skip if clear 1 1 (2 or 3)(5) 170

BTSS f,#bit4 Bit test f, skip if set 1 1 (2 or 3)(5) 172

BTSS Ws,#bit4 Bit test Ws, skip if set 1 1 (2 or 3)(5) 173

CP f Compare (f – WREG) 1 1(5) 200

CP Wb,#lit5(2) Compare (Wb – lit5) 1 1 201

CP Wb,#lit8(3) Compare (Wb – lit8) 1 1 202

CP Wb,Ws Compare (Wb – Ws) 1 1(5) 203

CP0 f Compare (f – 0x0000) 1 1(5) 204

CP0 Ws Compare (Ws – 0x0000) 1 1(5) 205

CPB f Compare with Borrow (f – WREG – C) 1 1(5) 206

CPB Wb,#lit5(2) Compare with Borrow (Wb – lit5 – C) 1 1 207

CPB Wb,#lit8(3) Compare with Borrow (Wb – lit8 – C) 1 1 208

CPB Wb,Ws Compare with Borrow (Wb – Ws – C) 1 1(5) 209

CPBEQ Wb,Wn,Expr(3) Compare Wb with Wn, branch if = 1 1 (5)(4) 211

CPBGT Wb,Wn,Expr(3) Signed compare Wb with Wn, branch if > 1 1 (5)(4) 212

CPBLT Wb,Wn,Expr(3) Signed compare Wb with Wn, branch if < 1 1 (5)(4) 213

CPBNE Wb,Wn,Expr(3) Compare Wb with Wn, branch if  1 1 (5)(4) 212

CPSEQ Wb,Wn(2) Compare (Wb – Wn), skip if = 1 1 (2 or 3) 215

CPSEQ Wb,Wn(3) Compare (Wb – Wn), skip if = 1 1 (2 or 3) 216

CPSGT Wb,Wn(2) Signed compare (Wb – Wn), skip if > 1 1 (2 or 3) 217

CPSGT Wb,Wn(3) Signed compare (Wb – Wn), skip if > 1 1 (2 or 3) 218

CPSLT Wb,Wn(2) Signed compare (Wb – Wn), skip if < 1 1 (2 or 3) 219

CPSLT Wb,Wn(3) Signed compare (Wb – Wn), skip if < 1 1 (2 or 3) 220

CPSNE Wb,Wn(2) Signed compare (Wb – Wn), skip if  1 1 (2 or 3) 221

CPSNE Wb,Wn(3) Signed compare (Wb – Wn), skip if  1 1 (2 or 3) 222

Note 1: Conditional skip instructions execute in one cycle if the skip is not taken, two cycles if the skip is taken over
a one-word instruction and three cycles if the skip is taken over a two-word instruction.

2: This instruction is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

3: This instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

4: Compare/Branch instructions in PIC24E/dsPIC33E devices and in dsPIC33C Master cores execute in
one cycle if the branch is not taken, and five cycles if the branch is taken. Compare/Branch instructions in
dsPIC33C Slave cores execute in one cycle if the branch is not taken and two cycles if the branch is taken.

5: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices.
DS70000157G-page 48 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

e
t

O
ve

rvie
w

3

Table 3-8: Program Flow Instructions

Assembly Syntax Description Words Cycles
Page

Number

BRA Expr Branch unconditionally 1 2(8) 136

BRA Wn(5) Computed branch 1 2(8) 137

BRA Wn(4) Computed branch 1 2(8) 138

BRA C Expr Branch if Carry (no Borrow) 1 1 (2)(1,8) 139

BRA GE Expr Branch if signed greater than or equal 1 1 (2)(1,8) 141

BRA GEU Expr Branch if unsigned greater than or equal 1 1 (2)(1,8) 142

BRA GT Expr Branch if signed greater than 1 1 (2)(1,8) 143

BRA GTU Expr Branch if unsigned greater than 1 1 (2)(1,8) 144

BRA LE Expr Branch if signed less than or equal 1 1 (2)(1,8) 145

BRA LEU Expr Branch if unsigned less than or equal 1 1 (2)(1,8) 146

BRA LT Expr Branch if signed less than 1 1 (2)(1,8) 147

BRA LTU Expr Branch if unsigned less than 1 1 (2)(1,8) 148

BRA N Expr Branch if Negative 1 1 (2)(1,8) 149

BRA NC Expr Branch if not Carry (Borrow) 1 1 (2)(1,8) 150

BRA NN Expr Branch if not Negative 1 1 (2)(1,8) 151

BRA NOV Expr Branch if not Overflow 1 1 (2)(1,8) 152

BRA NZ Expr Branch if not Zero 1 1 (2)(1,8) 153

BRA OA Expr(3) Branch if Accumulator A Overflow 1 1 (2)(1,8) 154

BRA OB Expr(3) Branch if Accumulator B Overflow 1 1 (2)(1,8) 155

BRA OV Expr Branch if Overflow 1 1 (2)(1,8) 156

BRA SA Expr(3) Branch if Accumulator A Saturate 1 1 (2)(1,8) 157

BRA SB Expr(3) Branch if Accumulator B Saturate 1 1 (2)(1,8) 158

BRA Z Expr Branch if Zero 1 1 (2)(1,8) 159

CALL Expr(5) Call subroutine 2 2(8) 183

CALL Expr(4) Call subroutine 2 2(8) 185

CALL Wn(5) Call indirect subroutine 1 2(8) 187

CALL Wn(4) Call indirect subroutine 1 2(8) 189

CALL.L Wn(4) Call indirect subroutine long (long address) 1 4 191

DO #lit14,Expr(6) Do code through PC + Expr, (lit14 + 1) times 2 2 242

DO #lit15,Expr(7) Do code through PC + Expr, (lit15 + 1) times 2 2 244

DO Wn,Expr(6) Do code through PC + Expr, (Wn + 1) times 2 2 246

DO Wn,Expr(7) Do code through PC + Expr, (Wn + 1) times 2 2 248

Note 1: Conditional branch instructions execute in one cycle if the branch is not taken or two cycles if the branch is taken.

2: RETURN instructions execute in three cycles, but if an exception is pending, they execute in two cycles.

3: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

4: This instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

5: This instruction is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction is only available in dsPIC30F and dsPIC33F devices.

7: This instruction is only available in dsPIC33E and dsPIC33C devices.

8: In PIC24E and dsPIC33E devices, and in dsPIC33C Master cores, these instructions require two additional
cycles (four cycles overall) when the branch is taken when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices, and dsPIC33C Slave cores.

9: In dsPIC33E and PIC24E devices, and in dsPIC33C Master cores, these instructions require three additional
cycles when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices, and dsPIC33C Slave cores.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 49

16-Bit MCU and DSC Programmer’s Reference Manual
GOTO Expr Go to address 2 2(8) 263

GOTO Wn(5) Go to address indirectly 1 2(8) 264

GOTO Wn(4) Go to address indirectly 1 2(8) 265

GOTO.L Wn(4) Go to indirect (long address) 1 4 266

RCALL Expr(5) Relative call 1 2(8) 367

RCALL Expr(4) Relative call 1 2(8) 369

RCALL Wn(5) Computed call 1 2(8) 371

RCALL Wn(4) Computed call 1 2(8) 373

REPEAT #lit14(5) Repeat next instruction (lit14 + 1) times 1 1 375

REPEAT #lit15(4) Repeat next instruction (lit15 + 1) times 1 1 376

REPEAT Wn(5) Repeat next instruction (Wn + 1) times 1 1 377

REPEAT Wn(4) Repeat next instruction (Wn + 1) times 1 1 378

RETFIE(5) Return from interrupt enable 1 3 (2)(2,9) 380

RETFIE(4) Return from interrupt enable 1 3 (2)(2,9) 381

RETLW #lit10,Wn(5) Return with lit10 in Wn 1 3 (2)(2,9) 382

RETLW #lit10,Wn(4) Return with lit10 in Wn 1 3 (2)(2,9) 384

RETURN(5) Return from subroutine 1 3 (2)(2,9) 386

RETURN(4) Return from subroutine 1 3 (2)(2,9) 387

Table 3-8: Program Flow Instructions (Continued)

Assembly Syntax Description Words Cycles
Page

Number

Note 1: Conditional branch instructions execute in one cycle if the branch is not taken or two cycles if the branch is taken.

2: RETURN instructions execute in three cycles, but if an exception is pending, they execute in two cycles.

3: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.

4: This instruction is only available in PIC24E, dsPIC33E and dsPIC33C devices.

5: This instruction is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.

6: This instruction is only available in dsPIC30F and dsPIC33F devices.

7: This instruction is only available in dsPIC33E and dsPIC33C devices.

8: In PIC24E and dsPIC33E devices, and in dsPIC33C Master cores, these instructions require two additional
cycles (four cycles overall) when the branch is taken when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices, and dsPIC33C Slave cores.

9: In dsPIC33E and PIC24E devices, and in dsPIC33C Master cores, these instructions require three additional
cycles when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices, and dsPIC33C Slave cores.
DS70000157G-page 50 © 2005-2018 Microchip Technology Inc.

Section 3. Instruction Set Overview
In

stru
ctio

n
 S

e
t

O
ve

rvie
w

3

Table 3-9: Shadow/Stack/Context Instructions

Table 3-10: Control Instructions

Assembly Syntax Description Words Cycles
Page

Number

BOOTSWP(4) Swap the active and inactive program Flash spaces 1 2 135

CTXTSWP #lit3(2,3) Switch CPU register context to context defined by #lit3 1 2 223

CTXTSWP Wn(2,3) Switch CPU register context to context defined by Wn 1 2 224

LNK #lit14(5) Link Frame Pointer 1 1 280

LNK #lit14(6) Link Frame Pointer 1 1 281

POP f Pop TOS to f 1 1 357

POP Wd Pop TOS to Wd 1 1 358

POP.D Wnd Double pop from TOS to Wnd:Wnd + 1 1 2 359

POP.S POP shadow registers 1 1 360

PUSH f Push f to TOS 1 1(1) 361

PUSH Ws Push Ws to TOS 1 1(1) 362

PUSH.D Wns Push double Wns:Wns + 1 to TOS 1 2 364

PUSH.S Push shadow registers 1 1 365

ULNK(5) Unlink Frame Pointer 1 1 448

ULNK(6) Unlink Frame Pointer 1 1 449

Note 1: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU
Special Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and
dsPIC33F devices.

2: These instructions are only available in dsPIC33C and some dsPIC33E devices. Please see the specific
device data sheet for details.

3: In dsPIC33C devices, these instructions also switch the accumulator context in addition to the CPU register
context.

4: These instructions are only available in some PIC24F, dsPIC33E and dsPIC33C devices. Please see the
specific device data sheet for details.

5: These instructions are only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices. Please see
the specific device data sheet for details.

6: These instructions are only available in PIC24E, dsPIC33E and dsPIC33C devices. Please see the specific
device data sheet for details.

Assembly Syntax Description Words Cycles
Page

Number

CLRWDT Clear Watchdog Timer 1 1 196

DISI #lit14 Disable interrupts for (lit14 + 1) instruction cycles 1 1 232

NOP No operation 1 1 354

NOPR No operation 1 1 355

PWRSAV #lit1 Enter Power-Saving mode lit1 1 1 366

RESET Software Device Reset 1 1 379
© 2005-2018 Microchip Technology Inc. DS70000157G-page 51

16-Bit MCU and DSC Programmer’s Reference Manual
Table 3-11: DSP Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)

Assembly Syntax Description Words Cycles
Page

Number

ADD Acc Add accumulators 1 1 107

ADD Ws,#Slit4,Acc 16-bit signed add to accumulator 1 1(1) 108

CLR Acc,[Wx],Wxd,[Wy],Wyd,AWB Clear accumulator, prefetch operands 1 1 194

ED Wm*Wm,Acc,[Wx],[Wy],Wxd Euclidean distance (no accumulate) 1 1 250

EDAC Wm*Wm,Acc,[Wx],[Wy],Wxd Euclidean distance 1 1 252

LAC Ws,#Slit4,Acc Load accumulator 1 1(1) 276

LAC.D Wso,#Slit4,Acc(2) Load accumulator double word 1 1 278

MAC Wm*Wn,Acc,[Wx],Wxd,[Wy],Wyd,AWB Multiply and accumulate 1 1 288

MAC Wm*Wm,Acc,[Wx],Wxd,[Wy],Wyd Square and accumulate 1 1 290

MAX Acc(2) Force accumulator maximum data limit 1 1 292

MAX.V Acc,Wd(2) Force accumulator maximum data limit
and store limit excess result

1 1 293

MIN Acc(2) Force accumulator minimum data limit 1 1 294

MIN.V Acc,Wd(2) Force accumulator minimum data limit
and store limit excess result

1 1 295

MINZ Acc(2) Conditionally force accumulator
minimum data limit if Z flag is set

1 1 296

MINZ.V Acc,Wd(2) Conditionally force accumulator
minimum data limit and store limit
excess result if Z flag is set

1 1 297

MOVSAC Acc,[Wx],Wxd,[Wy],Wyd,AWB Move Wx to Wxd and Wy to Wyd 1 1 313

MPY Wm*Wn,Acc,[Wx],Wxd,[Wy],Wyd Multiply Wm by Wn to accumulator 1 1 315

MPY Wm*Wm,Acc,[Wx],Wxd,[Wy],Wyd Square to accumulator 1 1 317

MPY.N Wm*Wn,Acc,[Wx],Wxd,[Wy],Wyd (Multiply -Wm by Wn) to accumulator 1 1 319

MSC Wm*Wn,Acc,[Wx],Wxd,[Wy],Wyd,AWB Multiply and subtract from accumulator 1 1 321

NEG Acc Negate accumulator 1 1 350

NORM Acc,Wd(2) Normalize accumulator 1 1 356

SAC Acc,#Slit4,Wd Store accumulator 1 1 401

SAC.D Acc,#Slit4,Wnd(2) Store accumulator double word 1 1 403

SAC.R Acc,#Slit4,Wd Store rounded accumulator 1 1 404

SFTAC Acc,#Slit6 Arithmetic shift accumulator by Slit6 1 1 410

SFTAC Acc,Wb Arithmetic shift accumulator by (Wb) 1 1 411

SUB Acc Subtract accumulators 1 1 418

Note 1: In PIC24E, dsPIC33E and dsPIC33C devices, read and Read-Modify-Write operations on non-CPU Special
Function Registers require an additional cycle when compared to PIC24F, PIC24H, dsPIC30F and dsPIC33F
devices.

2: These instructions are only available in dsPIC33C devices.
DS70000157G-page 52 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In
stru

ctio
n

 S
et

D
e

ta
ils

4

HIGHLIGHTS

This section of the manual contains the following major topics:

4.1 Data Addressing Modes.. 54

4.2 Program Addressing Modes ... 63

4.3 Instruction Stalls.. 64

4.4 Byte Operations .. 66

4.5 Word Move Operations ... 68

4.6 Using 10-Bit Literal Operands... 71

4.8 Software Stack Pointer and Frame Pointer ... 72

4.9 Conditional Branch Instructions .. 78

4.10 Z Status Bit.. 79

4.11 Assigned Working Register Usage ... 80

4.12 DSP Data Formats (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 83

4.13 Accumulator Usage (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)............ 85

4.14 Accumulator Access (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices) 86

4.15 DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)......... 86

4.16 DSP Accumulator Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices).....90

4.17 Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
Devices) .. 90

4.19 Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C Devices).. 93

4.21 Extended Precision Arithmetic Using Mixed-Sign Multiplications (dsPIC33E and
dsPIC33C Only) .. 94
© 2005-2018 Microchip Technology Inc. DS70000157G-page 53

16-Bit MCU and DSC Programmer’s Reference Manual
4.1 DATA ADDRESSING MODES

The 16-bit MCU and DSC devices support three native addressing modes for accessing data
memory, along with several forms of Immediate Addressing. Data accesses may be performed
using File Register Addressing, Register Direct or Indirect Addressing, and Immediate
Addressing, allowing a fixed value to be used by the instruction.

File Register Addressing provides the ability to operate on data stored in the lower 8K of data
memory (Near RAM), and also move data between the Working registers and the entire 64K data
space. Register Direct Addressing is used to access the 16 memory-mapped Working registers,
W0:W15. Register Indirect Addressing is used to efficiently operate on data stored in the entire
64K data space (and also Extended Data Space in the case of dsPIC33E/dsPIC33C/PIC24E and
some PIC24F devices), using the contents of the Working registers as an Effective Address (EA).
Immediate Addressing does not access data memory, but provides the ability to use a constant
value as an instruction operand. The address range of each mode is summarized in Table 4-1.

Table 4-1: 16-Bit MCU and DSC Addressing Modes

4.1.1 File Register Addressing

File Register Addressing is used by instructions which use a predetermined data address as an
operand for the instruction. The majority of instructions that support File Register Addressing
provide access to the lower 8 Kbytes of data memory, which is called the Near RAM. However,
the MOV instruction provides access to all 64 Kbytes of memory using File Register Addressing.
This allows the loading of the data from any location in data memory to any Working register and
storing the contents of any Working register to any location in data memory. It should be noted
that File Register Addressing supports both byte and word accesses of data memory, with the
exception of the MOV instruction, which accesses all 64K of memory as words. Examples of File
Register Addressing are shown in Example 4-1.

Most instructions which support File Register Addressing perform an operation on the specified
file register and the default Working register, WREG (see Section 2.4 “Default Working Reg-
ister (WREG)”). If only one operand is supplied in the instruction, WREG is an implied operand
and the operation results are stored back to the file register. In these cases, the instruction is
effectively a Read-Modify-Write instruction. However, when both the file register and the WREG
register are specified in the instruction, the operation results are stored in the WREG register and
the contents of the file register are unchanged. Sample instructions that show the interaction
between the file register and the WREG register are shown in Example 4-2.

Addressing Mode Address Range

File Register 0x0000-0x1FFF(1)

Register Direct 0x0000-0x001F (Working register array, W0:W15)

Register Indirect 0x0000-0xFFFF

Immediate N/A (constant value)

Note 1: The address range for the File Register MOV is 0x0000-0xFFFE.

Note: Instructions which support File Register Addressing use ‘f’ as an operand in the
instruction summary tables of Section 3. “Instruction Set Overview”.
DS70000157G-page 54 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

Example 4-1: File Register Addressing

Example 4-2: File Register Addressing and WREG

4.1.2 Register Direct Addressing

Register Direct Addressing is used to access the contents of the 16 Working registers (W0:W15).
The Register Direct Addressing mode is fully orthogonal, which allows any Working register to
be specified for any instruction that uses Register Direct Addressing, and it supports both byte
and word accesses. Instructions which employ Register Direct Addressing use the contents of
the specified Working register as data to execute the instruction; therefore, this addressing mode
is useful only when data already resides in the Working register core. Sample instructions which
utilize Register Direct Addressing are shown in Example 4-3.

Another feature of Register Direct Addressing is that it provides the ability for dynamic flow
control. Since variants of the DO and REPEAT instruction support Register Direct Addressing,
flexible looping constructs may be generated using these instructions.

DEC 0x1000 ; decrement data stored at 0x1000

Before Instruction:

Data Memory 0x1000 = 0x5555

After Instruction:

Data Memory 0x1000 = 0x5554

MOV 0x27FE, W0 ; move data stored at 0x27FE to W0

Before Instruction:

W0 = 0x5555
Data Memory 0x27FE = 0x1234

After Instruction:

W0 = 0x1234
Data Memory 0x27FE = 0x1234

AND 0x1000 ; AND 0x1000 with WREG, store to 0x1000

Before Instruction:

W0 (WREG) = 0x332C
Data Memory 0x1000 = 0x5555

After Instruction:

W0 (WREG) = 0x332C
Data Memory 0x1000 = 0x1104

AND 0x1000, WREG ; AND 0x1000 with WREG, store to WREG

Before Instruction:

W0 (WREG) = 0x332C
Data Memory 0x1000 = 0x5555

After Instruction:

W0 (WREG) = 0x1104
Data Memory 0x1000 = 0x5555

Note: Instructions which must use Register Direct Addressing, use the symbols Wb, Wn,
Wns and Wnd in the summary tables of Section 3. “Instruction Set Overview”.
Commonly, Register Direct Addressing may also be used when Register Indirect
Addressing may be used. Instructions which use Register Indirect Addressing, use
the symbols Wd and Ws in the summary tables of Section 3. “Instruction Set
Overview”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 55

16-Bit MCU and DSC Programmer’s Reference Manual
Example 4-3: Register Direct Addressing

4.1.3 Register Indirect Addressing

Register Indirect Addressing is used to access any location in data memory by treating the
contents of a Working register as an Effective Address (EA) to data memory. Essentially, the
contents of the Working register become a pointer to the location in data memory which is to be
accessed by the instruction.

This addressing mode is powerful, because it also allows one to modify the contents of the Work-
ing register, either before or after the data access is made, by incrementing or decrementing the
EA. By modifying the EA in the same cycle that an operation is being performed, Register Indirect
Addressing allows for the efficient processing of data that is stored sequentially in memory. The
modes of Indirect Addressing supported by the 16-bit MCU and DSC devices are shown in
Table 4-2.

Table 4-2: Indirect Addressing Modes

EXCH W2, W3 ; Exchange W2 and W3

Before Instruction:

 W2 = 0x3499
 W3 = 0x003D

After Instruction:

 W2 = 0x003D
 W3 = 0x3499

IOR #0x44, W0 ; Inclusive-OR 0x44 and W0

Before Instruction:

 W0 = 0x9C2E

After Instruction:

 W0 = 0x9C6E

SL W6, W7, W8 ; Shift left W6 by W7, and store to W8

Before Instruction:

 W6 = 0x000C
 W7 = 0x0008

W8 = 0x1234

After Instruction:

 W6 = 0x000C
 W7 = 0x0008
 W8 = 0x0C00

Indirect Mode Syntax
Function

(Byte Instruction)
Function

(Word Instruction)
Description

No Modification [Wn] EA = [Wn] EA = [Wn] The contents of Wn form the EA.

Pre-Increment [++Wn] EA = [Wn + = 1] EA = [Wn + = 2] Wn is pre-incremented to form the EA.

Pre-Decrement [--Wn] EA = [Wn – = 1] EA = [Wn – = 2] Wn is pre-decremented to form the EA.

Post-Increment [Wn++] EA = [Wn]+ = 1 EA = [Wn]+ = 2 The contents of Wn form the EA, then
Wn is post-incremented.

Post-Decrement [Wn--] EA = [Wn] – = 1 EA = [Wn] – = 2 The contents of Wn form the EA, then
Wn is post-decremented.

Register Offset [Wn+Wb] EA = [Wn + Wb] EA = [Wn + Wb] The sum of Wn and Wb forms the EA.
Wn and Wb are not modified.
DS70000157G-page 56 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

Table 4-2 shows that four addressing modes modify the EA used in the instruction, and this allows
the following updates to be made to the Working register: post-increment, post-decrement,
pre-increment and pre-decrement. Since all EAs must be given as byte addresses, support is
provided for Word mode instructions by scaling the EA update by two. Namely, in Word mode,
pre/post-decrements subtract two from the EA stored in the Working register and
pre/post-increments add two to the EA. This feature ensures that after an EA modification is made,
the EA will point to the next adjacent word in memory. Example 4-4 shows how Indirect Addressing
may be used to update the EA.

Table 4-2 also shows that the Register Offset mode addresses data which is offset from a base
EA stored in a Working register. This mode uses the contents of a second Working register to
form the EA by adding the two specified Working registers. This mode does not scale for Word
mode instructions, but offers the complete offset range of 64 Kbytes. Note that neither of the
Working registers used to form the EA is modified. Example 4-5 shows how Register Offset
Indirect Addressing may be used to access data memory.

Example 4-4: Indirect Addressing with Effective Address Update

Note: The MOV with offset instructions (see pages 299 and 300) provides a literal
addressing offset ability to be used with Indirect Addressing. In these instructions,
the EA is formed by adding the contents of a Working register to a signed 10-bit
literal. Example 4-6 shows how these instructions may be used to move data to and
from the Working register array.

MOV.B [W0++], [W13--] ; byte move [W0] to [W13]
; post-inc W0, post-dec W13

Before Instruction:

W0 = 0x2300
W13 = 0x2708
Data Memory 0x2300 = 0x7783
Data Memory 0x2708 = 0x904E

After Instruction:

W0 = 0x2301
W13 = 0x2707
Data Memory 0x2300 = 0x7783
Data Memory 0x2708 = 0x9083

ADD W1, [--W5], [++W8] ; pre-dec W5, pre-inc W8
 ; add W1 to [W5], store in [W8]

Before Instruction:

W1 = 0x0800
W5 = 0x2200
W8 = 0x2400
Data Memory 0x21FE = 0x7783
Data Memory 0x2402 = 0xAACC

After Instruction:

W1 = 0x0800
W5 = 0x21FE
W8 = 0x2402
Data Memory 0x21FE = 0x7783
Data Memory 0x2402 = 0x7F83
© 2005-2018 Microchip Technology Inc. DS70000157G-page 57

16-Bit MCU and DSC Programmer’s Reference Manual
Example 4-5: Indirect Addressing with Register Offset

Example 4-6: Move with Literal Offset Instructions

MOV.B [W0+W1], [W7++] ; byte move [W0+W1] to W7, post-inc W7

Before Instruction:

W0 = 0x2300
W1 = 0x01FE
W7 = 0x1000
Data Memory 0x24FE = 0x7783
Data Memory 0x1000 = 0x11DC

After Instruction:

W0 = 0x2300
W1 = 0x01FE
W7 = 0x1001
Data Memory 0x24FE = 0x7783
Data Memory 0x1000 = 0x1183

LAC [W0+W8], A ; load ACCA with [W0+W8]
; (sign-extend and zero-backfill)

Before Instruction:

W0 = 0x2344
W8 = 0x0008
ACCA = 0x00 7877 9321
Data Memory 0x234C = 0xE290

After Instruction:

W0 = 0x2344
W8 = 0x0008
ACCA = 0xFF E290 0000
Data Memory 0x234C = 0xE290

MOV [W0+0x20], W1 ; move [W0+0x20] to W1

Before Instruction:

W0 = 0x1200
W1 = 0x01FE
Data Memory 0x1220 = 0xFD27

After Instruction:

W0 = 0x1200
W1 = 0xFD27
Data Memory 0x1220 = 0xFD27

MOV W4, [W8-0x300] ; move W4 to [W8-0x300]

Before Instruction:

W4 = 0x3411
W8 = 0x2944
Data Memory 0x2644 = 0xCB98

After Instruction:

W4 = 0x3411
W8 = 0x2944
Data Memory 0x2644 = 0x3411
DS70000157G-page 58 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.1.3.1 REGISTER INDIRECT ADDRESSING AND THE INSTRUCTION SET

The addressing modes presented in Table 4-2 demonstrate the Indirect Addressing mode
capability of the 16-bit MCU and DSC devices. Due to operation encoding and functional consid-
erations, not every instruction which supports Indirect Addressing supports all modes shown in
Table 4-2. The majority of instructions which use Indirect Addressing support the No Modify,
Pre-Increment, Pre-Decrement, Post-Increment and Post-Decrement Addressing modes. The
MOV instructions, and several accumulator-based DSP instructions (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C devices only), are also capable of using the Register Offset Addressing
mode.

4.1.3.2 DSP MAC INDIRECT ADDRESSING MODES (dsPIC30F, dsPIC33F,
dsPIC33E AND dsPIC33C DEVICES)

A special class of Indirect Addressing modes is utilized by the DSP MAC instructions. As is
described later in Section 4.15 “DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C Devices)”, the DSP MAC class of instructions is capable of performing two fetches
from memory using Effective Addressing. Since DSP algorithms frequently demand a broader
range of address updates, the addressing modes offered by the DSP MAC instructions provide
greater range in the size of the Effective Address update which may be made. Table 4-3 shows
that both X and Y prefetches support Post-Increment and Post-Decrement Addressing modes,
with updates of two, four and six bytes. Since DSP instructions only execute in Word mode, no
provisions are made for odd-sized EA updates.

Table 4-3: DSP MAC Indirect Addressing Modes

4.1.3.3 MODULO AND BIT-REVERSED ADDRESSING MODES (dsPIC30F,
dsPIC33F, dsPIC33E AND dsPIC33C DEVICES)

The 16-bit DSC architecture provides support for two special Register Indirect Addressing
modes, which are commonly used to implement DSP algorithms. Modulo (or circular) Addressing
provides an automated means to support circular data buffers in X and/or Y memory. Modulo
buffers remove the need for software to perform address boundary checks, which can improve
the performance of certain algorithms. Similarly, Bit-Reversed Addressing allows one to access
the elements of a buffer in a nonlinear fashion. This addressing mode simplifies data re-ordering
for radix-2 FFT algorithms and provides a significant reduction in FFT processing time.

Both of these addressing modes are powerful features of the dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C architectures, which can be exploited by any instruction that uses Indirect
Addressing. Refer to the specific device family reference manual for details on using Modulo and
Bit-Reversed Addressing.

Note: Instructions which use Register Indirect Addressing use the operand symbols, Wd
and Ws, in the summary tables of Section 3. “Instruction Set Overview”.

Addressing Mode X Memory Y Memory

Indirect with No Modification EA = [Wx] EA = [Wy]

Indirect with Post-Increment by two EA = [Wx] + = 2 EA = [Wy] + = 2

Indirect with Post-Increment by four EA = [Wx] + = 4 EA = [Wy] + = 4

Indirect with Post-Increment by six EA = [Wx] + = 6 EA = [Wy] + = 6

Indirect with Post-Decrement by two EA = [Wx] – = 2 EA = [Wy] – = 2

Indirect with Post-Decrement by four EA = [Wx] – = 4 EA = [Wy] – = 4

Indirect with Post-Decrement by six EA = [Wx] – = 6 EA = [Wy] – = 6

Indirect with Register Offset EA = [W9 + W12] EA = [W11 + W12]

Note: As described in Section 4.15 “DSP MAC Instructions (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)”, only W8 and W9 may be used to access
X memory, and only W10 and W11 may be used to access Y memory.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 59

16-Bit MCU and DSC Programmer’s Reference Manual
4.1.4 Immediate Addressing

In Immediate Addressing, the instruction encoding contains a predefined constant operand, which
is used by the instruction. This addressing mode may be used independently, but it is more
frequently combined with the File Register, Direct and Indirect Addressing modes. The size of the
immediate operand which may be used varies with the instruction type. Constants of size 1-bit
(#lit1), 4-bit (#bit4, #lit4 and #Slit4), 5-bit (#lit5), 6-bit (#Slit6), 8-bit (#lit8), 10-bit (#lit10 and #Slit10),
14-bit (#lit14) and 16-bit (#lit16) may be used. Constants may be signed or unsigned and the
symbols, #Slit4, #Slit6 and #Slit10, designate a signed constant. All other immediate constants are
unsigned. Table 4-4 shows the usage of each immediate operand in the instruction set.

Table 4-4: Immediate Operands in the Instruction Set

Note: The 6-bit (#Slit6) operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.

Operand Instruction Usage

#lit1 PWRSAV

#lit3 CTXTSWP(3)

#bit4 BCLR, BSET, BTG, BTSC, BTSS, BTST, BTST.C, BTST.Z, BTSTS,
BTSTS.C, BTSTS.Z

#lit4 ASR, LSR, SL

#Slit4 ADD, LAC, SAC, SAC.R

#wid4 BFEXT, BFINS(6)

#lit5 ADD, ADDC, AND, CP(5), CPB(5), IOR, MUL.SU, MUL.UU, SUB, SUBB,
SUBBR, SUBR, XOR

#Slit6(1) SFTAC

#lit8 MOV.B, CP(4), CPB(4)

#lit10 ADD, ADDC, AND, CP, CPB, IOR, RETLW, SUB, SUBB, XOR

#Slit10 MOV

#lit14 DISI, DO(2), LNK, REPEAT(5)

#lit15 DO(3), REPEAT(4)

#lit16 MOV

Note 1: This operand or instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.

2: This operand or instruction is only available in dsPIC30F and dsPIC33F devices.

3: This operand or instruction is only available in dsPIC33E and dsPIC33C devices.

4: This operand or instruction is only available in dsPIC33E, dsPIC33C and PIC24E
devices.

5: This operand or instruction is only available in dsPIC30F, dsPIC33F, PIC24F and
PIC24H devices.

6: This operand or instruction is only available in dsPIC33C devices.
DS70000157G-page 60 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

The syntax for Immediate Addressing requires that the number sign (#) must immediately
precede the constant operand value. The “#” symbol indicates to the assembler that the quantity
is a constant. If an out-of-range constant is used with an instruction, the assembler will generate
an error. Several examples of Immediate Addressing are shown in Example 4-7.

Example 4-7: Immediate Addressing

4.1.5 Data Addressing Mode Tree

The Data Addressing modes of the PIC24F, PIC24H and PIC24E families are summarized in
Figure 4-1.

Figure 4-1: Data Addressing Mode Tree (PIC24F, PIC24H, PIC24E)

PWRSAV #1 ; Enter IDLE mode

ADD.B #0x10, W0 ; Add 0x10 to W0 (byte mode)

Before Instruction:

W0 = 0x12A9

After Instruction:

W0 = 0x12B9

XOR W0, #1, [W1++] ; Exclusive-OR W0 and 0x1
; Store the result to [W1]
; Post-increment W1

Before Instruction:

W0 = 0xFFFF
W1 = 0x0890
Data Memory 0x0890 = 0x0032

After Instruction:

W0 = 0xFFFF
W1 = 0x0892
Data Memory 0x0890 = 0xFFFE

Data Addressing Modes

Immediate

File Register

Pre-Increment

Pre-Decrement

Post-Increment

Post-Decrement

Register Offset

Literal Offset

No Modification

Direct

Indirect
© 2005-2018 Microchip Technology Inc. DS70000157G-page 61

16-Bit MCU and DSC Programmer’s Reference Manual
The Data Addressing modes of the dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C are summarized
in Figure 4-2.

Figure 4-2: Data Addressing Mode Tree (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)

Data Addressing Modes

Immediate

Basic

File Register

Pre-Increment

Pre-Decrement

Post-Increment

Post-Decrement

Register Offset

Literal Offset

No Modification

No Modification

Post-Decrement (2, 4 and 6)

Register Offset

Post-Increment (2, 4 and 6)

DSP MAC

Direct

Indirect

Direct

Indirect
DS70000157G-page 62 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.2 PROGRAM ADDRESSING MODES

The 16-bit MCU and DSC devices have a 24-bit Program Counter (PC). The PC addresses the
24-bit wide program memory to fetch instructions for execution and it may be loaded in several
ways. For byte compatibility with the table read and table write instructions, each instruction word
consumes two locations in program memory. This means that during serial execution, the PC is
loaded with PC + 2.

Several methods may be used to modify the PC in a non-sequential manner, and both absolute
and relative changes may be made to the PC. The change to the PC may be from an immediate
value encoded in the instruction or a dynamic value contained in a Working register. In dsPIC30F,
dsPIC33F and dsPIC33E devices, when DO looping is active, the PC is loaded with the address
stored in the DOSTART register after the instruction at the DOEND address is executed. For
exception handling, the PC is loaded with the address of the exception handler, which is stored
in the Interrupt Vector Table (IVT). When required, the software stack is used to return scope to
the foreground process from where the change in program flow occurred.

Table 4-5 summarizes the instructions which modify the PC. When performing function calls, it is
recommended that RCALL be used instead of CALL, since RCALL only consumes one word of
program memory.

Table 4-5: Methods of Modifying Program Flow

Condition/Instruction PC Modification Software Stack Usage

Sequential Execution PC = PC + 2 None

BRA Expr(1)

(Branch Unconditionally)
PC = PC + 2 * Slit16 None

BRA Condition, Expr(1)

(Branch Conditionally)
PC = PC + 2 (condition false)
PC = PC + 2 * Slit16 (condition true)

None

CALL Expr(1)

(Call Subroutine)
PC = lit23 PC + 4 is PUSHed on the stack(2)

CALL Wn
(Call Subroutine Indirect)

PC = Wn PC + 2 is PUSHed on the stack(2)

CALL.L Wn(5)

(Call Indirect Subroutine Long)
PC = {Wn+1:Wn} PC + 2 is PUSHed on the stack(2)

GOTO Expr(1)

(Unconditional Jump)
PC = lit23 None

GOTO Wn
(Unconditional Indirect Jump)

PC = Wn None

GOTO.L Wn(5)

(Unconditional Indirect Long Jump)
PC = {Wn+1:Wn} None

RCALL Expr(1)

(Relative Call)
PC = PC + 2 * Slit16 PC + 2 is PUSHed on the stack(2)

RCALL Wn
(Computed Relative Call)

PC = PC + 2 * Wn PC + 2 is PUSHed on the stack(2)

Exception Handling PC = Address of the exception handler
(read from vector table)

PC + 2 is PUSHed on the stack(3)

PC = Target REPEAT instruction
(REPEAT Looping)

PC not modified (if REPEAT active) None

PC = DOEND address(4)

(DO Looping)
PC = DOSTART (if DO active) None

Note 1: For BRA, CALL and GOTO, the Expr may be a label, absolute address or expression, which is resolved by
the linker to a 16-bit or 23-bit value (Slit16 or lit23). When representing an address offset value, Expr can
also be indicated by using a “.” and a sign, “+” or “-”. For example, the expression, “.+2”, means an
address offset of +2 (i.e., the next instruction address relative to the current position of the Program
Counter). See Section 5. “Instruction Descriptions” for details.

2: After CALL or RCALL is executed, RETURN or RETLW will POP the Top-of-Stack (TOS) back into the PC.
3: After an exception is processed, RETFIE will POP the Top-of-Stack (TOS) back into the PC.
4: This condition/instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
5: This condition instruction is only available in dsPIC33E, dsPIC33C and PIC24E devices.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 63

16-Bit MCU and DSC Programmer’s Reference Manual
4.3 INSTRUCTION STALLS

In order to maximize the data space EA calculation and operand fetch time, the X data space
read and write accesses are partially pipelined. A consequence of this pipelining is that address
register data dependencies may arise between successive read and write operations using
common registers.

‘Read-After-Write’ (RAW) dependencies occur across instruction boundaries and are detected
by the hardware. An example of a RAW dependency would be a write operation that modifies
W5, followed by a read operation that uses W5 as an Address Pointer. The contents of W5 will
not be valid for the read operation until the earlier write completes. This problem is resolved by
stalling the instruction execution for one instruction cycle, which allows the write to complete
before the next read is started.

4.3.1 RAW Dependency Detection

During the instruction predecode, the core determines if any address register dependency is
imminent across an instruction boundary. The Stall detection logic compares the W register
(if any) used for the destination EA of the instruction currently being executed with the W register
to be used by the source EA (if any) of the prefetched instruction. When a match between the
destination and source registers is identified, a set of rules is applied to decide whether or not to
stall the instruction by one cycle. Table 4-6 lists various RAW conditions which cause an
instruction execution Stall.

Table 4-6: Raw Dependency Rules (Detection By Hardware)

Destination
Addressing Mode

Using Wn

Source
Addressing Mode

Using Wn

Stall
Required?

Examples(2)

(Wn = W2)

Direct Direct No Stall ADD.W W0, W1, W2
MOV.W W2, W3

Indirect Direct No Stall ADD.W W0, W1, [W2]
MOV.W W2, W3

Indirect Indirect No Stall ADD.W W0, W1, [W2]
MOV.W [W2], W3

Indirect Indirect with
Pre/Post-Modification

No Stall ADD.W W0, W1, [W2]
MOV.W [W2++], W3

Indirect with
Pre/Post-Modification

Direct No Stall ADD.W W0, W1, [W2++]
MOV.W W2, W3

Direct Indirect Stall(1) ADD.W W0, W1, W2
MOV.W [W2], W3

Direct Indirect with
Pre/Post-Modification

Stall(1) ADD.W W0, W1, W2
MOV.W [W2++], W3

Indirect Indirect Stall(1) ADD.W W0, W1, [W2](2)
MOV.W [W2], W3(2)

Indirect Indirect with
Pre/Post-Modification

Stall(1) ADD.W W0, W1, [W2](2)
MOV.W [W2++], W3(2)

Indirect with
Pre/Post-Modification

Indirect Stall(1) ADD.W W0, W1, [W2++]
MOV.W [W2], W3

Indirect with
Pre/Post-Modification

Indirect with
Pre/Post-Modification

Stall(1) ADD.W W0, W1, [W2++]
MOV.W [W2++], W3

Note 1: When Stalls are detected, one cycle is added to the instruction execution time.

2: For these examples, the contents of W2 = the mapped address of W2 (0x0004).

Note: When Register Indirect with Offset Addressing is used to specify the destination for
an instruction, and Ws is the same register as Wd, the old value of Ws is used for
Wd (i.e., the address offset is ignored).
DS70000157G-page 64 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.3.2 Instruction Stalls and Exceptions

In order to maintain deterministic operation, instruction Stalls are allowed to happen, even if they
occur immediately prior to exception processing.

4.3.3 Instruction Stalls and Instructions that Change Program Flow

CALL and RCALL write to the stack using W15 and may, therefore, be subject to an instruction
Stall if the source read of the subsequent instruction uses W15.

GOTO, RETFIE and RETURN instructions are never subject to an instruction Stall because they
do not perform write operations to the Working registers.

4.3.4 Instruction Stalls and DO/REPEAT Loops

Instructions operating in a DO or REPEAT loop are subject to instruction Stalls, just like any other
instruction. Stalls may occur on loop entry, loop exit and also during loop processing.

4.3.5 Instruction Stalls and PSV

Instructions operating in PSV address space are subject to instruction Stalls, just like any other
instruction. Should a data dependency be detected in the instruction immediately following the
PSV data access, the second cycle of the instruction will initiate a Stall. Should a data
dependency be detected in the instruction immediately before the PSV data access, the last
cycle of the previous instruction will initiate a Stall.

Note: DO loops are only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
devices.

Note: Refer to the specific device family reference manual for more detailed information
about RAW instruction Stalls.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 65

16-Bit MCU and DSC Programmer’s Reference Manual
4.4 BYTE OPERATIONS

Since the data memory is byte-addressable, most of the base instructions may operate in either
Byte mode or Word mode. When these instructions operate in Byte mode, the following rules
apply:

• All direct Working register references use the Least Significant Byte of the 16-bit Working
register and leave the Most Significant Byte (MSB) unchanged

• All indirect Working register references use the data byte specified by the 16-bit address
stored in the Working register

• All file register references use the data byte specified by the byte address
• The STATUS Register is updated to reflect the result of the byte operation

It should be noted that data addresses are always represented as byte addresses. Additionally,
the native data format is little-endian, which means that words are stored with the Least
Significant Byte at the lower address and the Most Significant Byte at the adjacent, higher
address (as shown in Figure 4-3). Example 4-8 shows sample byte move operations and
Example 4-9 shows sample byte math operations.

Example 4-8: Sample Byte Move Operations

Note: Instructions that operate in Byte mode must use the “.b” or “.B” instruction
extension to specify a byte instruction. For example, the following two instructions
are valid forms of a byte clear operation:

• CLR.b W0
• CLR.B W0

MOV.B #0x30, W0 ; move the literal byte 0x30 to W0

Before Instruction:

W0 = 0x5555

After Instruction:
W0 = 0x5530

MOV.B 0x1000, W0 ; move the byte at 0x1000 to W0

Before Instruction:

W0 = 0x5555
Data Memory 0x1000 = 0x1234

After Instruction:

W0 = 0x5534
Data Memory 0x1000 = 0x1234

MOV.B W0, 0x1001 ; byte move W0 to address 0x1001

Before Instruction:

W0 = 0x1234
Data Memory 0x1000 = 0x5555

After Instruction:

W0 = 0x1234
Data Memory 0x1000 = 0x3455

MOV.B W0, [W1++] ; byte move W0 to [W1], then post-inc W1

Before Instruction:

W0 = 0x1234
W1 = 0x1001
Data Memory 0x1000 = 0x5555

After Instruction:

W0 = 0x1234
W1 = 0x1002
Data Memory 0x1000 = 0x3455
DS70000157G-page 66 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

Example 4-9: Sample Byte Math Operations

CLR.B [W6--] ; byte clear [W6], then post-dec W6

Before Instruction:

W6 = 0x1001
Data Memory 0x1000 = 0x5555

After Instruction:

W6 = 0x1000
Data Memory 0x1000 = 0x0055

SUB.B W0, #0x10, W1 ; byte subtract literal 0x10 from W0
; and store to W1

Before Instruction:

W0 = 0x1234
W1 = 0xFFFF

After Instruction:
W0 = 0x1234
W1 = 0xFF24

ADD.B W0, W1, [W2++] ; byte add W0 and W1, store to [W2]
; and post-inc W2

Before Instruction:

W0 = 0x1234
W1 = 0x5678
W2 = 0x1000
Data Memory 0x1000 = 0x5555

After Instruction:

W0 = 0x1234
W1 = 0x5678
W2 = 0x1001
Data Memory 0x1000 = 0x55AC
© 2005-2018 Microchip Technology Inc. DS70000157G-page 67

16-Bit MCU and DSC Programmer’s Reference Manual
4.5 WORD MOVE OPERATIONS

Even though the data space is byte-addressable, all move operations made in Word mode must
be word-aligned. This means that for all source and destination operands, the Least Significant
address bit must be ‘0’. If a word move is made to or from an odd address, an address error
exception is generated. Likewise, all double words must be word-aligned. Figure 4-3 shows how
bytes and words may be aligned in data memory. Example 4-10 contains several legal word
move operations.

When an exception is generated due to a misaligned access, the exception is taken after the
instruction executes. If the illegal access occurs from a data read, the operation will be allowed
to complete, but the Least Significant bit of the source address will be cleared to force word
alignment. If the illegal access occurs during a data write, the write will be inhibited. Example 4-11
contains several illegal word move operations.

Figure 4-3: Data Alignment in Memory

0x1001 b0 0x1000

0x1003 b1 0x1002

0x1005 b3 b2 0x1004

0x1007 b5 b4 0x1006

0x1009 b7 b6 0x1008

0x100B b8 0x100A

Legend:
 b0 – byte stored at 0x1000
 b1 – byte stored at 0x1003
 b3:b2 – word stored at 0x1005:1004 (b2 is LSB)
 b7:b4 – double word stored at 0x1009:0x1006 (b4 is LSB)
 b8 – byte stored at 0x100A

Note: Instructions that operate in Word mode are not required to use an instruction
extension. However, they may be specified with an optional “.w” or “.W” extension,
if desired. For example, the following instructions are valid forms of a word clear
operation:

• CLR W0

• CLR.w W0

• CLR.W W0
DS70000157G-page 68 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

Example 4-10: Legal Word Move Operations

MOV #0x30, W0 ; move the literal word 0x30 to W0

Before Instruction:

W0 = 0x5555

After Instruction:

W0 = 0x0030

MOV 0x1000, W0 ; move the word at 0x1000 to W0

Before Instruction:

W0 = 0x5555
Data Memory 0x1000 = 0x1234

After Instruction:

W0 = 0x1234
Data Memory 0x1000 = 0x1234

MOV [W0], [W1++] ; word move [W0] to [W1],
; then post-inc W1

Before Instruction:

W0 = 0x1234
W1 = 0x1000
Data Memory 0x1000 = 0x5555
Data Memory 0x1234 = 0xAAAA

After Instruction:

W0 = 0x1234
W1 = 0x1002
Data Memory 0x1000 = 0xAAAA
Data Memory 0x1234 = 0xAAAA
© 2005-2018 Microchip Technology Inc. DS70000157G-page 69

16-Bit MCU and DSC Programmer’s Reference Manual
Example 4-11: Illegal Word Move Operations

MOV 0x1001, W0 ; move the word at 0x1001 to W0

Before Instruction:

W0 = 0x5555
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

After Instruction:

W0 = 0x1234
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

ADDRESS ERROR TRAP GENERATED

(source address is misaligned, so MOV is performed)

MOV W0, 0x1001 ; move W0 to the word at 0x1001

Before Instruction:

W0 = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

After Instruction:

W0 = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

ADDRESS ERROR TRAP GENERATED

(destination address is misaligned, so MOV is not performed)

MOV [W0], [W1++] ; word move [W0] to [W1],
; then post-inc W1

Before Instruction:

W0 = 0x1235
W1 = 0x1000
Data Memory 0x1000 = 0x1234
Data Memory 0x1234 = 0xAAAA
Data Memory 0x1236 = 0xBBBB

After Instruction:

W0 = 0x1235
W1 = 0x1002
Data Memory 0x1000 = 0xAAAA
Data Memory 0x1234 = 0xAAAA
Data Memory 0x1236 = 0xBBBB

ADDRESS ERROR TRAP GENERATED

(source address is misaligned, so MOV is performed)
DS70000157G-page 70 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.6 USING 10-BIT LITERAL OPERANDS

Several instructions that support Byte and Word mode have 10-bit operands. For byte
instructions, a 10-bit literal is too large to use. So when 10-bit literals are used in Byte mode, the
range of the operand must be reduced to eight bits or the assembler will generate an error.
Table 4-7 shows that the range of a 10-bit literal is 0:1023 in Word mode and 0:255 in Byte mode.

Instructions which employ 10-bit literals in Byte and Word mode are: ADD, ADDC, AND, IOR,
RETLW, SUB, SUBB and XOR. Example 4-12 shows how positive and negative literals are used in
Byte mode for the ADD instruction.

Table 4-7: 10-Bit Literal Coding

Example 4-12: Using 10-Bit Literals for Byte Operands

4.7 BIT FIELD INSERT/EXTRACT INSTRUCTIONS (dsPIC33C DEVICES ONLY)

The dsPIC33C family provides a set of instructions that operate on bit fields within a target word.

4.7.1 BFEXT

This instruction can extract multiple bits from a W register or data memory location into a
destination W register.

4.7.2 BFINS

This instruction can insert multiple bits from a source W register, or 8-bit literal value into a
W register or data memory location.

In both instructions, the location and width of the bit field within the target word are defined as
literal values within the instruction.

Literal Value
Word Mode

kk kkkk kkkk
Byte Mode
kkkk kkkk

0 00 0000 0000 0000 0000

1 00 0000 0001 0000 0001

2 00 0000 0010 0000 0010

127 00 0111 1111 0111 1111

128 00 1000 0000 1000 0000

255 00 1111 1111 1111 1111

256 01 0000 0000 N/A

512 10 0000 0000 N/A

1023 11 1111 1111 N/A

ADD.B #0x80, W0 ; add 128 (or -128) to W0
ADD.B #0x380, W0 ; ERROR... Illegal syntax for byte mode
ADD.B #0xFF, W0 ; add 255 (or -1) to W0
ADD.B #0x3FF, W0 ; ERROR... Illegal syntax for byte mode
ADD.B #0xF, W0 ; add 15 to W0
ADD.B #0x7F, W0 ; add 127 to W0
ADD.B #0x100, W0 ; ERROR... Illegal syntax for byte mode

Note: Using a literal value greater than 127 in Byte mode is functionally identical to using
the equivalent negative two’s complement value, since the Most Significant bit of
the byte is set. When operating in Byte mode, the assembler will accept either a
positive or negative literal value (i.e., #-10).
© 2005-2018 Microchip Technology Inc. DS70000157G-page 71

16-Bit MCU and DSC Programmer’s Reference Manual
4.8 SOFTWARE STACK POINTER AND FRAME POINTER

4.8.1 Software Stack Pointer

The 16-bit MCU and DSC devices feature a software stack which facilitates function calls and
exception handling. W15 is the default Stack Pointer (SP) and after any Reset, it is initialized to
0x0800 (0x1000 for PIC24E, dsPIC33E and dsPIC33C devices). This ensures that the SP will
point to valid RAM and permits stack availability for exceptions, which may occur before the SP
is set by the user software. The user may reprogram the SP during initialization to any location
within data space.

The SP always points to the first available free word (Top-of-Stack) and fills the software stack,
working from lower addresses towards higher addresses. It pre-decrements for a stack POP
(read) and post-increments for a stack PUSH (write).

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 used as the destination pointer. For
example, the contents of W0 can be PUSHed onto the Top-of-Stack (TOS) by:

PUSH W0

This syntax is equivalent to:

MOV W0,[W15++]

The contents of the TOS can be returned to W0 by:

POP W0

This syntax is equivalent to:

MOV [--W15],W0

During any CALL instruction, the PC is PUSHed onto the stack, such that when the subroutine
completes execution, program flow may resume from the correct location. When the PC is
PUSHed onto the stack, PC<15:0> are PUSHed onto the first available stack word, then
PC<22:16> are PUSHed. When PC<22:16> are PUSHed, the Most Significant seven bits of the
PC are zero-extended before the PUSH is made, as shown in Figure 4-4. During exception
processing, the Most Significant seven bits of the PC are concatenated with the lower byte of the
STATUS Register (SRL) and IPL<3> (CORCON<3>). This allows the primary STATUS Register
contents and CPU Interrupt Priority Level to be automatically preserved during interrupts.

Figure 4-4: Stack Operation for CALL Instruction

Note: In order to protect against misaligned stack accesses, W15<0> is always clear.

015

W15 (before CALL)

W15 (after CALL)

S
ta

ck
 G

ro
w

s
To

w
a

rd
s

H
ig

h
e

r
A

d
d

re
ss

0x0000

PC<15:0>

0x0 PC<22:16>

Top-of-Stack

0xFFFE

Note: For exceptions, the upper nine bits of the second PUSHed word contains
the SRL and IPL<3>.
DS70000157G-page 72 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.8.1.1 STACK POINTER EXAMPLE

Figure 4-5 through Figure 4-8 show how the software stack is modified for the code snippet
shown in Example 4-13. Figure 4-5 shows the software stack before the first PUSH has executed.
Note that the SP has the initialized value of 0x0800. Furthermore, the example loads 0x5A5A
and 0x3636 to W0 and W1, respectively. The stack is PUSHed for the first time in Figure 4-6 and
the value contained in W0 is copied to TOS. W15 is automatically updated to point to the next
available stack location and the new TOS is 0x0802. In Figure 4-7, the contents of W1 are
PUSHed onto the stack and the new TOS becomes 0x0804. In Figure 4-8, the stack is POPped,
which copies the last PUSHed value (W1) to W3. The SP is decremented during the POP
operation and at the end of the example, the final TOS is 0x0802.

Example 4-13: Stack Pointer Usage

Figure 4-5: Stack Pointer Before the First PUSH

Figure 4-6: Stack Pointer After “PUSH W0” Instruction

MOV #0x5A5A, W0 ; Load W0 with 0x5A5A
MOV #0x3636, W1 ; Load W1 with 0x3636
PUSH W0 ; Push W0 to TOS (see Figure 4-5)
PUSH W1 ; Push W1 to TOS (see Figure 4-7)
POP W3 ; Pop TOS to W3 (see Figure 4-8)

0x0000

0xFFFE

0x0800 W15 (SP)

W15 = 0x0800

W0 = 0x5A5A
W1 = 0x3636

<TOS>

0x0000

0xFFFE

0x0800
W15 (SP)

W15 = 0x0802

W0 = 0x5A5A
W1 = 0x3636

5A5A
<TOS>0x0802
© 2005-2018 Microchip Technology Inc. DS70000157G-page 73

16-Bit MCU and DSC Programmer’s Reference Manual
Figure 4-7: Stack Pointer After “PUSH W1” Instruction

Figure 4-8: Stack Pointer After “POP W3” Instruction

4.8.2 Software Stack Frame Pointer

A stack frame is a user-defined section of memory residing in the software stack. It is used to
allocate memory for temporary variables, which a function uses, and one stack frame may be
created for each function. W14 is the default Stack Frame Pointer (FP) and it is initialized to
0x0000 on any Reset. If the Stack Frame Pointer is not used, W14 may be used like any other
Working register.

The Link (LNK) and Unlink (ULNK) instructions provide stack frame functionality. The LNK
instruction is used to create a stack frame. It is used during a call sequence to adjust the SP, such
that the stack may be used to store temporary variables utilized by the called function. After the
function completes execution, the ULNK instruction is used to remove the stack frame created by
the LNK instruction. The LNK and ULNK instructions must always be used together to avoid stack
overflow.

0x0000

0xFFFE

0x0800

W15 (SP)

W15 = 0x0804

W0 = 0x5A5A
W1 = 0x3636

5A5A

<TOS>
0x0802 3636
0x0804

0x0000

0xFFFE

0x0800
W15 (SP)

W15 = 0x0802

W0 = 0x5A5A
W1 = 0x3636

5A5A
0x0802 <TOS>
0x0804

W3 = 0x3636

Note: The contents of 0x802, the new TOS, remain unchanged (0x3636).
DS70000157G-page 74 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.8.2.1 STACK FRAME POINTER EXAMPLE

Figure 4-9 through Figure 4-11 show how a stack frame is created and removed for the code
snippet shown in Example 4-14. This example demonstrates how a stack frame operates and is
not indicative of the code generated by the compiler. Figure 4-9 shows the stack condition at the
beginning of the example, before any registers are pushed to the stack. Here, W15 points to the
first free stack location (TOS) and W14 points to a portion of stack memory allocated for the
routine that is currently executing.

Before calling the function, “COMPUTE”, the parameters of the function (W0, W1 and W2) are
PUSHed on the stack. After the “CALL COMPUTE” instruction is executed, the PC changes to the
address of “COMPUTE” and the return address of the function, “TASKA”, is placed on the stack
(Figure 4-10). Function “COMPUTE” then uses the “LNK #4” instruction to PUSH the calling
routine’s Frame Pointer value onto the stack and the new Frame Pointer will be set to point to the
current Stack Pointer. Then, the literal 4 is added to the Stack Pointer address in W15, which
reserves memory for two words of temporary data (Figure 4-11).

Inside the function, “COMPUTE”, the FP is used to access the function parameters and temporary
(local) variables. [W14 + n] will access the temporary variables used by the routine and [W14 – n]
is used to access the parameters. At the end of the function, the ULNK instruction is used to copy
the Frame Pointer address to the Stack Pointer and then POP the calling subroutine’s Frame
Pointer back to the W14 register. The ULNK instruction returns the stack back to the state shown
in Figure 4-10.

A RETURN instruction will return to the code that called the subroutine. The calling code is
responsible for removing the parameters from the stack. The RETURN and POP instructions
restore the stack to the state shown in Figure 4-9.

Example 4-14: Frame Pointer Usage

Figure 4-9: Stack at the Beginning of Example 4-14

TASKA:
...
PUSH W0 ; Push parameter 1
PUSH W1 ; Push parameter 2
PUSH W2 ; Push parameter 3
CALL COMPUTE ; Call COMPUTE function
POP W2 ; Pop parameter 3
POP W1 ; Pop parameter 2
POP W0 ; Pop parameter 1

 ...

COMPUTE:
LNK #4 ; Stack FP, allocate 4 bytes for local variables
...
ULNK ; Free allocated memory, restore original FP
RETURN ; Return to TASKA

0x0000

0xFFFE

0x0800

W14 (FP)

<TOS> W15 (SP)

TASKA

Frame
of
© 2005-2018 Microchip Technology Inc. DS70000157G-page 75

16-Bit MCU and DSC Programmer’s Reference Manual
Figure 4-10: Stack After “CALL COMPUTE” Executes

Figure 4-11: Stack After “LNK #4” Executes

4.8.3 Stack Pointer Overflow

There is a Stack Limit register (SPLIM) associated with the Stack Pointer that is reset to 0x0000.
SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘0’, because all stack operations must be
word-aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs; after which time,
it can only be disabled by a device Reset. All Effective Addresses generated using W15 as a
source or destination are compared against the value in SPLIM. Should the Effective Address be
greater than the contents of SPLIM, then a stack error trap is generated.

If stack overflow checking has been enabled, a stack error trap will also occur if the W15 Effective
Address calculation wraps over the end of data space (0xFFFF).

Refer to the specific device family reference manual for more information on the stack error trap.

0x0000

0xFFFE

0x0800

W14 (FP)

Parameter 1

W15 (SP)

TASKA

Frame
of

Parameter 2
Parameter 3
PC<15:0>(1)

0:PC<22:16>
<TOS>

Note 1: In dsPIC33E/PIC24E devices, the SFA bit is stacked instead of PC<0>.

0x0000

0xFFFE

0x0800

W14 (FP)

Parameter 1

W15 (SP)

TASKA

Frame
of

Parameter 2
Parameter 3
PC<15:0>(1)

0:PC<22:16>

<TOS>

FP of TASKA
Temp Word 1
Temp Word 2

Note 1: In dsPIC33E/PIC24E devices, the SFA bit is stacked instead of PC<0>.
DS70000157G-page 76 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.8.4 Stack Pointer Underflow

The stack is initialized to 0x0800 during Reset (0x1000 for PIC24E, dsPIC33E and dsPIC33C
devices). A stack error trap will be initiated should the Stack Pointer address ever be less than
0x0800 (0x1000 for PIC24E, dsPIC33E and dsPIC33C devices).

4.8.5 Stack Frame Active (SFA) Control
(dsPIC33E, dsPIC33C and PIC24E Devices)

W15 is never subject to paging and is therefore restricted to address range, 0x000000 to
0x00FFFF. However, the Stack Frame Pointer (W14) for any user software function is only
dedicated to that function when a stack frame addressed by W14 is active (i.e., after a LNK
instruction). Therefore, it is desirable to have the ability to dynamically switch W14 between use
as a general purpose W register and use as a Stack Frame Pointer. The SFA Status bit
(CORCON<2>) achieves this function without additional software overhead.

When the SFA bit is clear, W14 may be used with any page register. When SFA is set, W14 is
not subject to paging and is locked into the same address range as W15 (0x000000 to
0x00FFFF). Operation of the SFA register lock is as follows:

• The LNK instruction sets SFA (and creates a stack frame).

• The ULNK instruction clears SFA (and deletes the stack frame).

• The CALL, CALL.L and RCALL instructions also stack the SFA bit (placing it in the LSb of
the stacked PC), and clear the SFA bit after the stacking operation is complete. The called
procedure is now free to either use W14 as a general purpose register or create another
stack frame using the LNK instruction.

• The RETURN, RETLW and RETFIE instructions all restore the SFA bit from its previously
stacked value.

The SFA bit is a read-only bit. It can only be set by execution of the LNK instruction, and cleared
by the ULNK, CALL, CALL.L and RCALL instructions.

Note: Locations in data space, between 0x0000 and 0x07FF (0x0FFF for PIC24E,
dsPIC33E and dsPIC33C devices), are in general, reserved for core and peripheral
Special Function Registers (SFRs).

Note: In dsPIC33E, dsPIC33C and PIC24E devices, the SFA bit is stacked instead of
PC<0>.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 77

16-Bit MCU and DSC Programmer’s Reference Manual
4.9 CONDITIONAL BRANCH INSTRUCTIONS

Conditional branch instructions are used to direct program flow based on the contents of the STATUS
Register. These instructions are generally used in conjunction with a compare class instruction, but
they may be employed effectively after any operation that modifies the STATUS Register.

The compare instructions, CP, CP0 and CPB, perform a subtract operation (minuend – subtrahend),
but do not actually store the result of the subtraction. Instead, compare instructions just update
the flags in the STATUS Register, such that an ensuing conditional branch instruction may
change program flow by testing the contents of the updated STATUS Register. If the result of the
STATUS Register test is true, the branch is taken. If the result of the STATUS Register test is
false, the branch is not taken.

The conditional branch instructions supported by the dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices are shown in Table 4-8. This table identifies the condition in the STATUS
Register which must be true for the branch to be taken. In some cases, just a single bit is tested
(as in BRA C), while in other cases, a complex logic operation is performed (as in BRA GT). For
dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices, it is worth noting that both signed and
unsigned conditional tests are supported, and that support is provided for DSP algorithms with
the OA, OB, SA and SB condition mnemonics.

Table 4-8: Conditional Branch Instructions

Condition
Mnemonic(1) Description Status Test

C Carry (not Borrow) C

GE Signed Greater Than or Equal (N&&OV) || (N&&OV)

GEU(2) Unsigned Greater Than or Equal C

GT Signed Greater Than (Z&&N&&OV) || (Z&&N&&OV)

GTU Unsigned Greater Than C&&Z

LE Signed Less Than or Equal Z || (N&&OV) || (N&&OV)

LEU Unsigned Less Than or Equal C || Z

LT Signed Less Than (N&&OV) || (N&&OV)

LTU(3) Unsigned Less Than C

N Negative N

NC Not Carry (Borrow) C

NN Not Negative N

NOV Not Overflow OV

NZ Not Zero Z

OA(4) Accumulator A Overflow OA

OB(4) Accumulator B Overflow OB

OV Overflow OV

SA(4) Accumulator A Saturate SA

SB(4) Accumulator B Saturate SB

Z Zero Z

Note 1: Instructions are of the form: BRA mnemonic, Expr.

2: GEU is identical to C and will reverse assemble to BRA C, Expr.

3: LTU is identical to NC and will reverse assemble to BRA NC, Expr.

4: This condition is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C
devices.

Note: The “Compare and Skip” instructions (CPBEQ, CPBGT, CPBLT, CPBNE, CPSEQ,
CPSGT, CPSLT and CPSNE) do not modify the STATUS Register.
DS70000157G-page 78 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.10 Z STATUS BIT

The Z Status bit is a special Zero Status bit that is useful for extended precision arithmetic. The
Z bit functions like a normal Z flag for all instructions, except those that use the Carry/Borrow
input (ADDC, CPB, SUBB and SUBBR). For the ADDC, CPB, SUBB and SUBBR instructions, the Z bit
can only be cleared and never set. If the result of one of these instructions is non-zero, the Z bit
will be cleared and will remain cleared, regardless of the result of subsequent ADDC, CPB, SUBB
or SUBBR operations. This allows the Z bit to be used for performing a simple zero check on the
result of a series of extended precision operations.

A sequence of instructions working on multiprecision data (starting with an instruction with no
Carry/Borrow input) will automatically logically AND the successive results of the zero test. All
results must be zero for the Z flag to remain set at the end of the sequence of operations. If the
result of the ADDC, CPB, SUBB or SUBBR instruction is non-zero, the Z bit will be cleared and
remain cleared for all subsequent ADDC, CPB, SUBB or SUBBR instructions. Example 4-15 shows
how the Z bit operates for a 32-bit addition. It shows how the Z bit is affected for a 32-bit addition
implemented with an ADD/ADDC instruction sequence. The first example generates a zero result
for only the most significant word, and the second example generates a zero result for both the
least significant word and most significant word.

Example 4-15: ‘Z’ Status Bit Operation for 32-Bit Addition

; Add two doubles (W0:W1 and W2:W3)
; Store the result in W5:W4
ADD W0, W2, W4 ; Add LSWord and store to W4
ADDC W1, W3, W5 ; Add MSWord and store to W5

Before 32-Bit Addition (zero result for the most significant word):

W0 = 0x2342
W1 = 0xFFF0
W2 = 0x39AA
W3 = 0x0010
W4 = 0x0000
W5 = 0x0000
SR = 0x0000

After 32-Bit Addition:

W0 = 0x2342
W1 = 0xFFF0
W2 = 0x39AA
W3 = 0x0010
W4 = 0x5CEC
W5 = 0x0000
SR = 0x0201 (DC,C=1)

Before 32-Bit Addition (zero result for the least significant word and most significant word):

W0 = 0xB76E
W1 = 0xFB7B
W2 = 0x4892
W3 = 0x0484
W4 = 0x0000
W5 = 0x0000
SR = 0x0000

After 32-Bit Addition:

W0 = 0xB76E
W1 = 0xFB7B
W2 = 0x4892
W3 = 0x0485
W4 = 0x0000
W5 = 0x0000
SR = 0x0103 (DC,Z,C=1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 79

16-Bit MCU and DSC Programmer’s Reference Manual
4.11 ASSIGNED WORKING REGISTER USAGE

The 16 Working registers of the 16-bit MCU and DSC devices provide a large register set for effi-
cient code generation and algorithm implementation. In an effort to maintain an instruction set
that provides advanced capability, a stable run-time environment and backwards compatibility
with earlier Microchip processor cores, some Working registers have a preassigned usage.
Table 4-9 summarizes these Working register assignments. For the dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C, additional details are provided in subsections, Section 4.11.1
“Implied DSP Operands (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)” through
Section 4.11.3 “PIC® Microcontroller Compatibility”.

Table 4-9: Special Working Register Assignments

4.11.1 Implied DSP Operands (dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C Devices)

To assist instruction encoding and maintain uniformity among the DSP class of instructions,
some Working registers have preassigned functionality. For all DSP instructions which have
prefetch ability, the following ten register assignments must be adhered to:

• W4-W7 are used for arithmetic operands
• W8-W11 are used for prefetch addresses (pointers)
• W12 is used for the prefetch register offset index
• W13 is used for the accumulator write-back destination

These restrictions only apply to the DSP MAC class of instructions, which utilize Working registers
and have prefetch ability (described in Section 4.16 “DSP Accumulator Instructions
(dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)”). These instructions are CLR, ED,
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC.

In dsPIC33E devices, mixed-sign DSP multiplication operations are supported without the need
to dynamically modify the US<1:0> bits. In this mode (US<1:0> = 10), each input operand is
treated as unsigned or signed, based on which register is being used for that operand. W4 and
W6 are always unsigned operands, whereas W5 and W7 are always signed operands. This
feature can be used to efficiently execute extended precision DSP multiplications.

The DSP accumulator class of instructions (described in Section 4.16 “DSP Accumulator Instruc-
tions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)”) is not required to follow the
Working register assignments in Table 4-9 and may freely use any Working register when required.

Register Special Assignment

W0 Default WREG, Divide Quotient for DIV instructions

W1 Divide Remainder for DIV instructions

W2 “MUL f” Product least significant word

W3 “MUL f” Product most significant word

W4 MAC Operand(1)

W5 MAC Operand(1)

W6 MAC Operand(1)

W7 MAC Operand(1)

W8 MAC Prefetch Address (X Memory)(1)

W9 MAC Prefetch Address (X Memory)(1)

W10 MAC Prefetch Address (Y Memory)(1)

W11 MAC Prefetch Address (Y Memory)(1)

W12 MAC Prefetch Offset(1)

W13 MAC Write-Back Destination(1)

W14 Frame Pointer

W15 Stack Pointer

Note 1: This assignment is only applicable in dsPIC30F, dsPIC33F, dsPIC33E and
dsPIC33C devices.
DS70000157G-page 80 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.11.2 Implied Frame and Stack Pointer

To accommodate software stack usage, W14 is the implied Frame Pointer (used by the LNK and
ULNK instructions) and W15 is the implied Stack Pointer (used by the CALL, LNK, POP, PUSH,
RCALL, RETFIE, RETLW, RETURN, TRAP and ULNK instructions). Even though W14 and W15
have this implied usage, they may still be used as generic operands in any instruction with the
exceptions outlined in Section 4.11.1 “Implied DSP Operands (dsPIC30F, dsPIC33F,
dsPIC33E and dsPIC33C Devices)”. If W14 and W15 must be used for other purposes (it is
strongly advised that they remain reserved for the Frame and Stack Pointers), extreme care must
be taken such that the run-time environment is not corrupted.

4.11.3 PIC® Microcontroller Compatibility

4.11.3.1 DEFAULT WORKING REGISTER (WREG)

To ease the migration path for users of the Microchip 8-bit PIC MCU families, the 16-bit MCU and
DSC devices have matched the functionality of the PIC MCU instruction sets as closely as
possible. One major difference between the 16-bit MCU and DSC, and the 8-bit PIC MCU
processors is the number of Working registers provided. The 8-bit PIC MCU families only provide
one 8-bit Working register, while the 16-bit MCU and DSC families provide sixteen, 16-bit Work-
ing registers. To accommodate for the one Working register of the 8-bit PIC MCU, the 16-bit MCU
and DSC device instruction set has designated one Working register to be the default Working
register for all legacy file register instructions. The default Working register is set to W0 and it is
used by all instructions which use File Register Addressing.

Additionally, the syntax used by the 16-bit MCU and DSC device assembler to specify the default
Working register is similar to that used by the 8-bit PIC MCU assembler. As shown in the detailed
instruction descriptions in Section 5. “Instruction Descriptions”, “WREG” must be used to
specify the default Working register. Example 4-16 shows several instructions that use WREG.

Example 4-16: Using the Default Working Register, WREG

4.11.3.2 PRODH:PRODL REGISTER PAIR

Another significant difference between the Microchip 8-bit PIC MCU and 16-bit MCU and DSC
architectures is the multiplier. Some PIC MCU families support an 8-bit x 8-bit multiplier, which
places the multiply product in the PRODH:PRODL register pair. The 16-bit MCU and DSC
devices have a 17-bit x 17-bit multiplier, which may place the result into any two successive
Working registers (starting with an even register) or an accumulator.

Despite this architectural difference, the 16-bit MCU and DSC devices still support the legacy file
register multiply instruction (MULWF) with the “MUL{.B} f” instruction (described on page 323).
Supporting the legacy MULWF instruction has been accomplished by mapping the PRODH:PRODL
registers to the Working register pair W3:W2. This means that when “MUL{.B} f” is executed in
Word mode, the multiply generates a 32-bit product which is stored in W3:W2, where W3 has the
most significant word of the product and W2 has the least significant word of the product. When
“MUL{.B} f” is executed in Byte mode, the 16-bit product is stored in W2 and W3 is unaffected.
Examples of this instruction are shown in Example 4-17.

ADD RAM100 ; add RAM100 and WREG, store in RAM100
ASR RAM100, WREG ; shift RAM100 right, store in WREG
CLR.B WREG ; clear the WREG LS Byte
DEC RAM100, WREG ; decrement RAM100, store in WREG
MOV WREG, RAM100 ; move WREG to RAM100
SETM WREG ; set all bits in the WREG
XOR RAM100 ; XOR RAM100 and WREG, store in RAM100
© 2005-2018 Microchip Technology Inc. DS70000157G-page 81

16-Bit MCU and DSC Programmer’s Reference Manual
Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

4.11.3.3 MOVING DATA WITH WREG

The “MOV{.B} f {,WREG}” instruction (described on page 299) and “MOV{.B} WREG, f”
instruction (described on page 300) allow for byte or word data to be moved between file register
memory and the WREG (Working register, W0). These instructions provide equivalent
functionality to the legacy Microchip PIC MCU MOVF and MOVWF instructions.

The “MOV{.B} f {,WREG}” and “MOV{.B} WREG, f” instructions are the only MOV instructions
which support moves of byte data to and from file register memory. Example 4-18 shows several
MOV instruction examples using the WREG.

Example 4-18: Moving Data with WREG

MUL.B 0x100 ; (0x100)*WREG (byte mode), store to W2

Before Instruction:

W0 (WREG) = 0x7705
W2 = 0x1235
W3 = 0x1000
Data Memory 0x0100 = 0x1255

After Instruction:

W0 (WREG) = 0x7705
W2 = 0x01A9
W3 = 0x1000
Data Memory 0x0100 = 0x1255

MUL 0x100 ; (0x100)*WREG (word mode), store to W3:W2

Before Instruction:

W0 (WREG) = 0x7705
W2 = 0x1235
W3 = 0x1000
Data Memory 0x0100 = 0x1255

After Instruction:

W0 (WREG) = 0x7705
W2 = 0xDEA9
W3 = 0x0885
Data Memory 0x0100 = 0x1255

Note: When moving word data between file register memory and the Working register
array, the “MOV Wns, f” and “MOV f, Wnd” instructions allow any Working register
(W0:W15) to be used as the source or destination register, not just WREG.

MOV.B 0x1001, WREG ; move the byte stored at location 0x1001 to W0
MOV 0x1000, WREG ; move the word stored at location 0x1000 to W0
MOV.B WREG, TBLPAG ; move the byte stored at W0 to the TBLPAG register
MOV WREG, 0x804 ; move the word stored at W0 to location 0x804
DS70000157G-page 82 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.12 DSP DATA FORMATS (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

4.12.1 Integer and Fractional Data

The dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices support both integer and fractional
data types. Integer data is inherently represented as a signed two’s complement value, where
the Most Significant bit is defined as a sign bit. Generally speaking, the range of an N-bit two’s
complement integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data range is -32768 (0x8000)
to 32767 (0x7FFF), including ‘0’. For a 32-bit integer, the data range is -2,147,483,648
(0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

Fractional data is represented as a two’s complement number, where the Most Significant bit is
defined as a sign bit and the radix point is implied to lie just after the sign bit. This format is
commonly referred to as 1.15 (or Q15) format, where 1 is the number of bits used to represent
the integer portion of the number and 15 is the number of bits used to represent the fractional
portion. The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to
(1 – 21-N). For a 16-bit fraction, the 1.15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF),
including 0.0 and it has a precision of 3.05176x10-5. In Normal Saturation mode, the 32-bit
accumulators use a 1.31 format, which enhances the precision to 4.6566x10-10.

The dynamic range of the accumulators can be expanded by using the eight bits of the Upper
Accumulator register (ACCxU) as guard bits. Guard bits are used if the value stored in the accu-
mulator overflows beyond the 32nd bit and they are useful for implementing DSP algorithms. This
mode is enabled when the ACCSAT bit (CORCON<4>) is set to ‘1’ and it expands the accumu-
lators to 40 bits. The guard bits are also used when the accumulator saturation is disabled. The
accumulators then support an integer range of -5.498x1011 (0x80 0000 0000) to 5.498x1011

(0x7F FFFF FFFF). In Fractional mode, the guard bits of the accumulator do not modify the
location of the radix point and the 40-bit accumulators use a 9.31 fractional format. Note that all
fractional operation results are stored in the 40-bit accumulator, justified with a 1.31 radix point.
As in Integer mode, the guard bits merely increase the dynamic range of the accumulator. 9.31
fractions have a range of -256.0 (0x80 0000 0000) to (256.0 – 4.65661x10-10)
(0x7F FFFF FFFF). Table 4-10 identifies the range and precision of integers and fractions on the
dsPIC30F/33F/33E/33C devices for 16-bit, 32-bit and 40-bit registers.

It should be noted that, with the exception of DSP multiplies, the ALU operates identically on
integer and fractional data. Namely, an addition of two integers will yield the same result (binary
number) as the addition of two fractional numbers. The only difference is how the result is
interpreted by the user. However, multiplies performed by DSP operations are different. In these
instructions, data format selection is made by the IF bit (CORCON<0>) and it must be set
accordingly (‘0’ for Fractional mode, ‘1’ for Integer mode). This is required because of the implied
radix point used by dsPIC30F/33F/33E/33C fractional numbers. In Integer mode, multiplying two
16-bit integers produces a 32-bit integer result. However, multiplying two 1.15 values generates
a 2.30 result. Since the dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices use a 1.31 for-
mat for the accumulators, a DSP multiply in Fractional mode also includes a left shift of one bit
to keep the radix point properly aligned. This feature reduces the resolution of the DSP multiplier
to 2-30, but has no other effect on the computation (e.g., 0.5 x 0.5 = 0.25).

Table 4-10: dsPIC30F/33F/33E/33CData Ranges

Register Size Integer Range Fraction Range Fraction Resolution

16-bit -32768 to 32767 -1.0 to (1.0 – 2-15) 3.052 x 10-5

32-bit -2,147,483,648 to
 2,147,483,647

-1.0 to (1.0 – 2-31) 4.657 x 10-10

40-bit -549,755,813,888 to
 549,755,813,887

-256.0 to (256.0 – 2-31) 4.657 x 10-10
© 2005-2018 Microchip Technology Inc. DS70000157G-page 83

16-Bit MCU and DSC Programmer’s Reference Manual
4.12.2 Integer and Fractional Data Representation

Having a working knowledge of how integer and fractional data is represented on the dsPIC30F,
dsPIC33F, dsPIC33E and dsPIC33C is fundamental to working with the devices. Both integer
and fractional data treat the Most Significant bit as a sign bit, and the binary exponent decreases
by one as the bit position advances toward the Least Significant bit. The binary exponent for an
N-bit integer starts at (N-1) for the Most Significant bit and ends at ‘0’ for the Least Significant bit.
For an N-bit fraction, the binary exponent starts at ‘0’ for the Most Significant bit and ends at (1-N)
for the Least Significant bit (as shown in Figure 4-12 for a positive value and in Figure 4-13 for a
negative value).

Conversion between integer and fractional representations can be performed using simple
division and multiplication. To go from an N-bit integer to a fraction, divide the integer value by
2N-1. Similarly, to convert an N-bit fraction to an integer, multiply the fractional value by 2N-1.

Figure 4-12: Different Representations of 0x4001

Figure 4-13: Different Representations of 0xC002

Integer:

1.15 Fractional:

0x4001 = 214 + 20 = 16384 + 1 = 16385

0x4001 = 2-1 + 2-15 = 0.5 + .000030518 = 0.500030518

Implied Radix Point

0 1 0 0 0000 00 0 00 0 0 1

10 0 0 0000 00 0 00 0 0 1

-215 214 213 212 20

 2-15-20 . 2-1 2-2 2-3

Integer:

1.15 Fractional:

0xC002 = -215 + 214 + 21= -32768 + 16384 + 2 = -16382

0xC002 = -20 + 2-1 + 2-14 = -1.0 + 0.5 + 0.000061035 = -0.499938965

Implied Radix Point

1 1 0 0 0000 10 0 00 0 0 0

11 0 0 0000 10 0 00 0 0 0

-215 214 213 212 20

 2-15-20 . 2-1 2-2 2-3

DS70000157G-page 84 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.13 ACCUMULATOR USAGE (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

Accumulators A and B are utilized by DSP instructions to perform mathematical and shifting
operations. Since the accumulators are 40 bits wide, and the X and Y data paths are only 16 bits,
the method to load and store the accumulators must be understood.

Item A in Figure 4-14 shows that each 40-bit accumulator (ACCA and ACCB) consists of an 8-bit
upper register (ACCxU), a 16-bit high register (ACCxH) and a 16-bit low register (ACCxL). To
address the bus alignment requirement and provide the ability for 1.31 math, ACCxH is used as
a destination register for loading the accumulator (with the LAC instruction), and also as a source
register for storing the accumulator (with the SAC.R instruction). This is represented by Item B in
Figure 4-14, where the upper and lower portions of the accumulator are shaded. In reality, during
accumulator loads, ACCxL is zero backfilled and ACCxU is sign-extended to represent the sign
of the value loaded in ACCxH.

When normal (31-bit) saturation is enabled, DSP operations (such as ADD, MAC, MSC, etc.) solely
utilize ACCxH:ACCxL (Item C in Figure 4-14) and ACCxU is only used to maintain the sign of the
value stored in ACCxH:ACCxL. For instance, when an MPY instruction is executed, the result is
stored in ACCxH:ACCxL and the sign of the result is extended through ACCxU.

When super saturation is enabled, or when saturation is disabled, all registers of the accumulator
may be used (Item D in Figure 4-14) and the results of DSP operations are stored in
ACCxU:ACCxH:ACCxL. The benefit of ACCxU is that it increases the dynamic range of the
accumulator, as described in Section 4.12.1 “Integer and Fractional Data”. Refer to Table 4-10
to see the range of values which may be stored in the accumulator when in Normal and Super
Saturation modes.

Figure 4-14: Accumulator Alignment and Usage

Note: dsPIC33C devices provide double-word LAC.D and SAC.D instructions, which
allow both ACCxH and ACCxL to be loaded or stored in a single instruction.

A)

D)

C)

B)

ACCxU ACCxH ACCxL

A) 40-bit accumulator consists of ACCxU:ACCxH:ACCxL
B) Load and store operations
C) Operations in Normal Saturation mode
D) Operations in Super Saturation mode or with saturation disabled

31.30

Implied Radix Point (between bits 31 and 30)

015163239
© 2005-2018 Microchip Technology Inc. DS70000157G-page 85

16-Bit MCU and DSC Programmer’s Reference Manual
4.14 ACCUMULATOR ACCESS (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The six registers of Accumulator A and Accumulator B are memory-mapped like any other
Special Function Register. This feature allows them to be accessed with File Register or Indirect
Addressing, using any instruction which supports such addressing. However, it is recommended
that the DSP instructions, LAC, SAC and SAC.R, be used to load and store the accumulators,
since they provide sign-extension, shifting and rounding capabilities. LAC, SAC and SAC.R
instruction details are provided in Section 5. “Instruction Descriptions”.

4.15 DSP MAC INSTRUCTIONS (dsPIC30F, dsPIC33F, dsPIC33E AND
dsPIC33C DEVICES)

The DSP Multiply and Accumulate (MAC) operations are a special suite of instructions which
provide the most efficient use of the dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C architec-
tures. The DSP MAC instructions, shown in Table 4-11, utilize both the X and Y data paths of the
CPU core, which enables these instructions to perform the following operations all in one cycle:

• Two reads from data memory using prefetch Working registers (MAC Prefetches)

• Two updates to prefetch Working registers (MAC Prefetch Register Updates)

• One mathematical operation with an accumulator (MAC Operations)

In addition, four of the ten DSP MAC instructions are also capable of performing an operation with
one accumulator, while storing out the rounded contents of the alternate accumulator. This
feature is called accumulator Write-Back (WB) and it provides flexibility for the software
developer. For instance, the Accumulator WB may be used to run two algorithms concurrently,
or efficiently process complex numbers, among other things.

Table 4-11: DSP MAC Instructions

Note 1: For convenience, ACCAU and ACCBU are sign-extended to 16 bits. This provides
the flexibility to access these registers using either Byte or Word mode (when File
Register or Indirect Addressing is used).

2: The OA, OB, SA or SB bit cannot be set by writing overflowed values to the
memory-mapped accumulators using MOV instructions, as these Status bits are
only affected by DSP operations.

3: dsPIC33C devices provide double-word LAC.D and SAC.D instructions, which
allow both ACCxH and ACCxL to be loaded or stored in a single instruction.

Instruction Description Accumulator WB?

CLR Clear Accumulator Yes

ED Euclidean Distance (no accumulate) No

EDAC Euclidean Distance No

MAC Multiply and Accumulate Yes

MAC Square and Accumulate No

MOVSAC Move from X and Y Bus Yes

MPY Multiply to Accumulator No

MPY Square to Accumulator No

MPY.N Negative Multiply to Accumulator No

MSC Multiply and Subtract Yes
DS70000157G-page 86 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.15.1 MAC Prefetches

Prefetches (or data reads) are made using the Effective Address stored in the Working register.
The two prefetches from data memory must be specified using the Working register assignments
shown in Table 4-9. One read must occur from the X data bus using W8 or W9, and one read
must occur from the Y data bus using W10 or W11. The allowed destination registers for both
prefetches are W4-W7.

As shown in Table 4-3, one special addressing mode exists for the MAC class of instructions. This
mode is the Register Offset Addressing mode and utilizes W12. In this mode, the prefetch is
made using the Effective Address of the specified Working register, plus the 16-bit signed value
stored in W12. Register Offset Addressing may only be used in the X space with W9 and in the
Y space with W11.

4.15.2 MAC Prefetch Register Updates

After the MAC prefetches are made, the Effective Address stored in each prefetch Working register
may be modified. This feature enables efficient single-cycle processing for data stored sequentially
in X and Y memory. Since all DSP instructions execute in Word mode, only even numbered
updates may be made to the Effective Address stored in the Working register. Allowable address
modifications to each prefetch register are -6, -4, -2, 0 (no update), +2, +4 and +6. This means that
Effective Address updates may be made up to three words in either direction.

When the Register Offset Addressing mode is used, no update is made to the base prefetch
register (W9 or W11) or the offset register (W12).

4.15.3 MAC Operations

The mathematical operations performed by the MAC class of DSP instructions center around
multiplying the contents of two Working registers and either adding or storing the result to either
Accumulator A or Accumulator B. This is the operation of the MAC, MPY, MPY.N and MSC
instructions. Table 4-9 shows that W4-W7 must be used for data source operands in the MAC
class of instructions. W4-W7 may be combined in any fashion, and when the same Working
register is specified for both operands, a square or square and accumulate operation is
performed.

For the ED and EDAC instructions, the same multiplicand operand must be specified by the
instruction, because this is the definition of the euclidean distance operation. Another unique
feature about this instruction is that the values prefetched from X and Y memory are not actually
stored in W4-W7. Instead, only the difference of the prefetched data words is stored in W4-W7.

The two remaining MAC class instructions, CLR and MOVSAC, are useful for initiating or completing
a series of MAC or EDAC instructions and do not use the multiplier. CLR has the ability to clear
Accumulator A or B, prefetch two values from data memory and store the contents of the other
accumulator. Similarly, MOVSAC has the ability to prefetch two values from data memory and store
the contents of either accumulator.

4.15.4 MAC Write-Back

The Write-Back ability of the MAC class of DSP instructions facilitates efficient processing of
algorithms. This feature allows one mathematical operation to be performed with one
accumulator and the rounded contents of the other accumulator to be stored in the same cycle.
As indicated in Table 4-9, register W13 is assigned for performing the Write-Back and two
addressing modes are supported: Direct and Indirect with Post-Increment.

The CLR, MOVSAC and MSC instructions support accumulator Write-Back, while the ED, EDAC,
MPY and MPY.N instructions do not support accumulator Write-Back. The MAC instruction, which
multiplies two Working registers which are not the same, also supports accumulator Write-Back.
However, the square and accumulate MAC instruction does not support accumulator Write-Back
(see Table 4-11).
© 2005-2018 Microchip Technology Inc. DS70000157G-page 87

16-Bit MCU and DSC Programmer’s Reference Manual
4.15.5 MAC Syntax

The syntax of the MAC class of instructions can have several formats, which depend on the
instruction type and the operation it is performing, with respect to prefetches and accumulator
Write-Back. With the exception of the CLR and MOVSAC instructions, all MAC class instructions
must specify a target accumulator along with two multiplicands, as shown in Example 4-19.

Example 4-19: Base MAC Syntax

If a prefetch is used in the instruction, the assembler is capable of discriminating between the X
or Y data prefetch based on the register used for the Effective Address. [W8] or [W9] specifies
the X prefetch and [W10] or [W11] specifies the Y prefetch. Brackets around the Working register
are required in the syntax and they designate that Indirect Addressing is used to perform the
prefetch. When address modification is used, it must be specified using a minus-equals or
plus-equals “C”-like syntax (i.e., “[W8] – = 2” or “[W8] + = 6”). When Register Offset Addressing
is used for the prefetch, W12 is placed inside the brackets ([W9 + W12] for X prefetches and
[W11 + W12] for Y prefetches). Each prefetch operation must also specify a prefetch destination
register (W4-W7). In the instruction syntax, the destination register appears before the prefetch
register. Legal forms of prefetch are shown in Example 4-20.

Example 4-20: MAC Prefetch Syntax

Multiply W7*W7, Accumulate to ACCB

; MAC with no prefetch
MAC W4*W5, A

; MAC with no prefetch
MAC W7*W7, B

X([W8]+=2)W5

ACCA=ACCA+W5*W6

; MAC with X only prefetch

MAC W5*W6, A, [W8]+=2, W5

Y([W11+W12])W5

ACCB=ACCB+W5*W5

; MAC with Y only prefetch

MAC W5*W5, B, [W11+W12], W5

X([W9])W6

ACCB=ACCB+W6*W7

Y([W10]+=4)W7

; MAC with X/Y prefetch
MAC W6*W7, B, [W9], W6, [W10]+=4, W7
DS70000157G-page 88 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

If an accumulator Write-Back is used in the instruction, it is specified last. The Write-Back must
use the W13 register, and allowable forms for the Write-Back are “W13” for Direct Addressing
and “[W13] + = 2” for Indirect Addressing with Post-Increment. By definition, the accumulator not
used in the mathematical operation is stored, so the Write-Back accumulator is not specified in
the instruction. Legal forms of accumulator Write-Back (WB) are shown in Example 4-21.

Example 4-21: MAC Accumulator WB Syntax

Putting it all together, an MSC instruction which performs two prefetches and a Write-Back is
shown in Example 4-22.

Example 4-22: MSC Instruction with Two Prefetches and Accumulator Write-Back

ACCBW13

0ACCA

; CLR with direct WB of ACCB

CLR A, W13

ACCB [W13]+=2

ACCA=ACCA+W4*W5

; MAC with indirect WB of ACCB

MAC W4*W5, A [W13]+=2

Y([W10]+=2)W4

ACCB=ACCB+W4*W5

ACCA W13

; MAC with Y prefetch, direct WB of ACCA

MAC W4*W5, B, [W10]+=2, W4, W13

ACCB=ACCB-W6*W7

X([W8]+=2)W6

Y([W10]-=6)W7

ACCA[W13]+=2

; MSC with X/Y prefetch, indirect WB of ACCA

MSC W6*W7, B, [W8]+=2, W6, [W10]-=6, W7 [W13]+=2
© 2005-2018 Microchip Technology Inc. DS70000157G-page 89

16-Bit MCU and DSC Programmer’s Reference Manual
4.16 DSP ACCUMULATOR INSTRUCTIONS (dsPIC30F, dsPIC33F, dsPIC33E
AND dsPIC33C DEVICES)

The DSP accumulator instructions do not have prefetch or accumulator WB ability, but they do
provide the ability to add, negate, shift, load and store the contents of either 40-bit accumulator.
In addition, the ADD and SUB instructions allow the two accumulators to be added or subtracted
from each other. DSP accumulator instructions are shown in Table 4-12 and instruction details
are provided in Section 5. “Instruction Descriptions”.

Table 4-12: DSP Accumulator Instructions

4.17 SCALING DATA WITH THE FBCL INSTRUCTION (dsPIC30F, dsPIC33F,
dsPIC33E AND dsPIC33C DEVICES)

To minimize quantization errors that are associated with data processing using DSP instructions,
it is important to utilize the complete numerical result of the operations. This may require scaling
data up to avoid underflow (i.e., when processing data from a 12-bit ADC) or scaling data down
to avoid overflow (i.e., when sending data to a 10-bit DAC). The scaling, which must be
performed to minimize quantization error, depends on the dynamic range of the input data which
is operated on and the required dynamic range of the output data. At times, these conditions may
be known beforehand and fixed scaling may be employed. In other cases, scaling conditions may
not be fixed or known and then dynamic scaling must be used to process data.

The FBCL instruction (Find First Bit Change Left) can efficiently be used to perform dynamic
scaling, because it determines the exponent of a value. A fixed point or integer value’s exponent
represents the amount which the value may be shifted before overflowing. This information is
valuable, because it may be used to bring the data value to “full scale”, meaning that its numeric
representation utilizes all the bits of the register it is stored in.

The FBCL instruction determines the exponent of a word by detecting the first bit change, starting
from the value’s sign bit and working towards the LSB. Since the dsPIC DSC device’s barrel
shifter uses negative values to specify a left shift, the FBCL instruction returns the negated
exponent of a value. If the value is being scaled up, this allows the ensuing shift to be performed
immediately with the value returned by FBCL. Additionally, since the FBCL instruction only
operates on signed quantities, FBCL produces results in the range of -15:0. When the FBCL
instruction returns 0, it indicates that the value is already at full scale. When the instruction
returns -15, it indicates that the value cannot be scaled (as is the case with 0x0 and 0xFFFF).
Table 4-13 shows word data with various dynamic ranges, their exponents and the value after
scaling each data to maximize the dynamic range. Example 4-23 shows how the FBCL
instruction may be used for block processing.

Instruction Description Accumulator WB?

ADD Add Accumulators No

ADD 16-Bit Signed Accumulator Add No

LAC Load Accumulator No

LAC.D Load Accumulator Double Word No

NEG Negate Accumulator No

SAC Store Accumulator No

SAC.D Store Accumulator Double Word No

SAC.R Store Rounded Accumulator No

SFTAC Arithmetic Shift Accumulator by Literal No

SFTAC Arithmetic Shift Accumulator by (Wn) No

SUB Subtract Accumulators No
DS70000157G-page 90 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

Table 4-13: Scaling Examples

As a practical example, assume that block processing is performed on a sequence of data with
very low dynamic range stored in 1.15 fractional format. To minimize quantization errors, the data
may be scaled up to prevent any quantization loss which may occur as it is processed. The FBCL
instruction can be executed on the sample with the largest magnitude to determine the optimal
scaling value for processing the data. Note that scaling the data up is performed by left shifting
the data. This is demonstrated with the code snippet below.

Example 4-23: Scaling with FBCL

Word Value Exponent
Full-Scale Value

(Word Value << Exponent)

0x0001 14 0x4000

0x0002 13 0x4000

0x0004 12 0x4000

0x0100 6 0x4000

0x01FF 6 0x7FC0

0x0806 3 0x4030

0x2007 1 0x400E

0x4800 0 0x4800

0x7000 0 0x7000

0x8000 0 0x8000

0x900A 0 0x900A

0xE001 2 0x8004

0xFF07 7 0x8380

Note: For the word values, 0x0000 and 0xFFFF, the FBCL instruction returns -15.

; assume W0 contains the largest absolute value of the data block
; assume W4 points to the beginning of the data block
; assume the block of data contains BLOCK_SIZE words

; determine the exponent to use for scaling
FBCL W0, W2 ; store exponent in W2

; scale the entire data block before processing
DO #(BLOCK_SIZE-1), SCALE
LAC [W4], A ; move the next data sample to ACCA
SFTAC A, W2 ; shift ACCA by W2 bits

SCALE:
SAC A, [W4++] ; store scaled input (overwrite original)

; now process the data
; (processing block goes here)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 91

16-Bit MCU and DSC Programmer’s Reference Manual
4.18 DATA RANGE LIMIT INSTRUCTIONS (dsPIC33C DEVICES ONLY)

The dsPIC33C family provides special instructions that automatically limit the data in a W register
or an accumulator to lie within a user-specified numerical range. These include the FLIM, MAX,
MIN and MINZ instructions.

4.18.1 FLIM/FLIM.V

The FLIM instruction simultaneously compares a maximum and a minimum data limit value with
the specified W register (or data pointed to by the W register), and clamps the target data to the
user-specified limit if the limit is exceeded. SR Status bits are set accordingly for subsequent
signed branching. In the FLIM.V instruction, an additional W register is specified, in which the
limit test result (known as “limit excess”) value is loaded.

4.18.2 MAX/MAX.V

The MAX instruction compares a maximum data limit value (stored in a W register or the other
accumulator) with the target accumulator and clamps the target accumulator to the user-specified
limit if this upper limit is exceeded. SR Status bits are set accordingly for subsequent signed
branching. In the MAX.V instruction, an additional W register (or W register in Indirect Addressing
mode) is specified, in which the limit excess value is loaded.

4.18.3 MIN/MIN.V/MINZ

The MIN instruction compares a minimum data limit value (stored in a W register or the other
accumulator) with the target accumulator and clamps the target accumulator to the user-specified
limit if the data is smaller than this minimum limit. SR Status bits are set accordingly for subsequent
signed branching. In the MIN.V instruction, an additional W register (or W register in Indirect
Addressing mode) is specified, in which the limit excess value is loaded. The MINZ instruction is
simply a conditional version of the MIN instruction, which is executed only when Z = 1.
DS70000157G-page 92 © 2005-2018 Microchip Technology Inc.

Section 4. Instruction Set Details
In

stru
ctio

n
 S

e
t

D
e

ta
ils

4

4.19 NORMALIZING THE ACCUMULATOR WITH THE FBCL INSTRUCTION
(dsPIC30F, dsPIC33F, dsPIC33E AND dsPIC33C DEVICES)

The process of scaling a quantized value for its maximum dynamic range is known as
normalization (the data in the third column in Table 4-13 contains normalized data). Accumulator
normalization is a technique used to ensure that the accumulator is properly aligned before
storing data from the accumulator and the FBCL instruction facilitates this function.

The two 40-bit accumulators each have eight guard bits from the ACCxU register, which expands
the dynamic range of the accumulators from 1.31 to 9.31 when operating in Super Saturation
mode (see Section 4.12.1 “Integer and Fractional Data”). However, even in Super Saturation
mode, the Store Rounded Accumulator (SAC.R) instruction only stores 16-bit data (in 1.15 for-
mat) from ACCxH, as described in Section Figure 4-13: “Different Representations of
0xC002”. Under certain conditions, this may pose a problem.

Proper data alignment for storing the contents of the accumulator may be achieved by scaling
the accumulator down if ACCxU is in use or scaling the accumulator up if all of the ACCxH bits
are not being used. To perform such scaling, the FBCL instruction must operate on the ACCxU
byte and it must operate on the ACCxH word. If a shift is required, the ALU’s 40-bit shifter is
employed using the SFTAC instruction to perform the scaling. Example 4-24 contains a code
snippet for accumulator normalization.

Example 4-24: Normalizing with FBCL

4.20 NORMALIZING THE ACCUMULATOR WITH THE NORM INSTRUCTION
(dsPIC33C DEVICES ONLY)

The NORM instruction automatically normalizes the target accumulator to obtain the largest
fractional value possible without overflow. The target accumulator must contain signed fractional
data for the instruction result to be valid. It will shift the target accumulator right or left by as many
bits as required to normalize the data, keeping the sign consistent. The shift value is stored in a
destination address. The N Status bit reflects the direction of the accumulator shift.

If the accumulator cannot be normalized, the accumulator contents will not be affected.

Note: dsPIC33C devices provide a special NORM (normalize accumulator) instruction,
which allows an accumulator to be normalized in a single instruction, eliminating the
need to use the FBCL and SFTAC instructions for this purpose.

; assume an operation in ACCA has just completed (SR intact)
; assume the processor is in super saturation mode
; assume ACCAH is defined to be the address of ACCAH (0x24)

MOV #ACCAH, W5 ; W5 points to ACCAH
BRA OA, FBCL_GUARD ; if overflow we right shift

FBCL_HI:
FBCL [W5], W0 ; extract exponent for left shift
BRA SHIFT_ACC ; branch to the shift

FBCL_GUARD:
FBCL [++W5], W0 ; extract exponent for right shift
ADD.B W0, #15, W0 ; adjust the sign for right shift

SHIFT_ACC:
SFTAC A, W0 ; shift ACCA to normalize
© 2005-2018 Microchip Technology Inc. DS70000157G-page 93

16-Bit MCU and DSC Programmer’s Reference Manual
4.21 EXTENDED PRECISION ARITHMETIC USING MIXED-SIGN
MULTIPLICATIONS (dsPIC33E AND dsPIC33C ONLY)

Many DSP algorithms utilize extended precision arithmetic operations (operations with 32-bit or
64-bit operands and results) to enhance the resolution and accuracy of computations. These can
be implemented using 16-bit signed or unsigned multiplications; however, this would require
some additional processing and shifting of the data to obtain the correct results. To enable such
extended precision algorithms to be computed faster, dsPIC33E devices support an
optional implicit Mixed-Sign Multiplication mode, which is selected by setting US<1:0>
(CORCON<13:12>) = 10.

In this mode, mixed-sign (unsigned x signed and signed x unsigned) multiplications can be
performed without the need to dynamically reconfigure the US<1:0> bits and shift data to account
for the difference in operand formats. Moreover, signed x signed and unsigned x unsigned mul-
tiplications can also be performed without changing the multiplication mode. Each input operand
is implicitly treated as an unsigned number if the Working register being used to specify the
operand is either W4 or W6. Similarly, an operand is treated as a signed number if the register
used is either W5 or W7. The DSP engine selects the type of multiplication to be performed
based on the operand registers used, thereby eliminating the need for the user software to
modify the US<1:0> bits.

The execution time reductions provided by the implicit mixed-sign multiplication feature is
illustrated in the following code example, where the instruction cycle count for performing a 32-bit
multiplication is reduced from seven cycles to four cycles when the Mixed-Sign Multiplication
mode is enabled.

Example 4-25: 32-Bit Signed Multiplication Using Implicit Mixed-Sign Mode

Besides DSP instructions, MCU Multiplication (MUL) instructions can also utilize Accumulator A
or Accumulator B as a result destination, which enables faster extended precision arithmetic,
even when not using DSP multiplication instructions such as MPY or MAC.

Case A: Mixed-Sign Multiplication Mode Not Enabled

MUL.SU W5, W6, W0 ; Word1 (signed) x Word2 (unsigned)
MUL.US W4, W7, W2 ; Word0 (unsigned) x Word3 (signed)
CLR B ; Clear Accumulator B
ADD W1, B
ADD W3, B
SFTAC B, #15 ; Shift right by 15 bits to align for Q31 format
MAC W5*W7, B ; Word1 (signed) x Word 3 (signed)

Case B: Mixed-Sign Multiplication Mode Enabled

MPY W5*W6, B ; Word1 (signed) x Word2 (unsigned)
MAC W4*W7, B ; Word0 (unsigned) x Word3 (signed)
SFTAC B, #15 ; Shift right by 15 bits to align for Q31 format
MAC W5*W7, B ; Word1 (signed) x Word 3 (signed)
DS70000157G-page 94 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In
stru

ctio
n

D

esc
rip

tio
n

s

5

HIGHLIGHTS

This section of the manual contains the following major topics:

5.1 Instruction Symbols... 96

5.2 Instruction Encoding Field Descriptors Introduction.. 96

5.3 Instruction Description Example ... 101

5.4 Instruction Descriptions... 102
© 2005-2018 Microchip Technology Inc. DS70000157G-page 95

16-Bit MCU and DSC Programmer’s Reference Manual
5.1 INSTRUCTION SYMBOLS

All the symbols used in Section 5.4 “Instruction Descriptions” are listed in Table 1-2.

5.2 INSTRUCTION ENCODING FIELD DESCRIPTORS INTRODUCTION

All instruction encoding field descriptors used in Section 5.4 “Instruction Descriptions” are
shown in Table 5-2 through Table 5-15.

Table 5-1: Instruction Encoding Field Descriptors

Field Description

A(1) Accumulator selection bit: 0 = ACCA; 1 = ACCB

aa(1) Accumulator Write-Back mode (see Table 5-13)

B Byte mode selection bit: 0 = word operation; 1 = byte operation

bbbb 4-bit bit position select: 0000 = LSB; 1111 = MSB

D Destination address bit: 0 = result stored in WREG; 1 = result stored in file register

dddd Wd Destination register select: 0000 = W0; 1111 = W15

f ffff ffff ffff 13-bit register file address (0x0000 to 0x1FFF)

fff ffff ffff ffff 15-bit register file word address – implied 0 LSB (0x0000 to 0xFFFE)

ffff ffff ffff ffff 16-bit register file byte address (0x0000 to 0xFFFF)

ggg Register Offset Addressing mode for Ws Source register (see Table 5-5)

hhh Register Offset Addressing mode for Wd Destination register (see Table 5-6)

iiii(1) Prefetch X operation (see Table 5-7)

jjjj(1) Prefetch Y operation (see Table 5-9)

k 1-bit literal field, constant data or expression

kkkk 4-bit literal field, constant data or expression

kk kkkk 6-bit literal field, constant data or expression

kkkk kkkk 8-bit literal field, constant data or expression

kk kkkk kkkk 10-bit literal field, constant data or expression

kk kkkk kkkk kkkk 14-bit literal field, constant data or expression

kkkk kkkk kkkk kkkk 16-bit literal field, constant data or expression

mm Multiplier source select with same Working registers (see Table 5-11)

mmm Multiplier source select with different Working registers (see Table 5-12)

nnnn nnnn nnnn nnn0
 nnn nnnn

23-bit program address for CALL and GOTO instructions

nnnn nnnn nnnn nnnn 16-bit program offset field for relative branch/call instructions

ppp Addressing mode for Ws Source register (see Table 5-2)

qqq Addressing mode for Wd Destination register (see Table 5-3)

rrrr Barrel shift count

ssss Ws Source register select: 0000 = W0; 1111 = W15

tttt Dividend select, most significant word

vvvv Dividend select, least significant word

W Double-Word mode selection bit:
0 = word operation;
1 = double-word operation

wwww Wb Base register select: 0000 = W0; 1111 = W15

xx(1) Prefetch X destination (see Table 5-8)

xxxx xxxx xxxx xxxx 16-bit unused field (don’t care)

yy(1) Prefetch Y destination (see Table 5-10)

z Bit test destination: 0 = C flag bit; 1 = Z flag bit

Note 1: This field is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
DS70000157G-page 96 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Table 5-2: Addressing Modes for Ws Source Register

Table 5-3: Addressing Modes for Wd Destination Register

Table 5-4: Destination Addressing Modes for MCU Multiplications

ppp Addressing Mode Source Operand

000 Register Direct Ws

001 Indirect [Ws]

010 Indirect with Post-Decrement [Ws--]

011 Indirect with Post-Increment [Ws++]

100 Indirect with Pre-Decrement [--Ws]

101 Indirect with Pre-Increment [++Ws]

11x Unused

qqq Addressing Mode Destination Operand

000 Register Direct Wd

001 Indirect [Wd]

010 Indirect with Post-Decrement [Wd--]

011 Indirect with Post-Increment [Wd++]

100 Indirect with Pre-Decrement [--Wd]

101 Indirect with Pre-Increment [++Wd]

11x Unused (an attempt to use this addressing mode will force a RESET instruction)

dddd Destination

0000 W1:W0

0001 W0

0010 W3:W2

0011 W2

0100 W5:W4

0101 W4

0110 W7:W6

0111 W6

1000 W9:W8

1001 W8

1010 W11:W10

1011 W10

1100 W13:W12

1101 W12

1110 ACCA<39:0>

1111 ACCB<39:0>
© 2005-2018 Microchip Technology Inc. DS70000157G-page 97

16-Bit MCU and DSC Programmer’s Reference Manual
Table 5-5: Offset Addressing Modes for Ws Source Register (with Register Offset)

Table 5-6: Offset Addressing Modes for Wd Destination Register
(with Register Offset)

Table 5-7: X Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)

Table 5-8: X Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E,
dsPIC33C)

ggg Addressing Mode Source Operand

000 Register Direct Ws

001 Indirect [Ws]

010 Indirect with Post-Decrement [Ws--]

011 Indirect with Post-Increment [Ws++]

100 Indirect with Pre-Decrement [--Ws]

101 Indirect with Pre-Increment [++Ws]

11x Indirect with Register Offset [Ws+Wb]

hhh Addressing Mode Source Operand

000 Register Direct Wd

001 Indirect [Wd]

010 Indirect with Post-Decrement [Wd--]

011 Indirect with Post-Increment [Wd++]

100 Indirect with Pre-Decrement [--Wd]

101 Indirect with Pre-Increment [++Wd]

11x Indirect with Register Offset [Wd+Wb]

iiii Operation

0000 Wxd = [W8]

0001 Wxd = [W8], W8 = W8 + 2

0010 Wxd = [W8], W8 = W8 + 4

0011 Wxd = [W8], W8 = W8 + 6

0100 No Prefetch for X Data Space

0101 Wxd = [W8], W8 = W8 – 6

0110 Wxd = [W8], W8 = W8 – 4

0111 Wxd = [W8], W8 = W8 – 2

1000 Wxd = [W9]

1001 Wxd = [W9], W9 = W9 + 2

1010 Wxd = [W9], W9 = W9 + 4

1011 Wxd = [W9], W9 = W9 + 6

1100 Wxd = [W9 + W12]

1101 Wxd = [W9], W9 = W9 – 6

1110 Wxd = [W9], W9 = W9 – 4

1111 Wxd = [W9], W9 = W9 – 2

xx Wxd

00 W4

01 W5

10 W6

11 W7
DS70000157G-page 98 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Table 5-10: Y Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E,
dsPIC33C)

Table 5-11: MAC or MPY Source Operands – Same Working Register (dsPIC30F,
dsPIC33F, dsPIC33E, dsPIC33C)

Table 5-12: MAC or MPY Source Operands – Different Working Register (dsPIC30F,
dsPIC33F, dsPIC33E, dsPIC33C)

Table 5-9: Y Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E,
dsPIC33C)

jjjj Operation

0000 Wyd = [W10]

0001 Wyd = [W10], W10 = W10 + 2

0010 Wyd = [W10], W10 = W10 + 4

0011 Wyd = [W10], W10 = W10 + 6

0100 No Prefetch for Y Data Space

0101 Wyd = [W10], W10 = W10 – 6

0110 Wyd = [W10], W10 = W10 – 4

0111 Wyd = [W10], W10 = W10 – 2

1000 Wyd = [W11]

1001 Wyd = [W11], W11 = W11 + 2

1010 Wyd = [W11], W11 = W11 + 4

1011 Wyd = [W11], W11 = W11 + 6

1100 Wyd = [W11 + W12]

yy Wyd

00 W4

01 W5

10 W6

11 W7

mm Multiplicands

00 W4 * W4

01 W5 * W5

10 W6 * W6

11 W7 * W7

mmm Multiplicands

000 W4 * W5

001 W4 * W6

010 W4 * W7

011 Invalid

100 W5 * W6

101 W5 * W7

110 W6 * W7

111 Invalid
© 2005-2018 Microchip Technology Inc. DS70000157G-page 99

16-Bit MCU and DSC Programmer’s Reference Manual
Table 5-13: MAC Accumulator Write-Back Selection (dsPIC30F, dsPIC33F, dsPIC33E
and dsPIC33C)

Table 5-14: MOVPAG Destination Selection (dsPIC33E, dsPIC33C and PIC24E)

Table 5-15: Accumulator Selection (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C)

aa Write-Back Selection

00 W13 = Other Accumulator (Direct Addressing)

01 [W13] + = 2 = Other Accumulator (Indirect Addressing with Post-Increment)

10 No Write-Back

11 Invalid

PP Target Page Register

00 DSRPAG

01 DSWPAG

10 TBLPAG

11 Invalid (results in Illegal Opcode Reset) – do not use

A Target Accumulator

0 Accumulator A

1 Accumulator B
DS70000157G-page 100 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

5.3 INSTRUCTION DESCRIPTION EXAMPLE

The example description below is for the fictitious instruction, FOO. The following example
instruction was created to demonstrate how the table fields (syntax, operands, operation, etc.)
are used to describe the instructions presented in Section 5.4 “Instruction Descriptions”.

FOO The Header field summarizes what the instruction does

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Cells marked with an ‘X’ indicate the instruction is implemented for that device family.

Syntax: The Syntax field consists of an optional label, the instruction mnemonic, any optional
extensions which exist for the instruction and the operands for the instruction. Most
instructions support more than one operand variant to support the various addressing
modes. In these circumstances, all possible instruction operands are listed beneath each
other and are enclosed in braces.

Operands: The Operands field describes the set of values which each of the operands may take.
Operands may be accumulator registers, file registers, literal constants (signed or
unsigned) or Working registers.

Operation: The Operation field summarizes the operation performed by the instruction.

Status Affected: The Status Affected field describes which bits of the STATUS Register are affected by the
instruction. Status bits are listed by bit position in descending order.

Encoding: The Encoding field shows how the instruction is bit encoded. Individual bit fields are
explained in the Description field and complete encoding details are provided in
Table 5.2.

Description: The Description field describes in detail the operation performed by the instruction. A key
for the encoding bits is also provided.

Words: The Words field contains the number of program words that are used to store the
instruction in memory.

Cycles: The Cycles field contains the number of instruction cycles that are required to execute the
instruction.

Examples: The Examples field contains examples that demonstrate how the instruction operates.
“Before” and “After” register snapshots are provided, which allow the user to clearly
understand what operation the instruction performs.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 101

16-Bit MCU and DSC Programmer’s Reference Manual
5.4 INSTRUCTION DESCRIPTIONS

ADD Add f to WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADD{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) + (WREG) destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0100 0BDf ffff ffff ffff

Description: Add the contents of the default Working register WREG to the contents of the file
register and place the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is stored in
WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register, W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADD.B RAM100 ; Add WREG to RAM100 (Byte mode)

Before
Instruction

After
Instruction

WREG CC80 WREG CC80

 RAM100 FFC0 RAM100 FF40

SR 0000 SR 0005 (OV, C = 1)

Example 2: ADD RAM200, WREG ; Add RAM200 to WREG (Word mode)

Before
Instruction

After
Instruction

WREG CC80 WREG CC40

 RAM200 FFC0 RAM200 FFC0

SR 0000 SR 0001 (C = 1)
DS70000157G-page 102 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ADD Add Literal to Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADD{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: lit10 + (Wn) Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0000 0Bkk kkkk kkkk dddd

Description: Add the 10-bit unsigned literal operand to the contents of the Working register Wn and
place the result back into the Working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but it
is not required.

2: For byte operations, the literal must be specified as an unsigned value [0:255].
See Section 4.6 “Using 10-Bit Literal Operands” for information on using
10-bit literal operands in Byte mode.

Words: 1

Cycles: 1

Example 1: ADD.B #0xFF, W7 ; Add -1 to W7 (Byte mode)

Before
Instruction

After
Instruction

W7 12C0 W7 12BF

SR 0000 SR 0009 (N, C = 1)

Example 2: ADD #0xFF, W1 ; Add 255 to W1 (Word mode)

Before
Instruction

After
Instruction

W1 12C0 W1 13BF

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 103

16-Bit MCU and DSC Programmer’s Reference Manual

ADD Add Wb to Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADD{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: (Wb) + lit5 Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 0www wBqq qddd d11k kkkk

Description: Add the contents of the base register Wb to the 5-bit unsigned short literal operand and
place the result in the destination register Wd. Register Direct Addressing must be used
for Wb. Either Register Direct or Indirect Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1

Example 1: ADD.B W0, #0x1F, W7 ; Add W0 and 31 (Byte mode)
; Store the result in W7

Before
Instruction

After
Instruction

W0 2290 W0 2290

W7 12C0 W7 12AF

SR 0000 SR 0008 (N = 1)

Example 2: ADD W3, #0x6, [--W4] ; Add W3 and 6 (Word mode)
; Store the result in [--W4]

Before
Instruction

After
Instruction

W3 6006 W3 6006

W4 1000 W4 0FFE

Data 0FFE DDEE Data 0FFE 600C

Data 1000 DDEE Data 1000 DDEE

SR 0000 SR 0000
DS70000157G-page 104 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ADD Add Wb to Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADD{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Wb) + (Ws) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 0www wBqq qddd dppp ssss

Description: Add the contents of the source register Ws and the contents of the base register Wb,
and place the result in the destination register Wd. Register Direct Addressing must be
used for Wb. Either Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADD.B W5, W6, W7 ; Add W5 to W6, store result in W7
; (Byte mode)

Before
Instruction

After
Instruction

W5 AB00 W5 AB00

W6 0030 W6 0030

W7 FFFF W7 FF30

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 105

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: ADD W5, W6, W7 ; Add W5 to W6, store result in W7
; (Word mode)

Before
Instruction

After
Instruction

W5 AB00 W5 AB00

W6 0030 W6 0030

W7 FFFF W7 AB30

SR 0000 SR 0008 (N = 1)
DS70000157G-page 106 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ADD Add Accumulators

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} ADD Acc

Operands: Acc [A,B]

Operation: If (Acc = A):
(ACCA) + (ACCB)  ACCA

Else:
(ACCA) + (ACCB)  ACCB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1011 A000 0000 0000 0000

Description: Add the contents of Accumulator A to the contents of Accumulator B and place the
result in the selected accumulator. This instruction performs a 40-bit addition.

The ‘A’ bit specifies the destination accumulator.

Words: 1

Cycles: 1

Example 1: ADD A ; Add ACCB to ACCA

Before
Instruction

After
Instruction

ACCA 00 0022 3300 ACCA 00 1855 7858

ACCB 00 1833 4558 ACCB 00 1833 4558

SR 0000 SR 0000

Example 2: ADD B ; Add ACCA to ACCB
; Assume Super Saturation mode enabled
; (ACCSAT = 1, SATA = 1, SATB = 1)

Before
Instruction

After
Instruction

ACCA 00 E111 2222 ACCA 00 E111 2222

ACCB 00 7654 3210 ACCB 01 5765 5432

SR 0000 SR 4800 (OB, OAB = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 107

16-Bit MCU and DSC Programmer’s Reference Manual
ADD 16-Bit Signed Add to Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} ADD Ws, {#Slit4,} Acc

[Ws],

[Ws++],

[Ws--],

[--Ws],

[++Ws],

[Ws+Wb],

Operands: Ws [W0 ... W15]
Wb [W0 ... W15]
Slit4 [-8 ... +7]
Acc [A,B]

Operation: ShiftSlit4(Extend(Ws)) + (Acc)  Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1001 Awww wrrr rggg ssss

Description: Add a 16-bit value specified by the source Working register to the most significant word of
the selected accumulator. The source operand may specify the direct contents of a
Working register or an Effective Address. The value specified is added to the most
significant word of the accumulator by sign-extending and zero backfilling the source
operand prior to the operation. The value added to the accumulator may also be shifted
by a 4-bit signed literal before the addition is made.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional shift.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits specify the source register Ws.

Note: Positive values of operand Slit4 represent an arithmetic shift right and negative
values of operand Slit4 represent an arithmetic shift left. The contents of the
source register are not affected by Slit4.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADD W0, #2, A ; Add W0 right-shifted by 2 to ACCA

Before
Instruction

After
Instruction

W0 8000 W0 8000

ACCA 00 7000 0000 ACCA 00 5000 0000

SR 0000 SR 0000
DS70000157G-page 108 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: ADD [W5++], A ; Add the effective value of W5 to ACCA
; Post-increment W5

Before
Instruction

After
Instruction

W5 2000 W5 2002

ACCA 00 0067 2345 ACCA 00 5067 2345

Data 2000 5000 Data 2000 5000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 109

16-Bit MCU and DSC Programmer’s Reference Manual

ADDC Add f to WREG with Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADDC{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) + (WREG) + (C) destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0100 1BDf ffff ffff ffff

Description: Add the contents of the default Working register WREG, the contents of the file
register and the Carry bit, and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is specified, the result
is stored in WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: ADDC.B RAM100 ; Add WREG and C bit to RAM100
; (Byte mode)

Before
Instruction

After
Instruction

WREG CC60 WREG CC60

 RAM100 8006 RAM100 8067

SR 0001 (C = 1) SR 0000

Example 2: ADDC RAM200, WREG ; Add RAM200 and C bit to the WREG
; (Word mode)

Before
Instruction

After
Instruction

WREG 5600 WREG 8A01

 RAM200 3400 RAM200 3400

SR 0001 (C = 1) SR 000C (N, OV = 1)
DS70000157G-page 110 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ADDC Add Literal to Wn with Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADDC{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: lit10 + (Wn) + (C) Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0000 1Bkk kkkk kkkk dddd

Description: Add the 10-bit unsigned literal operand, the contents of the Working register Wn and
the Carry bit, and place the result back into the Working register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for information
on using 10-bit literal operands in Byte mode.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1

Example 1: ADDC.B #0xFF, W7 ; Add -1 and C bit to W7 (Byte mode)

Before
Instruction

After
Instruction

W7 12C0 W7 12BF

SR 0000 (C = 0) SR 0009 (N, C = 1)

Example 2: ADDC #0xFF, W1 ; Add 255 and C bit to W1 (Word mode)

Before
Instruction

After
Instruction

W1 12C0 W1 13C0

SR 0001 (C = 1) SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 111

16-Bit MCU and DSC Programmer’s Reference Manual

ADDC Add Wb to Short Literal with Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADDC{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: (Wb) + lit5 + (C) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 1www wBqq qddd d11k kkkk

Description: Add the contents of the base register Wb, the 5-bit unsigned short literal operand and the
Carry bit, and place the result in the destination register Wd. Register Direct Addressing
must be used for Wb. Register Direct or Indirect Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1

Example 1: ADDC.B W0, #0x1F, [W7] ; Add W0, 31 and C bit (Byte mode)
; Store the result in [W7]

Before
Instruction

After
Instruction

W0 CC80 W0 CC80

W7 12C0 W7 12C0

Data 12C0 B000 Data 12C0 B09F

SR 0000 (C = 0) SR 0008 (N = 1)
DS70000157G-page 112 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: ADDC W3, #0x6, [--W4] ; Add W3, 6 and C bit (Word mode)
; Store the result in [--W4]

Before
Instruction

After
Instruction

W3 6006 W3 6006

W4 1000 W4 0FFE

Data 0FFE DDEE Data 0FFE 600D

Data 1000 DDEE Data 1000
SR

DDEE

SR 0001 (C = 1) 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 113

16-Bit MCU and DSC Programmer’s Reference Manual

ADDC Add Wb to Ws with Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ADDC{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Wb) + (Ws) + (C) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0100 1www wBqq qddd dppp ssss

Description: Add the contents of the source register Ws, the contents of the base register Wb and
the Carry bit, and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may be
used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 114 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: ADDC.B W0,[W1++],[W2++] ; Add W0, [W1] and C bit (Byte mode)
; Store the result in [W2]
; Post-increment W1, W2

Before
Instruction

After
Instruction

W0 CC20 W0 CC20

W1 0800 W1 0801

W2 1000 W2 1001

Data 0800 AB25 Data 0800 AB25

Data 1000 FFFF Data 1000 FF46

SR 0001 (C = 1) SR 0000

Example 2: ADDC W3,[W2++],[W1++] ; Add W3, [W2] and C bit (Word mode)
; Store the result in [W1]
; Post-increment W1, W2

Before
Instruction

After
Instruction

W1 1000 W1 1002

W2 2000 W2 2002

W3 0180 W3 0180

Data 1000 8000 Data 1000 2681

Data 2000 2500 Data 2000 2500

SR 0001 (C = 1) SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 115

16-Bit MCU and DSC Programmer’s Reference Manual

AND AND f and WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} AND{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f).AND.(WREG) destination designated by D

Status Affected: N, Z

Encoding: 1011 0110 0BDf ffff ffff ffff

Description: Compute the logical AND operation of the contents of the default Working register
WREG and the contents of the file register, and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: AND.B RAM100 ; AND WREG to RAM100 (Byte mode)

Before
Instruction

After
Instruction

WREG CC80 WREG CC80

 RAM100 FFC0 RAM100 FF80

SR 0000 SR 0008 (N = 1)

Example 2: AND RAM200, WREG ; AND RAM200 to WREG (Word mode)

Before
Instruction

After
Instruction

WREG CC80 WREG 0080

 RAM200 12C0 RAM200 12C0

SR 0000 SR 0000
DS70000157G-page 116 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

AND AND Literal and Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} AND{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: lit10.AND.(Wn) Wn

Status Affected: N, Z

Encoding: 1011 0010 0Bkk kkkk kkkk dddd

Description: Compute the logical AND operation of the 10-bit literal operand and the contents of
the Working register Wn, and place the result back into the Working register Wn.
Register Direct Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for information
on using 10-bit literal operands in Byte mode.

Words: 1

Cycles: 1

Example 1: AND.B #0x83, W7 ; AND 0x83 to W7 (Byte mode)

Before
Instruction

After
Instruction

W7 12C0 W7 1280

SR 0000 SR 0008 (N = 1)

Example 2: AND #0x333, W1 ; AND 0x333 to W1 (Word mode)

Before
Instruction

After
Instruction

W1 12D0 W1 0210

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 117

16-Bit MCU and DSC Programmer’s Reference Manual

AND AND Wb and Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} AND{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: (Wb).AND.lit5 Wd

Status Affected: N, Z

Encoding: 0110 0www wBqq qddd d11k kkkk

Description: Compute the logical AND operation of the contents of the base register Wb and the
5-bit literal, and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: AND.B W0,#0x3,[W1++] ; AND W0 and 0x3 (Byte mode)
; Store to [W1]
; Post-increment W1

Before
Instruction

After
Instruction

W0 23A5 W0 23A5

W1 2211 W1 2212

 Data 2210 9999 Data 2210 0199

SR 0000 SR 0000

Example 2: AND W0,#0x1F,W1 ; AND W0 and 0x1F (Word mode)
; Store to W1

Before
Instruction

After
Instruction

W0 6723 W0 6723

W1 7878 W1 0003

SR 0000 SR 0000
DS70000157G-page 118 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

AND AND Wb and Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} AND{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Wb).AND.(Ws) Wd

Status Affected: N, Z

Encoding: 0110 0www wBqq qddd dppp ssss

Description: Compute the logical AND operation of the contents of the source register Ws and the
contents of the base register Wb, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: AND.B W0, W1 [W2++] ; AND W0 and W1, and
; store to [W2] (Byte mode)
; Post-increment W2

Before
Instruction

After
Instruction

W0 AA55 W0 AA55

W1 2211 W1 2211

W2 1001 W2 1002

 Data 1000 FFFF Data 1000 11FF

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 119

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: AND W0, [W1++], W2 ; AND W0 and [W1], and
; store to W2 (Word mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 AA55 W0 AA55

W1 1000 W1 1002

W2 55AA W2 2214

 Data 1000 2634 Data 1000 2634

SR 0000 SR 0000
DS70000157G-page 120 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ASR Arithmetic Shift Right f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ASR{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: For Byte Operation:
 (f<7>)  Dest<7>
 (f<7>)  Dest<6>
 (f<6:1>)  Dest<5:0>
 (f<0>)  C
For Word Operation:
 (f<15>)  Dest<15>
 (f<15>)  Dest<14>
 (f<14:1>)  Dest<13:0>
 (f<0>)  C

Status Affected: N, Z, C

Encoding: 1101 0101 1BDf ffff ffff ffff

Description: Shift the contents of the file register one bit to the right and place the result in the
destination register. The Least Significant bit of the file register is shifted into the Carry
bit of the STATUS Register. After the shift is performed, the result is sign-extended. The
optional WREG operand determines the destination register. If WREG is specified, the
result is stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C

Example 1: ASR.B RAM400, WREG ; ASR RAM400 and store to WREG
; (Byte mode)

Before
Instruction

After
Instruction

WREG 0600 WREG 0611

RAM400 0823 RAM400 0823

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 121

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: ASR RAM200 ; ASR RAM200 (Word mode)

Before
Instruction

After
Instruction

RAM200 8009 RAM200 C004

SR 0000 SR 0009 (N, C = 1)
DS70000157G-page 122 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ASR Arithmetic Shift Right Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ASR{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
 (Ws<7>)  Wd<7>
 (Ws<7>)  Wd<6>
 (Ws<6:1>)  Wd<5:0>
 (Ws<0>)  C

For Word Operation:
 (Ws<15>)  Wd<15>
 (Ws<15>)  Wd<14>
 (Ws<14:1>)  Wd<13:0>
 (Ws<0>)  C

Status Affected: N, Z, C

Encoding: 1101 0001 1Bqq qddd dppp ssss

Description: Shift the contents of the source register Ws one bit to the right and place the result in
the destination register Wd. The Least Significant bit of Ws is shifted into the Carry bit
of the STATUS Register. After the shift is performed, the result is sign-extended. Either
Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C

© 2005-2018 Microchip Technology Inc. DS70000157G-page 123

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: ASR.B [W0++], [W1++] ; ASR [W0] and store to [W1] (Byte mode)
; Post-increment W0 and W1

Before
Instruction

After
Instruction

W0 0600 W0 0601

W1 0801 W1 0802

Data 600 2366 Data 600 2366

 Data 800 FFC0 Data 800 33C0

SR 0000 SR 0000

Example 2: ASR W12, W13 ; ASR W12 and store to W13 (Word mode)

Before
Instruction

After
Instruction

W12 AB01 W12 AB01

W13 0322 W13 D580

SR 0000 SR 0009 (N, C = 1)
DS70000157G-page 124 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ASR Arithmetic Shift Right by Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ASR Wb, #lit4, Wnd

Operands: Wb [W0 ... W15]
lit4 [0 ... 15]
Wnd [W0 ... W15]

Operation: lit4<3:0> Shift_Val
Wb<15> Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 1www wddd d100 kkkk

Description: Arithmetic shift right the contents of the source register Wb by the 4-bit unsigned
literal and store the result in the destination register Wnd. After the shift is performed,
the result is sign-extended. Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1: ASR W0, #0x4, W1 ; ASR W0 by 4 and store to W1

Before
Instruction

After
Instruction

W0 060F W0 060F

W1 1234 W1 0060

SR 0000 SR 0000

Example 2: ASR W0, #0x6, W1 ; ASR W0 by 6 and store to W1

Before
Instruction

After
Instruction

W0 80FF W0 80FF

W1 0060 W1 FE03

SR 0000 SR 0008 (N = 1)

Example 3: ASR W0, #0xF, W1 ; ASR W0 by 15 and store to W1

Before
Instruction

After
Instruction

W0 70FF W0 70FF

W1 CC26 W1 0000

SR 0000 SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 125

16-Bit MCU and DSC Programmer’s Reference Manual

ASR Arithmetic Shift Right by Wns

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ASR Wb, Wns, Wnd

Operands: Wb [W0 ... W15]
Wns [W0 ...W15]
Wnd [W0 ... W15]

Operation: Wns<3:0> Shift_Val
Wb<15> Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val> Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 1www wddd d000 ssss

Description: Arithmetic shift right the contents of the source register Wb by the 4 Least Significant
bits of Wns (up to 15 positions) and store the result in the destination register Wnd.
After the shift is performed, the result is sign-extended. Direct Addressing must be used
for Wb, Wns and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: If Wns is greater than 15, Wnd = 0x0 if Wb is positive and Wnd = 0xFFFF if
Wb is negative.

Words: 1

Cycles: 1

Example 1: ASR W0, W5, W6 ; ASR W0 by W5 and store to W6

Before
Instruction

After
Instruction

W0 80FF W0 80FF

W5 0004 W5 0004

W6 2633 W6 F80F

SR 0000 SR 0000

Example 2: ASR W0, W5, W6 ; ASR W0 by W5 and store to W6

Before
Instruction

After
Instruction

W0 6688 W0 6688

W5 000A W5 000A

W6 FF00 W6 0019

SR 0000 SR 0000

Example 3: ASR W11, W12, W13 ; ASR W11 by W12 and store to W13

Before
Instruction

After
Instruction

W11 8765 W11 8765

W12 88E4 W12 88E4

W13 A5A5 W13 F876

SR 0000 SR 0008 (N = 1)
DS70000157G-page 126 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BCLR Bit Clear in f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BCLR{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for byte operation

Operation: 0  f<bit4>

Status Affected: None

Encoding: 1010 1001 bbbf ffff ffff fffb

Description: Clear the bit in the file register f specified by ‘bit4’. Bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte operations,
bit 15 for word operations).

The ‘b’ bits select value bit 4 of the bit position to be cleared.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0
and 7.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BCLR.B 0x800, #0x7 ; Clear bit 7 in 0x800

Before
Instruction

After
Instruction

Data 0800 66EF Data 0800 666F

SR 0000 SR 0000

Example 2: BCLR 0x400, #0x9 ; Clear bit 9 in 0x400

Before
Instruction

After
Instruction

Data 0400 AA55 Data 0400 A855

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 127

16-Bit MCU and DSC Programmer’s Reference Manual

BCLR Bit Clear in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BCLR{.B} Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: 0  Ws<bit4>

Status Affected: None

Encoding: 1010 0001 bbbb 0B00 0ppp ssss

Description: Clear the bit in register Ws specified by ‘bit4’. Bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte
operations, bit 15 for word operations). Register Direct or Indirect Addressing may be
used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.
The ‘p’ bits select the source addressing mode.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the source register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0
and 7.

4: In dsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for Indirect Addressing generation in Extended Data
Space (EDS).

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 128 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: BCLR.B W2, #0x2 ; Clear bit 3 in W2

Before
Instruction

After
Instruction

W2 F234 W2 F230

SR 0000 SR 0000

Example 2: BCLR [W0++], #0x0 ; Clear bit 0 in [W0]
; Post-increment W0

Before
Instruction

After
Instruction

W0 2300 W0 2302

Data 2300 5607 Data 2300 5606

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 129

16-Bit MCU and DSC Programmer’s Reference Manual

BFEXT Bit Field Extract from Ws into Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} BFEXT #bit4, #wid5, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: bit4 [0 ... 15]; wid5 [1 ... 16];
Ws [W0 ... W15]; Wnd [W0 ... W15]

Operation: See text

Status Affected: None

Encoding: 1st word 0000 1010 1000 wwww MMMM LLLL

2nd word 0000 0000 0000 0000 0ppp ssss

Description: A bit field is extracted (copied) from (Ws) and written into Wnd. The bit field data loaded
into Wnd starts at Wnd<0>, and all MSbs within Wnd that are beyond the defined bit
field width, will be cleared.

The bit location within Ws of the LSb of the bit field to be extracted is defined by operand
bit4. The width of the bit field may be up to 16 bits and is defined by operand wid5.

The ‘w’ bits select the address of the bit field destination register.
The ‘s’ bits select the address of the data source register.
The ‘p’ bits select the source addressing mode.
The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2

Cycles: 2
DS70000157G-page 130 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BFEXT Bit Field Extract from f into Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} BFEXT #bit4, #wid5, f, Wnd

Operands: bit4 [0 ... 15]; wid5 [1 ... 16];
Wnd [W0 ... W15]; f [0 ... 65534]

Operation: See text

Status Affected: None

Encoding: 1st word 0000 1010 1010 wwww MMMM LLLL

2nd word 0000 0000 ffff ffff ffff fff0

Description: A bit field is extracted (copied) from the file register address and written into Wnd. The
bit field data loaded into Wnd starts at Wnd<0> and all MSbs within Wnd, that are
beyond the defined bit field width, will be cleared.

The bit location within Ws of the LSb of the bit field to be extracted is defined by operand
bit4. The width of the bit field may be up to 16 bits and is defined by operand wid5.

The ‘w’ bits select the address of the bit field destination register.
The ‘f’ bits select the (word) address of the source file register.
The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2

Cycles: 2
© 2005-2018 Microchip Technology Inc. DS70000157G-page 131

16-Bit MCU and DSC Programmer’s Reference Manual

BFINS Bit Field Insert from Wb into Wd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} BFINS #bit4 #wid5, Wns, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: bit4 [0 ... 15]; wid5 [1 ... 16];
Wns [W0 ... W15]; Wd [W0 ... W15]

Operation: See text

Status Affected: None

Encoding: 1st word 0000 1010 0000 wwww MMMM LLLL

2nd word 0000 0000 0000 0000 0ppp dddd

Description: A bit field is read from (Wb) and inserted (copied) into Wd. The bit field data sourced
from Wns starts at Wns<0>. All MSbs within Wns, that are beyond the defined bit field
width, are ignored and may be set to any value.

The bit location within Wd of the LSb of the bit field to be inserted is defined by operand bit4.
The width of the bit field may be up to 16 bits and is defined by operand wid5. The insert
operation overwrites the existing bits within the insert range (i.e., it does not shift the existing
bits to accommodate the inserted bits).

The ‘w’ bits select the address of the bit field source register.
The ‘d’ bits select the address of the data destination register.
The ‘p’ bits select Source Addressing Mode 1.
The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2

Cycles: 2
DS70000157G-page 132 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BFINS Bit Field Insert from Wns into f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} BFINS #bit4, #wid5, Wns, f

Operands: bit4 [0 ... 15]; wid5 [1 ... 16];
Wns [W0 ... W15]; f [0 ... 65534]

Operation: See text

Status Affected: None

Encoding: 1st word 0000 1010 0010 wwww MMMM LLLL

2nd word 0000 0000 ffff ffff ffff fff0

Description: A bit field is read from (Wns) and inserted (copied) into the file register address. The bit
field data sourced from Wns starts at Wns<0>. All MSbs within Wns, that are beyond
the defined bit field width, are ignored and may be set to any value.

The bit location within f of the LSb of the bit field to be inserted is defined by operand bit4.
The width of the bit field may be up to 16 bits and is defined by operand wid5. The insert
operation overwrites the existing bits within the insert range (i.e., it does not shift the existing
bits to accommodate the inserted bits).

The ‘f’ bits select the (word) address of the destination file register.
The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2

Cycles: 2
© 2005-2018 Microchip Technology Inc. DS70000157G-page 133

16-Bit MCU and DSC Programmer’s Reference Manual

BFINS Bit Field Insert Literal into Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} BFINS #bit4, #wid5, #lit8, Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: bit4 [0 ... 15]; wid5 [1 ... 16];
lit8[0 ... 255]; Ws [W0 ... W15]

Operation: See text

Status Affected: None

Encoding: 1st word 0000 1010 0100 0000 MMMM LLLL

2nd word 0000 0000 kkkk kkkk 0ppp ssss

Description: A bit field literal value is inserted (copied) into Ws. The bit field data sourced from the
literal starts at the LSb of the literal. All MSbs within the literal value, that are beyond
the defined bit field width, are ignored and may be set to any value.

The bit location within Ws of the LSb of the bit field to be inserted is defined by operand bit4.
The width of the bit field may be up to 16 bits and is defined by operand wid5.

The ‘k’ bits contain the bit field source value.
The ‘s’ bits select the address of the source/destination register.
The ‘p’ bits select Source Addressing Mode 1.
The ‘LLLL’ bits define the bit field LSb position within the target word.
The ‘MMMM’ bits define the bit field MSb position within the target word.

Words: 2

Cycles: 2
DS70000157G-page 134 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BOOTSWP(1) Swap Active and Inactive Flash Address Panel

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} BOOTSWP

Operands: None

Operation: If
(Dual Boot Operating mode and the BOOTSWP instruction are enabled
(via device-specific Configuration bits))

Then
(P2ACTIV (NVMCON<10>)  P2ACTIV
1  SFTSWP (NVMCON<11>))

Else
Execute as NOP

Status Affected: None

Encoding: 1111 1110 0010 0000 0000 0000

Description: If the BOOTSWP instruction is enabled (via device-specific Configuration bit) and the
device is operating in a Dual Boot mode, and the NVMKEY software interlock sequence
has been satisfied, the BOOTSWP instruction will:

1. Toggle the state of the P2ACTIV (NVMCON<10>) status bit, which will swap the
Active and Inactive Flash address space within the program space address map.

2. Set SFTSWP (NVMCON<11>), indicating a successful panel swap.

Words: 1

Cycles: 2

Note 1: This instruction is present only in some devices of the device families listed above. Please see the specific
device data sheet to ensure that this instruction is supported on a specific device.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 135

16-Bit MCU and DSC Programmer’s Reference Manual

BRA Branch Unconditionally

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16  [-32768 ... +32767].

Operation: (PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0111 nnnn nnnn nnnn nnnn

Description: The program will branch unconditionally, relative to the next PC. The offset of the branch is the
two’s complement number, ‘2 * Slit16’, which supports branches of up to
32K instructions, forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression. After the branch is taken, the new address will
be (PC + 2) + 2 * Slit16, since the PC will have incremented to fetch the next instruction.

The ‘n’ bits are a signed literal that specifies the number of program words offset from (PC + 2).

Words: 1

Cycles: 2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)

4 (PIC24E, dsPIC33E, dsPIC33C)

Example 1: 002000 HERE: BRA THERE
002002 . . .
002004 . . .
002006 . . .
002008 . . .
00200A THERE: . . .
00200C . . .

; Branch to THERE

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200A

SR 0000 SR 0000

Example 2: 002000 HERE: BRA THERE+0x2
002002 . . .
002004 . . .
002006 . . .
002008 . . .
00200A THERE: . . .
00200C . . .

; Branch to THERE+0x2

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0000 SR 0000

Example 3: 002000 HERE: BRA 0x1366
002002 . . .
002004 . . .

; Branch to 0x1366

Before
Instruction

After
Instruction

PC 00 2000 PC 00 1366

SR 0000 SR 0000
DS70000157G-page 136 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA Computed Branch

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} BRA Wn

Operands: Wn [W0 ... W15]

Operation: (PC + 2) + (2 * Wn)  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0001 0110 0000 0000 ssss

Description: The program branches unconditionally, relative to the next PC. The offset of the
branch is the sign-extended 17-bit value (2 * Wn), which supports branches up to 32K
instructions, forward or backward. After this instruction executes, the new PC will be
(PC + 2) + 2 * Wn, since the PC will have incremented to fetch the next instruction.

The ‘s’ bits select the source register.

Words: 1

Cycles: 2

Example 1: 002000 HERE: BRA W7
002002 . . .
... . . .
... . . .

002108 . . .
00210A TABLE7: . . .
00210C . . .

; Branch forward (2 + 2 * W7)

Before
Instruction

After
Instruction

PC 00 2000 PC 00 210A

W7 0084 W7 0084

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 137

16-Bit MCU and DSC Programmer’s Reference Manual

BRA Computed Branch

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} BRA Wn

Operands: Wn [W0 ... W15]

Operation: (PC + 2) + (2 * Wn)  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0001 0000 0110 0000 ssss

Description: The program branches unconditionally, relative to the next PC. The offset of the
branch is the sign-extended 17-bit value (2 * Wn), which supports branches up to 32K
instructions, forward or backward. After this instruction executes, the new PC will be
(PC + 2) + 2 * Wn, since the PC will have incremented to fetch the next instruction.

The ‘s’ bits select the source register.

Words: 1

Cycles: 4

Example 1: 002000 HERE: BRA W7
002002 . . .
... . . .
... . . .

002108 . . .
00210A TABLE7: . . .
00210C . . .

; Branch forward (2 + 2 * W7)

Before
Instruction

After
Instruction

PC 00 2000 PC 00 210A

W7 0084 W7 0084

SR 0000 SR 0000
DS70000157G-page 138 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA C Branch if Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA C, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where Slit16  [-32768 ... +32767].

Operation: Condition = C
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0001 nnnn nnnn nnnn nnnn

Description: If the Carry flag bit is ‘1’, then the program will branch relative to the next PC. The offset
of the branch is the two’s complement number, ‘2 * Slit16’, which supports branches up
to 32K instructions, forward or backward. The Slit16 value is resolved by the linker from
the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in instruction words.

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA C, CARRY
002002 NO_C: . . .
002004 . . .
002006 GOTO THERE
002008 CARRY: . . .
00200A . . .
00200C THERE: . . .
00200E . . .

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2008

SR 0001 (C = 1) SR 0001 (C = 1)

Example 2: 002000 HERE: BRA C, CARRY
002002 NO_C: . . .
002004 . . .
002006 GOTO THERE
002008 CARRY: . . .
00200A . . .
00200C THERE: . . .
00200E . . .

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 139

16-Bit MCU and DSC Programmer’s Reference Manual
Example 3: 006230 HERE: BRA C, CARRY
006232 NO_C: . . .
006234 . . .
006236 GOTO THERE
006238 CARRY: . . .
00623A . . .
00623C THERE: . . .
00623E . . .

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 6230 PC 00 6238

SR 0001 (C = 1) SR 0001 (C = 1)

Example 4: 006230 START: . . .
006232 . . .
006234 CARRY: . . .
006236 . . .
006238 . . .
00623A . . .
00623C HERE: BRA C, CARRY
00623E . . .

; If C is set, branch to CARRY
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 623C PC 00 6234

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 140 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA GE Branch if Signed Greater Than or Equal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA GE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = (N&&OV)||(!N&&!OV)
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1101 nnnn nnnn nnnn nnnn

Description: If the logical expression, (N&&OV)||(!N&&!OV), is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement number,
‘2 * Slit16’, which supports branches up to 32K instructions, forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in instruction
words.

Note: The assembler will convert the specified label into the offset to be used.

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 007600 LOOP: . . .
007602 . . .
007604 . . .
007606 . . .
007608 HERE: BRA GE, LOOP
00760A NO_GE: . . .

; If GE, branch to LOOP
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 7608 PC 00 7600

SR 0000 SR 0000

Example 2: 007600 LOOP: . . .
007602 . . .
007604 . . .
007606 . . .
007608 HERE: BRA GE, LOOP
00760A NO_GE: . . .

; If GE, branch to LOOP
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 7608 PC 00 760A

SR 0008 (N = 1) SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 141

16-Bit MCU and DSC Programmer’s Reference Manual

BRA GEU Branch if Unsigned Greater Than or Equal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA GEU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16 offset that supports an offset range of
[-32768 ... +32767] program words.

Operation: Condition = C
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0001 nnnn nnnn nnnn nnnn

Description: If the Carry flag is ‘1’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved
by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC
will have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in
instruction words.

Note: This instruction is identical to the BRA C, Expr (Branch if Carry) instruction
and has the same encoding. It will reverse assemble as BRA C, Slit16.

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA GEU, BYPASS
002002 NO_GEU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If C is set, branch
; to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 142 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA GT Branch if Signed Greater Than

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA GT, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = (!Z&&N&&OV)||(!Z&&!N&&!OV)
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1100 nnnn nnnn nnnn nnnn

Description: If the logical expression, (!Z&&N&&OV)||(!Z&&!N&&!OV), is true, then the program
will branch relative to the next PC. The offset of the branch is the two’s complement
number, ‘2 * Slit16’, which supports branches up to 32K instructions, forward or
backward. The Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC + 2) in instruction
words.

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA GT, BYPASS
002002 NO_GT: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If GT, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C = 1) SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 143

16-Bit MCU and DSC Programmer’s Reference Manual

BRA GTU Branch if Unsigned Greater Than

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA GTU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = (C&&!Z)
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1110 nnnn nnnn nnnn nnnn

Description: If the logical expression, (C&&!Z), is true, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a two-cycle
instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA GTU, BYPASS
002002 NO_GTU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If GTU, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 144 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA LE Branch if Signed Less Than or Equal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA LE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = Z||(N&&!OV)||(!N&&OV)
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0100 nnnn nnnn nnnn nnnn

Description: If the logical expression, Z||(N&&!OV)||(!N&&OV), is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement number,
‘2 * Slit16’, which supports branches up to 32K instructions, forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA LE, BYPASS
002002 NO_LE: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LE, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C = 1) SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 145

16-Bit MCU and DSC Programmer’s Reference Manual

BRA LEU Branch if Unsigned Less Than or Equal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA LEU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = !C||Z
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0110 nnnn nnnn nnnn nnnn

Description: If the logical expression, !C||Z, is true, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA LEU, BYPASS
002002 NO_LEU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LEU, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 146 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA LT Branch if Signed Less Than

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA LT, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = (N&&!OV)||(!N&&OV)
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0101 nnnn nnnn nnnn nnnn

Description: If the logical expression, (N&&!OV)||(!N&&OV), is true, then the program will branch
relative to the next PC. The offset of the branch is the two’s complement number,
‘2 * Slit16’, which supports branches up to 32K instructions, forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA LT, BYPASS
002002 NO_LT: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LT, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C = 1) SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 147

16-Bit MCU and DSC Programmer’s Reference Manual
BRA LTU Branch if Unsigned Less Than

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA LTU, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = !C
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1001 nnnn nnnn nnnn nnnn

Description: If the Carry flag is ‘0’, then the program will branch relative to the next PC. The offset
of the branch is the two’s complement number, ‘2 * Slit16’, which supports branches
up to 32K instructions, forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Note : This instruction is identical to the BRA NC, Expr (Branch if Not Carry)
instruction and has the same encoding. It will reverse assemble as
BRA NC, Slit16.

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA LTU, BYPASS
002002 NO_LTU: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If LTU, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 148 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA N Branch if Negative

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA N, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = N
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register.

Status Affected: None

Encoding: 0011 0011 nnnn nnnn nnnn nnnn

Description: If the Negative flag is ‘1’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA N, BYPASS
002002 NO_N: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If N, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0008 (N = 1) SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 149

16-Bit MCU and DSC Programmer’s Reference Manual

BRA NC Branch if Not Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA NC, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = !C
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1001 nnnn nnnn nnnn nnnn

Description: If the Carry flag is ‘0’, then the program will branch relative to the next PC. The offset
of the branch is the two’s complement number, ‘2 * Slit16’, which supports branches
up to 32K instructions, forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA NC, BYPASS
002002 NO_NC: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NC, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 150 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA NN Branch if Not Negative

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA NN, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = !N
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1011 nnnn nnnn nnnn nnnn

Description: If the Negative flag is ‘0’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA NN, BYPASS
002002 NO_NN: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NN, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 151

16-Bit MCU and DSC Programmer’s Reference Manual

BRA NOV Branch if Not Overflow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA NOV, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = !OV
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1000 nnnn nnnn nnnn nnnn

Description: If the Overflow flag is ‘0’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA NOV, BYPASS
002002 NO_NOV: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NOV, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0008 (N = 1) SR 0008 (N = 1)
DS70000157G-page 152 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA NZ Branch if Not Zero

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA NZ, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = !Z
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 1010 nnnn nnnn nnnn nnnn

Description: If the Z flag is ‘0’, then the program will branch relative to the next PC. The offset of
the branch is the two’s complement number, ‘2 * Slit16’, which supports branches up
to 32K instructions, forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA NZ, BYPASS
002002 NO_NZ: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If NZ, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0002 (Z = 1) SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 153

16-Bit MCU and DSC Programmer’s Reference Manual

BRA OA Branch if Overflow Accumulator A

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} BRA OA, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = OA
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 1100 nnnn nnnn nnnn nnnn

Description: If the Overflow Accumulator A flag is ‘1’, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Note: The assembler will convert the specified label into the offset to be used.

Words: 1

Cycles: 1 (2 if branch taken) – dsPIC30F, dsPIC33F

1 (4 if branch taken) – dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA OA, BYPASS
002002 NO_OA: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If OA, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 8800 (OA, OAB = 1) SR 8800 (OA, OAB = 1)
DS70000157G-page 154 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA OB Branch if Overflow Accumulator B

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} BRA OB, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = OB
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 1101 nnnn nnnn nnnn nnnn

Description: If the Overflow Accumulator B flag is ‘1’, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – dsPIC30F, dsPIC33F

1 (4 if branch taken) – dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA OB, BYPASS
002002 NO_OB: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If OB, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 8800 (OA, OAB = 1) SR 8800 (OA, OAB = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 155

16-Bit MCU and DSC Programmer’s Reference Manual

BRA OV Branch if Overflow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA OV, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = OV
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0000 nnnn nnnn nnnn nnnn

Description: If the Overflow flag is ‘1’, then the program will branch relative to the next PC. The
offset of the branch is the two’s complement number, ‘2 * Slit16’, which supports
branches up to 32K instructions, forward or backward. The Slit16 value is resolved by
the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA OV, BYPASS
002002 NO_OV . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If OV, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0002 (Z = 1) SR 0002 (Z = 1)
DS70000157G-page 156 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA SA Branch if Saturation Accumulator A

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} BRA SA, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = SA
If (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 1110 nnnn nnnn nnnn nnnn

Description: If the Saturation Accumulator A flag is ‘1’, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – dsPIC30F, dsPIC33F

1 (4 if branch taken) – dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA SA, BYPASS
002002 NO_SA: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If SA, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 2400 (SA, SAB = 1) SR 2400 (SA, SAB = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 157

16-Bit MCU and DSC Programmer’s Reference Manual

BRA SB Branch if Saturation Accumulator B

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} BRA SB, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = SB
if (Condition)

(PC + 2) + 2 * Slit16 PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 1111 nnnn nnnn nnnn nnnn

Description: If the Saturation Accumulator B flag is ‘1’, then the program will branch relative to the
next PC. The offset of the branch is the two’s complement number, ‘2 * Slit16’, which
supports branches up to 32K instructions, forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a
two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – dsPIC30F, dsPIC33F

1 (4 if branch taken) – dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA SB, BYPASS
002002 NO_SB: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If SB, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

SR 0000 SR 0000
DS70000157G-page 158 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BRA Z Branch if Zero

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BRA Z, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16  [-32768 ... +32767].

Operation: Condition = Z
if (Condition)

(PC + 2) + 2 * Slit16  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0011 0010 nnnn nnnn nnnn nnnn

Description: If the Zero flag is ‘1’, then the program will branch relative to the next PC. The offset of
the branch is the two’s complement number, ‘2 * Slit16’, which supports branches up to
32K instructions, forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC + 2) + 2 * Slit16, since the PC will
have incremented to fetch the next instruction. The instruction then becomes a two-cycle
instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions offset from
(PC + 2).

Words: 1

Cycles: 1 (2 if branch taken) – PIC24F, PIC24H, dsPIC30F, dsPIC33F

1 (4 if branch taken) – PIC24E, dsPIC33E, dsPIC33C

Example 1: 002000 HERE: BRA Z, BYPASS
002002 NO_Z: . . .
002004 . . .
002006 . . .
002008 . . .
00200A GOTO THERE
00200C BYPASS: . . .
00200E . . .

; If Z, branch to BYPASS
; Otherwise... continue

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200C

SR 0002 (Z = 1) SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 159

16-Bit MCU and DSC Programmer’s Reference Manual

BSET Bit Set in f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BSET{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: 1  f<bit4>

Status Affected: None

Encoding: 1010 1000 bbbf ffff ffff fffb

Description: Set the bit in the file register ‘f’ specified by ‘bit4’. Bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte
operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be set.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0
and 7.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BSET.B 0x601, #0x3 ; Set bit 3 in 0x601

Before
Instruction

After
Instruction

Data 0600 F234 Data 0600 FA34

SR 0000 SR 0000

Example 2: BSET 0x444, #0xF ; Set bit 15 in 0x444

Before
Instruction

After
Instruction

Data 0444 5604 Data 0444 D604

SR 0000 SR 0000
DS70000157G-page 160 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BSET Bit Set in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BSET{.B} Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: 1  Ws<bit4>

Status Affected: None

Encoding: 1010 0000 bbbb 0B00 0ppp ssss

Description: Set the bit in register Ws specified by ‘bit4’. Bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 7 for byte operations,
bit 15 for word operations). Register Direct or Indirect Addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source/destination register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the source register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.

4: In dsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended Data Space.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 161

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: BSET.B W3, #0x7 ; Set bit 7 in W3

Before
Instruction

After
Instruction

W3 0026 W3 00A6

SR 0000 SR 0000

Example 2: BSET [W4++], #0x0 ; Set bit 0 in [W4]
; Post-increment W4

Before
Instruction

After
Instruction

W4 6700 W4 6702

Data 6700 1734 Data 6700 1735

SR 0000 SR 0000
DS70000157G-page 162 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BSW Bit Write in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BSW.C Ws, Wb

BSW.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
Wb [W0 ... W15]

Operation: For “.C” Operation:
C  Ws<(Wb)>

For “.Z” Operation (default):
Z  Ws<(Wb)>

Status Affected: None

Encoding: 1010 1101 Zwww w000 0ppp ssss

Description: The (Wb) bit in register Ws is written with the value of the C or Z flag from the STATUS
Register. Bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 15) of the Working register. Only the four Least Significant
bits of Wb are used to determine the destination bit number. Register Direct Address-
ing must be used for Wb, and either Register Direct or Indirect Addressing may be
used for Ws.

The ‘Z’ bit selects the C or Z flag as source.
The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is provided, the
“.Z” operation is assumed.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BSW.C W2, W3 ; Set bit W3 in W2 to the value
; of the C bit

Before
Instruction

After
Instruction

W2 F234 W2 7234

W3 111F W3 111F

SR 0002 (Z = 1, C = 0) SR 0002 (Z = 1, C = 0)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 163

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: BSW.Z W2, W3 ; Set bit W3 in W2 to the complement
; of the Z bit

Before
Instruction

After
Instruction

W2 E235 W2 E234

W3 0550 W3 0550

SR 0002 (Z = 1, C = 0) SR 0002 (Z = 1, C = 0)

Example 3: BSW.C [++W0], W6 ; Set bit W6 in [W0++] to the value
; of the C bit

Before
Instruction

After
Instruction

W0 1000 W0 1002

W6 34A3 W6 34A3

Data 1002 2380 Data 1002 2388

SR 0001 (Z = 0, C = 1) SR 0001 (Z = 0, C = 1)

Example 4: BSW.Z [W1--], W5 ; Set bit W5 in [W1] to the
; complement of the Z bit
; Post-decrement W1

Before
Instruction

After
Instruction

W1 1000 W1 0FFE

W5 888B W5 888B

Data 1000 C4DD Data 1000 CCDD

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 164 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BTG Bit Toggle in f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTG{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: (f)<bit4>  (f)<bit4>

Status Affected: None

Encoding: 1010 1010 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register ‘f’ is toggled (complemented). For the bit4 operand, bit
numbering begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operation, bit 15 for word operation) of the byte.

The ‘b’ bits select value bit4, the bit position to toggle.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between
0 and 7.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BTG.B 0x1001, #0x4 ; Toggle bit 4 in 0x1001

Before
Instruction

After
Instruction

Data 1000 F234 Data 1000 E234

SR 0000 SR 0000

Example 2: BTG 0x1660, #0x8 ; Toggle bit 8 in RAM660

Before
Instruction

After
Instruction

Data 1660 5606 Data 1660 5706

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 165

16-Bit MCU and DSC Programmer’s Reference Manual

BTG Bit Toggle in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTG{.B} Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: (Ws)<bit4>  Ws<bit4>

Status Affected: None

Encoding: 1010 0010 bbbb 0B00 0ppp ssss

Description: Bit ‘bit4’ in register Ws is toggled (complemented). For the bit4 operand, bit numbering
begins with the Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations). Register Direct or Indirect Addressing
may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the source/destination register.
The ‘p’ bits select the source addressing mode.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

2: When this instruction operates in Word mode, the source register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.

4: In dsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended Data Space.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 166 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: BTG W2, #0x0 ; Toggle bit 0 in W2

Before
Instruction

After
Instruction

W2 F234 W2 F235

SR 0000 SR 0000

Example 2: BTG [W0++], #0x0 ; Toggle bit 0 in [W0]
; Post-increment W0

Before
Instruction

After
Instruction

W0 2300 W0 2302

Data 2300 5606 Data 2300 5607

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 167

16-Bit MCU and DSC Programmer’s Reference Manual

BTSC Bit Test f, Skip if Clear

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTSC{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if clear

Status Affected: None

Encoding: 1010 1111 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in the file register is tested. If the tested bit is ‘0’, the next instruction (fetched
during the current instruction execution) is discarded and on the next cycle, a NOP is
executed instead. If the tested bit is ‘1’, the next instruction is executed as normal. In
either case, the contents of the file register are not changed. For the bit4 operand, bit
numbering begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between
0 and 7.

Words: 1

Cycles: 1 (2 or 3)(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: 002000 HERE: BTSC.B 0x1201, #2
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 2 of 0x1201 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

Data 1200 264F Data 1200 264F

SR 0000 SR 0000
DS70000157G-page 168 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: 002000 HERE: BTSC 0x804, #14
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 14 of 0x804 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

Data 0804 2647 Data 0804 2647

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 169

16-Bit MCU and DSC Programmer’s Reference Manual

BTSC Bit Test Ws, Skip if Clear

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTSC Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 15]

Operation: Test (Ws)<bit4>, skip if clear

Status Affected: None

Encoding: 1010 0111 bbbb 0000 0ppp ssss

Description: Bit ‘bit4’ in Ws is tested. If the tested bit is ‘0’, the next instruction (fetched during the
current instruction execution) is discarded and on the next cycle, a NOP is executed
instead. If the tested bit is ‘1’, the next instruction is executed as normal. In either
case, the contents of Ws are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either Register Direct or Indirect Addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: 002000 HERE: BTSC W0, #0x0
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 0 of W0 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W0 264F W0 264F

SR 0000 SR 0000
DS70000157G-page 170 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: 002000 HERE: BTSC W6, #0xF
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 15 of W6 is 0,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W6 264F W6 264F

SR 0000 SR 0000

Example 3: 003400 HERE: BTSC [W6++], #0xC
003402 GOTO BYPASS
003404 . . .
003406 . . .
003408 BYPASS: . . .
00340A . . .

; If bit 12 of [W6] is 0,
; skip the GOTO
; Post-increment W6

Before
Instruction

After
Instruction

PC 00 3400 PC 00 3402

W6 1800 W6 1802

Data 1800 1000 Data 1800 1000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 171

16-Bit MCU and DSC Programmer’s Reference Manual

BTSS Bit Test f, Skip if Set

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTSS{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if set

Status Affected: None

Encoding: 1010 1110 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register ‘f’ is tested. If the tested bit is ‘1’, the next instruction (fetched
during the current instruction execution) is discarded and on the next cycle, a NOP is
executed instead. If the tested bit is ‘0’, the next instruction is executed as
normal. In either case, the contents of the file register are not changed. For the bit4
operand, bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to test.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.

Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: 007100 HERE: BTSS.B 0x1401, #0x1
007102 CLR WREG
007104 . . .

; If bit 1 of 0x1401 is 1,
; don’t clear WREG

Before
Instruction

After
Instruction

PC 00 7100 PC 00 7104

Data 1400 0280 Data 1400 0280

SR 0000 SR 0000

Example 2: 007100 HERE: BTSS 0x890, #0x9
007102 GOTO BYPASS
007104 . . .
007106 BYPASS: . . .

; If bit 9 of 0x890 is 1,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 7100 PC 00 7102

Data 0890 00FE Data 0890 00FE

SR 0000 SR 0000
DS70000157G-page 172 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BTSS Bit Test Ws, Skip if Set

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTSS Ws, #bit4

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 15]

Operation: Test (Ws)<bit4>, skip if set.

Status Affected: None

Encoding: 1010 0110 bbbb 0000 0ppp ssss

Description: Bit ‘bit4’ in Ws is tested. If the tested bit is ‘1’, the next instruction (fetched during the
current instruction execution) is discarded and on the next cycle, a NOP is executed
instead. If the tested bit is ‘0’, the next instruction is executed as normal. In either
case, the contents of Ws are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either Register Direct or Indirect Addressing may be used for Ws.

The ‘b’ bits select the value bit4, the bit position to test.
The ‘s’ bits select the source register.
The ‘p’ bits select the source addressing mode.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1 (2 or 3 if the next instruction is skipped)(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: 002000 HERE: BTSS W0, #0x0
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 0 of W0 is 1,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W0 264F W0 264F

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 173

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 002000 HERE: BTSS W6, #0xF
002002 GOTO BYPASS
002004 . . .
002006 . . .
002008 BYPASS: . . .
00200A . . .

; If bit 15 of W6 is 1,
; skip the GOTO

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W6 264F W6 264F

SR 0000 SR 0000

Example 3: 003400 HERE: BTSS [W6++], 0xC
003402 GOTO BYPASS
003404 . . .
003406 . . .
003408 BYPASS: . . .
00340A . . .

; If bit 12 of [W6] is 1,
; skip the GOTO
; Post-increment W6

Before
Instruction

After
Instruction

PC 00 3400 PC 00 3406

W6 1800 W6 1802

Data 1800 1000 Data 1800 1000

SR 0000 SR 0000
DS70000157G-page 174 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BTST Bit Test in f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTST{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: (f)<bit4>  Z

Status Affected: Z

Encoding: 1010 1011 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register ‘f’ is tested and the complement of the tested bit is stored to
the Z flag in the STATUS Register. The contents of the file register are not changed.
For the bit4 operand, bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 7 for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to be tested.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between
0 and 7.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BTST.B 0x1201, #0x3 ; Set Z = complement of
; bit 3 in 0x1201

Before
Instruction

After
Instruction

Data 1200 F7FF Data 1200 F7FF

SR 0000 SR 0002 (Z = 1)

Example 2: BTST 0x1302, #0x7 ; Set Z = complement of
; bit 7 in 0x1302

Before
Instruction

After
Instruction

Data 1302 F7FF Data 1302 F7FF

SR 0002 (Z = 1) SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 175

16-Bit MCU and DSC Programmer’s Reference Manual

BTST Bit Test in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTST.C Ws, #bit4

BTST.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 15]

Operation: For “.C” Operation:
 (Ws)<bit4> C

For “.Z” Operation (default):

 (Ws)<bit4>  Z

Status Affected: Z or C

Encoding: 1010 0011 bbbb Z000 0ppp ssss

Description: Bit ‘bit4’ in register Ws is tested. If the “.Z” option of the instruction is specified, the
complement of the tested bit is stored to the Zero flag in the STATUS Register. If the
“.C” option of the instruction is specified, the value of the tested bit is stored to the
Carry flag in the STATUS Register. In either case, the contents of Ws are not changed.

For the bit4 operand, bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 15) of the word. Either Register Direct or Indirect
Addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is provided, the
“.Z” operation is assumed.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 176 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: BTST.C [W0++], #0x3 ; Set C = bit 3 in [W0]
; Post-increment W0

Before
Instruction

After
Instruction

W0 1200 W0 1202

Data 1200 FFF7 Data 1200 FFF7

SR 0001 (C = 1) SR 0000

Example 2: BTST.Z W0, #0x7 ; Set Z = complement of bit 7 in W0

Before
Instruction

After
Instruction

W0 F234 W0 F234

SR 0000 SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 177

16-Bit MCU and DSC Programmer’s Reference Manual

BTST Bit Test in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTST.C Ws, Wb

BTST.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
Wb [W0 ... W15]

Operation: For “.C” Operation:
 (Ws)<(Wb)> C

For “.Z” Operation (default):

 (Ws)<(Wb)>  Z

Status Affected: Z or C

Encoding: 1010 0101 Zwww w000 0ppp ssss

Description: The (Wb) bit in register Ws is tested. If the “.C” option of the instruction is specified,
the value of the tested bit is stored to the Carry flag in the STATUS Register. If the
“.Z” option of the instruction is specified, the complement of the tested bit is stored to
the Zero flag in the STATUS Register. In either case, the contents of Ws are not
changed.

Only the four Least Significant bits of Wb are used to determine the bit number. Bit
numbering begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 15) of the Working register. Register Direct or Indirect Addressing
may be used for Ws.

The ‘Z’ bit selects the C or Z flag as destination.
The ‘w’ bits select the address of the bit select register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction only operates in Word mode. If no extension is provided,
the “.Z” operation is assumed.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 178 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: BTST.C W2, W3 ; Set C = bit W3 of W2

Before
Instruction

After
Instruction

W2 F234 W2 F234

W3 2368 W3 2368

SR 0001 (C = 1) SR 0000

Example 2: BTST.Z [W0++], W1 ; Set Z = complement of
; bit W1 in [W0],
; Post-increment W0

Before
Instruction

After
Instruction

W0 1200 W0 1202

W1 CCC0 W1 CCC0

Data 1200 6243 Data 1200 6243

SR 0002 (Z = 1) SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 179

16-Bit MCU and DSC Programmer’s Reference Manual

BTSTS Bit Test/Set in f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTSTS{.B} f, #bit4

Operands: f [0 ... 8191] for byte operation
f [0 ... 8190] (even only) for word operation
bit4 [0 ... 7] for byte operation
bit4 [0 ... 15] for word operation

Operation: (f)<bit4>  Z
1  (f)<bit4>

Status Affected: Z

Encoding: 1010 1100 bbbf ffff ffff fffb

Description: Bit ‘bit4’ in file register ‘f’ is tested and the complement of the tested bit is stored to
the Zero flag in the STATUS Register. The tested bit is then set to ‘1’ in the file
register. For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 7 for byte operations, bit 15 for
word operations).

The ‘b’ bits select value bit4, the bit position to test/set.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: When this instruction operates in Word mode, the file register address
must be word-aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be between 0 and 7.

4: The file register ‘f’ must not be the CPU STATUS Register (SR).

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: BTSTS.B 0x1201, #0x3 ; Set Z = complement of bit 3 in 0x1201,
; then set bit 3 of 0x1201 = 1

Before
Instruction

After
Instruction

Data 1200 F7FF Data 1200 FFFF

SR 0000 SR 0002 (Z = 1)

Example 2: BTSTS 0x808, #15 ; Set Z = complement of bit 15 in 0x808,
; then set bit 15 of 0x808 = 1

Before
Instruction

After
Instruction

RAM300 8050 RAM300 8050

SR 0002 (Z = 1) SR 0000
DS70000157G-page 180 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

BTSTS Bit Test/Set in Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} BTSTS.C Ws, #bit4

BTSTS.Z [Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
bit4 [0 ... 15]

Operation: For “.C” Operation:
 (Ws)<bit4> C
 1  Ws<bit4>

For “.Z” Operation (default):

 (Ws)<bit4>  Z
 1  Ws<bit4>

Status Affected: Z or C

Encoding: 1010 0100 bbbb Z000 0ppp ssss

Description: Bit ‘bit4’ in register Ws is tested. If the “.Z” option of the instruction is specified, the
complement of the tested bit is stored to the Zero flag in the STATUS Register. If the
“.C” option of the instruction is specified, the value of the tested bit is stored to the
Carry flag in the STATUS Register. In both cases, the tested bit in Ws is set to ‘1’.

The ‘b’ bits select the value bit4, the bit position to test/set.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction only operates in Word mode. If no extension is provided,
the “.Z” operation is assumed.

2: If Ws is used as a pointer, it must not contain the address of the CPU
STATUS Register (SR).

3: In dsPIC33E, dsPIC33C and PIC24E devices, this instruction uses the
DSRPAG register for indirect address generation in Extended Data Space.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 181

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: BTSTS.C [W0++], #0x3 ; Set C = bit 3 in [W0]
; Set bit 3 in [W0] = 1
; Post-increment W0

Before
Instruction

After
Instruction

W0 1200 W0 1202

Data 1200 FFF7 Data 1200 FFFF

SR 0001 (C = 1) SR 0000

Example 2: BTSTS.Z W0, #0x7 ; Set Z = complement of bit 7
; in W0, and set bit 7 in W0 = 1

Before
Instruction

After
Instruction

W0 F234 W0 F2BC

SR 0000 SR 0002 (Z = 1)
DS70000157G-page 182 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

© 2005-2018 Microchip Technology Inc. DS70000157G-page 183

CALL Call Subroutine

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CALL Expr

Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 [0 ... 8388606].

Operation: (PC) + 4  PC
(PC<15:0>)  (TOS)
(W15) + 2  W15
(PC<23:16>)  (TOS)
(W15) + 2  W15
lit23  PC
NOP  Instruction Register

Status Affected: None

Encoding: 1st word 0000 0010 nnnn nnnn nnnn nnn0

2nd word 0000 0000 0000 0000 0nnn nnnn

Description: Direct subroutine call over the entire 4-Mbyte instruction program memory range. Before
the CALL is made, the 24-bit return address (PC + 4) is PUSHed onto the stack. After
the return address is stacked, the 23-bit value, ‘lit23’, is loaded into the PC.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the lit23 to be used.

Words: 2

Cycles: 2

Example 1: 026000 CALL _FIR
026004 MOV W0, W1

. ...

. ...
026844 _FIR: MOV #0x400, W2
026846 ...

; Call _FIR subroutine

; _FIR subroutine start

Before
Instruction

After
Instruction

PC 02 6000 PC 02 6844

W15 A268 W15 A26C

Data A268 FFFF Data A268 6004

Data A26A FFFF Data A26A 0002

SR 0000 SR 0000

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 072000 CALL _G66 ; call routine _G66
072004 MOV W0, W1

. ...
077A28 _G66: INC W6, [W7++] ; routine start
077A2A ...
077A2C

Before
Instruction

After
Instruction

PC 07 2000 PC 07 7A28

W15 9004 W15 9008

Data 9004 FFFF Data 9004 2004

Data 9006 FFFF Data 9006 0007

SR 0000 SR 0000
DS70000157G-page 184 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CALL Call Subroutine

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CALL Expr

Operands: Expr may be a label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23 [0 ... 8388606].

Operation: (PC) + 4  PC
(PC<15:1>)  TOS<15:1>, SFA Status bit  TOS<0>
(W15) + 2  W15
(PC<23:16>)  TOS
(W15) + 2  W15
0  SFA Status bit
lit23  PC
NOP  Instruction Register

Status Affected: SFA

Encoding: 1st word 0000 0010 nnnn nnnn nnnn nnn0

2nd word 0000 0000 0000 0000 0nnn nnnn

Description: Direct subroutine call over the entire 4-Mbyte instruction program memory range. Before
the CALL is made, the 24-bit return address (PC + 4) is PUSHed onto the stack. After
the return address is stacked, the 23-bit value, ‘lit23’, is loaded into the PC.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the lit23 to be used.

Words: 2

Cycles: 4

Example 1: 026000 CALL _FIR
026004 MOV W0, W1

. ...

. ...
026844 _FIR: MOV #0x400, W2
026846 ...

; Call _FIR subroutine

; _FIR subroutine start

Before
Instruction

After
Instruction

PC 02 6000 PC 02 6844

W15 A268 W15 A26C

Data A268 FFFF Data A268 6004

Data A26A FFFF Data A26A 0002

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 185

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 072000 CALL _G66 ; call routine _G66
072004 MOV W0, W1

. ...
077A28 _G66: INC W6, [W7++] ; routine start
077A2A ...
077A2C

Before
Instruction

After
Instruction

PC 07 2000 PC 07 7A28

W15 9004 W15 9008

Data 9004 FFFF Data 9004 2004

Data 9006 FFFF Data 9006 0007

SR 0000 SR 0000
DS70000157G-page 186 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CALL Call Indirect Subroutine

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CALL Wn

Operands: Wn [W0 ... W15]

Operation: (PC) + 2  PC
(PC<15:0>)  TOS
(W15) + 2  W15
(PC<23:16>)  TOS
(W15) + 2  W15
0  PC<22:16>
(Wn<15:1>)  PC<15:1>
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0001 0000 0000 0000 ssss

Description: Indirect subroutine call over the first 32K instructions of program memory. Before the
CALL is made, the 24-bit return address (PC + 2) is PUSHed onto the stack. After the
return address is stacked, Wn<15:1> is loaded into PC<15:1> and PC<22:16> is
cleared. Since PC<0> is always ‘0’, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1

Cycles: 2

Example 1: 001002 CALL W0
001004 ...

. ...
001600 _BOOT: MOV #0x400, W2
001602 MOV #0x300, W6

. ...

; Call BOOT subroutine indirectly
; using W0

; _BOOT starts here

Before
Instruction

After
Instruction

PC 00 1002 PC 00 1600

W0 1600 W0 1600

W15 6F00 W15 6F04

Data 6F00 FFFF Data 6F00 1004

Data 6F02 FFFF Data 6F02 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 187

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 004200 CALL W7
004202 ...

. ...
005500 _TEST: INC W1, W2
005502 DEC W1, W3

. ...

; Call TEST subroutine indirectly
; using W7

; _TEST starts here
;

Before
Instruction

After
Instruction

PC 00 4200 PC 00 5500

W7 5500 W7 5500

W15 6F00 W15 6F04

Data 6F00 FFFF Data 6F00 4202

Data 6F02 FFFF Data 6F02 0000

SR 0000 SR 0000
DS70000157G-page 188 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CALL Call Indirect Subroutine

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CALL Wn

Operands: Wn [W0 ... W15]

Operation: (PC) + 2  PC
(PC<15:1>)  TOS, SFA Status bit  TOS<0>
(W15) + 2  W15
(PC<23:16>)  TOS
(W15) + 2  W15
0  SFA Status bit
0  PC<22:16>
(Wn<15:1>)  PC<15:1>
NOP  Instruction Register

Status Affected: SFA

Encoding: 0000 0001 0000 0000 0000 ssss

Description: Indirect subroutine call over the first 32K instructions of program memory. Before the
CALL is made, the 24-bit return address (PC + 2) is PUSHed onto the stack. After the
return address is stacked, Wn<15:1> is loaded into PC<15:1> and PC<22:16> is
cleared. Since PC<0> is always ‘0’, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1

Cycles: 4

Example 1: 001002 CALL W0
001004 ...

. ...
001600 _BOOT: MOV #0x400, W2
001602 MOV #0x300, W6

. ...

; Call BOOT subroutine indirectly
; using W0

; _BOOT starts here

Before
Instruction

After
Instruction

PC 00 1002 PC 00 1600

W0 1600 W0 1600

W15 6F00 W15 6F04

Data 6F00 FFFF Data 6F00 1004

Data 6F02 FFFF Data 6F02 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 189

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 004200 CALL W7
004202 ...

. ...
005500 _TEST: INC W1, W2
005502 DEC W1, W3

. ...

; Call TEST subroutine indirectly
; using W7

; _TEST starts here
;

Before
Instruction

After
Instruction

PC 00 4200 PC 00 5500

W7 5500 W7 5500

W15 6F00 W15 6F04

Data 6F00 FFFF Data 6F00 4202

Data 6F02 FFFF Data 6F02 0000

SR 0000 SR 0000
DS70000157G-page 190 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CALL.L Call Indirect Subroutine Long

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CALL.L Wn

Operands: Wn [W0, W2, W4, W6, W8, W10, W12]

Operation: (PC) + 2  PC
(PC<15:1>)  TOS<15:1>, SFA Status bit  TOS<0>
(W15) + 2  W15
(PC<23:16>)  TOS
(W15) + 2  W15
0  SFA Status bit
PC<23>  PC<23> (see text); (Wn+1)<6:0>  PC<22:16>; (Wn) 
PC<15:0>
NOP  Instruction Register

Status Affected: SFA

Encoding: 0000 0001 1www w000 0000 ssss

Description: Indirect subroutine call to any user program memory address. First, the return address
(PC+2) and the state of the Stack Frame Active bit (SFA) are pushed onto the system
stack, after which, the SFA bit is cleared.

Then, the Least Significant 7 bits of (Wn+1) are loaded in PC<22:16> and the 16-bit
value (Wn) is loaded into PC<15:0>.

PC<23> is not modified by this instruction.

The contents of (Wn+1)<15:7> are ignored.
The value of Wn<0> is also ignored and PC<0> is always set to ‘0’.
The ‘s’ bits specify the address of the Wn source register.
The ‘w’ bits specify the address of the Wn+1 source register.

Words: 1

Cycles: 4

Example 1: 026000 CALL.L W4
026004 MOV W0, W1

. ...

. ...
026844 _FIR: MOV #0x400, W2
026846 ...

; Call _FIR subroutine

; _FIR subroutine start

Before
Instruction

After
Instruction

PC 02 6000 PC 02 6844

W4 6844 W4 6844

W5 0002 W5 0002

W15 A268 W15 A26C

Data A268 FFFF Data A268 6004

Data A26A FFFF Data A26A 0002

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 191

16-Bit MCU and DSC Programmer’s Reference Manual

CLR Clear f or WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CLR{.B} f

WREG

Operands: f [0 ... 8191]

Operation: 0 destination designated by D

Status Affected: None

Encoding: 1110 1111 0BDf ffff ffff ffff

Description: Clear the contents of a file register or the default Working register WREG. If WREG is
specified, the WREG is cleared. Otherwise, the specified file register ‘f’ is cleared.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1

Example 1: CLR.B RAM200 ; Clear RAM200 (Byte mode)

Before
Instruction

After
Instruction

RAM200 8009 RAM200 8000

SR 0000 SR 0000

Example 2: CLR WREG ; Clear WREG (Word mode)

Before
Instruction

After
Instruction

WREG 0600 WREG 0000

SR 0000 SR 0000
DS70000157G-page 192 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CLR Clear Wd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CLR{.B} Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd [W0 ... W15]

Operation: 0 Wd

Status Affected: None

Encoding: 1110 1011 0Bqq qddd d000 0000

Description: Clear the contents of register Wd. Either Register Direct or Indirect Addressing may
be used for Wd.

The ‘B’ bit select byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: CLR.B W2 ; Clear W2 (Byte mode)

Before
Instruction

After
Instruction

W2 3333 W2 3300

SR 0000 SR 0000

Example 2: CLR [W0++] ; Clear [W0]
 ; Post-increment W0

Before
Instruction

After
Instruction

W0 2300 W0 2302

Data 2300 5607 Data 2300 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 193

16-Bit MCU and DSC Programmer’s Reference Manual

CLR Clear Accumulator, Prefetch Operands

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CLR Acc {,[Wx],Wxd} {,[Wy],Wyd} {,AWB}

{,[Wx] + = kx,Wxd} {,[Wy] + = ky,Wyd}

{,[Wx] – = kx,Wxd} {,[Wy] – = ky,Wyd}

{,[W9 + W12],Wxd} {,[W11 + W12],Wyd}

Operands: Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]
AWB [W13, [W13] + = 2]

Operation: 0  Acc(A or B)
([Wx])  Wxd; (Wx) +/– kx Wx
([Wy]) Wyd; (Wy) +/– ky Wy
(Acc(B or A)) rounded  AWB

Status Affected: OA, OB, SA, SB

Encoding: 1100 0011 A0xx yyii iijj jjaa

Description: Clear all 40 bits of the specified accumulator. Optionally prefetch operands in preparation for
a MAC type instruction and optionally store the non-specified accumulator results. This
instruction clears the respective overflow and saturate flags (either OA, SA or OB, SB).

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.
Operand AWB specifies the optional register direct or indirect store of the convergently
rounded contents of the “other” accumulator, as described in Section 4.15.4 “MAC
Write-Back”.

The ‘A’ bit selects the other accumulator used for Write-Back.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.
The ‘a’ bits select the accumulator Write-Back destination.

Words: 1

Cycles: 1
DS70000157G-page 194 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: CLR A, [W8]+=2, W4, W13 ; Clear ACCA
; Load W4 with [W8], post-inc W8
; Store ACCB to W13

Before
Instruction

After
Instruction

W4 F001 W4 1221

W8 2000 W8 2002

W13 C623 W13 5420

ACCA 00 0067 2345 ACCA 00 0000 0000

ACCB 00 5420 3BDD ACCB 00 5420 3BDD

Data 2000 1221 Data 2000 1221

SR 0000 SR 0000

Example 2: CLR B, [W8]+=2, W6, [W10]+=2, W7, [W13]+=2 ; Clear ACCB
; Load W6 with [W8]
; Load W7 with [W10]
; Save ACCA to [W13]
; Post-inc W8,W10,W13

Before
Instruction

After
Instruction

W6 F001 W6 1221

W7 C783 W7 FF80

W8 2000 W8 2002

W10 3000 W10 3002

W13 4000 W13 4002

ACCA 00 0067 2345 ACCA 00 0067 2345

ACCB 00 5420 ABDD ACCB 00 0000 0000

Data 2000 1221 Data 2000 1221

Data 3000 FF80 Data 3000 FF80

Data 4000 FFC3 Data 4000 0067

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 195

16-Bit MCU and DSC Programmer’s Reference Manual

CLRWDT Clear Watchdog Timer

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CLRWDT

Operands: None

Operation: 0  WDT Count register
0  WDT Prescaler A count
0  WDT Prescaler B count

Status Affected: None

Encoding: 1111 1110 0110 0000 0000 0000

Description: Clear the contents of the Watchdog Timer Count register and the Prescaler Count
registers. The Watchdog Prescaler A and Prescaler B settings, set by Configuration
fuses in the FWDT, are not changed.

Words: 1

Cycles: 1

Example 1: CLRWDT ; Clear Watchdog Timer

Before
Instruction

After
Instruction

SR 0000 SR 0000
DS70000157G-page 196 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

COM Complement f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} COM{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f)  destination designated by D

Status Affected: N, Z

Encoding: 1110 1110 1BDf ffff ffff ffff

Description: Compute the 1’s complement of the contents of the file register and place the result in
the destination register. The optional WREG operand determines the destination
register. If WREG is specified, the result is stored in WREG. If WREG is not specified,
the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: COM.b RAM200 ; COM RAM200 (Byte mode)

Before
Instruction

After
Instruction

RAM200 80FF RAM200 8000

SR 0000 SR 0002 (Z)

Example 2: COM RAM400, WREG ; COM RAM400 and store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG 1211 WREG F7DC

RAM400 0823 RAM400 0823

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 197

16-Bit MCU and DSC Programmer’s Reference Manual

COM Complement Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} COM{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) Wd

Status Affected: N, Z

Encoding: 1110 1010 1Bqq qddd dppp ssss

Description: Compute the 1’s complement of the contents of the source register Ws and place the
result in the destination register Wd. Either Register Direct or Indirect Addressing may
be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: COM.B [W0++], [W1++] ; COM [W0] and store to [W1] (Byte mode)
; Post-increment W0, W1

Before
Instruction

After
Instruction

W0 2301 W0 2302

W1 2400 W1 2401

Data 2300 5607 Data 2300 5607

Data 2400 ABCD Data 2400 ABA9

SR 0000 SR 0008 (N = 1)
DS70000157G-page 198 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: COM W0, [W1++] ; COM W0 and store to [W1] (Word mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 D004 W0 D004

W1 1000 W1 1002

Data 1000 ABA9 Data 1000 2FFB

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 199

16-Bit MCU and DSC Programmer’s Reference Manual

CP Compare f with WREG, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CP{.B} f

Operands: f [0 ...8191]

Operation: (f) – (WREG)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0011 0B0f ffff ffff ffff

Description: Compute (f) – (WREG) and update the STATUS Register. This instruction is equivalent
to the SUBWF instruction, but the result of the subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP.B RAM400 ; Compare RAM400 with WREG (Byte mode)

Before
Instruction

After
Instruction

WREG 8823 WREG 8823

RAM400 0823 RAM400 0823

SR 0000 SR 0003 (C = 1)

Example 2: CP 0x1200 ; Compare (0x1200) with WREG (Word mode)

Before
Instruction

After
Instruction

WREG 2377 WREG 2377

Data 1200 2277 Data 1200 2277

SR 0000 SR 0008 (N = 1)
DS70000157G-page 200 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CP Compare Wb with lit5, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CP{.B} Wb, #lit5

Operands: Wb [W0 ... W15]
lit5  ... 31]

Operation: (Wb) – lit5

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 0www wB00 011k kkkk

Description: Compute (Wb) – lit5 and update the STATUS Register. This instruction is equivalent
to the SUB instruction, but the result of the subtraction is not stored. Register Direct
Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb Base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: CP.B W4, #0x12 ; Compare W4 with 0x12 (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0000 SR 0008 (N = 1)

Example 2: CP W4, #0x12 ; Compare W4 with 0x12 (Word mode)

Before
Instruction

After
Instruction

W4 7713 W4 7713

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 201

16-Bit MCU and DSC Programmer’s Reference Manual

CP Compare Wb with lit8, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CP{.B} Wb, #lit8

Operands: Wb [W0 ... W15]

lit8  ... 255]

Operation: (Wb) – lit8

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 0www wBkk k11k kkkk

Description: Compute (Wb) – lit8 and update the STATUS Register. This instruction is equivalent
to the SUB instruction, but the result of the subtraction is not stored. Register Direct
Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb Base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: CP.B W4, #0x12 ; Compare W4 with 0x12 (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0000 SR 0009 (N, C = 1)

Example 2: CP W4, #0x12 ; Compare W4 with 0x12 (Word mode)

Before
Instruction

After
Instruction

W4 7713 W4 7713

SR 0000 SR 0001 (C = 1)
DS70000157G-page 202 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CP Compare Wb with Ws, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CP{.B} Wb, Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]

Operation: (Wb) – (Ws)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 0www wB00 0ppp ssss

Description: Compute (Wb) – (Ws) and update the STATUS Register. This instruction is equivalent to the
SUB instruction, but the result of the subtraction is not stored. Register Direct Addressing
must be used for Wb. Register Direct or Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP.B W0, [W1++] ; Compare [W1] with W0 (Byte mode)
 ; Post-increment W1

Before
Instruction

After
Instruction

W0 ABA9 W0 ABA9

W1 2000 W1 2001

Data 2000 D004 Data 2000 D004

SR 0000 SR 0009 (N, C = 1)

Example 2: CP W5, W6 ; Compare W6 with W5 (Word mode)

Before
Instruction

After
Instruction

W5 2334 W5 2334

W6 8001 W6 8001

SR 0000 SR 000C (N, OV = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 203

16-Bit MCU and DSC Programmer’s Reference Manual

CP0 Compare f with 0x0, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CP0{.B} f

Operands: f [0 ... 8191]

Operation: (f) – 0x0

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0010 0B0f ffff ffff ffff

Description: Compute (f) – 0x0 and update the STATUS Register. The result of the subtraction is
not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP0.B RAM100 ; Compare RAM100 with 0x0 (Byte mode)

Before
Instruction

After
Instruction

RAM100 44C3 RAM100 44C3

SR 0000 SR 0009 (N, C = 1)

Example 2: CP0 0x1FFE ; Compare (0x1FFE) with 0x0 (Word mode)

Before
Instruction

After
Instruction

Data 1FFE 0001 Data 1FFE 0001

SR 0000 SR 0001 (C = 1)
DS70000157G-page 204 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CP0 Compare Ws with 0x0, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CP0{.B} Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: Ws [W0 ... W15]

Operation: (Ws) – 0x0000

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0000 0000 0B00 0ppp ssss

Description: Compute (Ws) – 0x0000 and update the STATUS Register. The result of the subtraction
is not stored. Register Direct or Indirect Addressing may be used for Ws.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CP0.B [W4--] ; Compare [W4] with 0 (Byte mode)
 ; Post-decrement W4

Before
Instruction

After
Instruction

W4 1001 W4 1000

Data 1000 0034 Data 1000 0034

SR 0000 SR 0001 (C = 1)

Example 2: CP0 [--W5] ; Compare [--W5] with 0 (Word mode)

Before
Instruction

After
Instruction

W5 2400 W5 23FE

Data 23FE 9000 Data 23FE 9000

SR 0000 SR 0009 (N, C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 205

16-Bit MCU and DSC Programmer’s Reference Manual

CPB Compare f with WREG Using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CPB{.B} f

Operands: f [0 ...8191]

Operation: (f) – (WREG) – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0011 1B0f ffff ffff ffff

Description: Compute (f) – (WREG) – (C) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CPB.B RAM400 ; Compare RAM400 with WREG using C (Byte mode)

Before
Instruction

After
Instruction

WREG 8823 WREG 8823

RAM400 0823 RAM400 0823

SR 0000 SR 0008 (N = 1)

Example 2: CPB 0x1200 ; Compare (0x1200) with WREG using C (Word mode)

Before
Instruction

After
Instruction

WREG 2377 WREG 2377

Data 1200 2377 Data 1200 2377

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 206 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPB Compare Wb with lit5 Using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CPB{.B} Wb, #lit5

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]

Operation: (Wb) – lit5 – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 1www wB00 011k kkkk

Description: Compute (Wb) – lit5 – (C) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.
Register Direct Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1

Example 1: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0001 (C = 1) SR 0008 (N = 1)

Example 2: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0000 SR 0008 (N = 1)

Example 3: CPB W12, #0x1F ; Compare W12 with 0x1F using C (Word mode)

Before
Instruction

After
Instruction

W12 0020 W12 0020

SR 0002 (Z = 1) SR 0003 (Z, C = 1)

Example 4: CPB W12, #0x1F ; Compare W12 with 0x1F using C (Word mode)

Before
Instruction

After
Instruction

W12 0020 W12 0020

SR 0003 (Z, C = 1) SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 207

16-Bit MCU and DSC Programmer’s Reference Manual

CPB Compare Wb with lit8 Using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPB{.B} Wb, #lit8

Operands: Wb [W0 ... W15]
lit8 [0 ... 255]

Operation: (Wb) – lit8 – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 1www wBkk k11k kkkk

Description: Compute (Wb) – lit8 – (C) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.
Register Direct Addressing must be used for Wb.

The ‘w’ bits select the address of the Wb register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1

Example 1: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0001 (C = 1) SR 0008 (N = 1)

Example 2: CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)

Before
Instruction

After
Instruction

W4 7711 W4 7711

SR 0000 SR 0008 (N = 1)

Example 3: CPB W12, #0x1F ; Compare W12 with 0x1F using C (Word mode)

Before
Instruction

After
Instruction

W12 0020 W12 0020

SR 0002 (Z = 1) SR 0003 (Z, C = 1)

Example 4: CPB W12, #0x1F ; Compare W12 with 0x1F using C (Word mode)

Before
Instruction

After
Instruction

W12 0020 W12 0020

SR 0003 (Z, C = 1) SR 0001 (C = 1)
DS70000157G-page 208 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPB Compare Ws with Wb Using Borrow, Set Status Flags

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} CPB{.B} Wb, Ws

[Ws]

[Ws++]

[Ws--]

[++Ws]

[--Ws]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]

Operation: (Wb) – (Ws) – (C)

Status Affected: DC, N, OV, Z, C

Encoding: 1110 0001 1www wB00 0ppp ssss

Description: Compute (Wb) – (Ws) – (C) and update the STATUS Register. This instruction is
equivalent to the SUBB instruction, but the result of the subtraction is not stored.
Register Direct Addressing must be used for Wb. Register Direct or Indirect Addressing
may be used for Ws.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the address of the Ws source register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: CPB.B W0, [W1++] ; Compare [W1] with W0 using C (Byte mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 ABA9 W0 ABA9

W1 1000 W1 1001

Data 1000 D0A9 Data 1000 D0A9

SR 0002 (Z = 1) SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 209

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: CPB.B W0, [W1++] ; Compare [W1] with W0 using C (Byte mode)
; Post-increment W1

Before
Instruction

After
Instruction

W0 ABA9 W0 ABA9

W1 1000 W1 1001

Data 1000 D0A9 Data 1000 D0A9

SR 0001 (C = 1) SR 0001 (C = 1)

Example 3: CPB W4, W5 ; Compare W5 with W4 using C (Word mode)

Before
Instruction

After
Instruction

W4 4000 W4 4000

W5 3000 W5 3000

SR 0001 (C = 1) SR 0001 (C = 1)
DS70000157G-page 210 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPBEQ Compare Wb with Wn, Branch if Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPBEQ{.B} Wb, Wn, Expr

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr]  PC and NOP  Instruction Register

Status Affected: None

Encoding: 1110 0111 1www wBnn nnnn ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb)  (Wn), the next instruction is executed as normal (branch is not taken).

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1 (5 if branch taken)

Example 1: 002000 HERE: CPBEQ.B W0, W1, BYPASS ; If W0 = W1 (Byte mode)
002002 ADD W2, W3, W4 ; Perform branch to BYPASS
002004 ...
002006 ...
002008 BYPASS: ...
00200A ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2008

W0 1000 W0 1000

W1 1000 W1 1000

SR 0000 SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 211

16-Bit MCU and DSC Programmer’s Reference Manual

CPBGT Signed Compare Wb with Wn, Branch if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPBGT{.B} Wb, Wn, Expr

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr]  PC and NOP  Instruction Register

Status Affected: None

Encoding: 1110 0110 0www wBnn nnnn ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb)  (Wn), the next instruction is executed as normal (branch is not
taken).

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (5 if branch taken)

Example 1: 002000 HERE: CPBGT.B W0, W1, BYPASS ; If W0 > W1 (Byte mode),
002002 ADD W2, W3, W4 ; Perform branch to BYPASS
002004 ...
002006 ...
002008 BYPASS ...
00200A ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2008

W0 30FF W0 00FF

W1 26FE W1 26FE

SR 0000 SR 0000 (N, C = 0)
DS70000157G-page 212 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPBLT Signed Compare Wb with Wn, Branch if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPBLT{.B} Wb, Wn, Expr

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr]  PC and NOP  Instruction Register

Status Affected: None

Encoding: 1110 0110 1www wBnn nnnn ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb)  (Wn), the next instruction is executed as normal (branch is not taken).

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1 (5 if branch taken)

Example 1: 002000 HERE: CPBLT.B W8, W9, BYPASS ; If W8 < W9 (Byte mode),
002002 ADD W2, W3, W4 ; Perform branch to BYPASS
002004 ...
002006 ...
002008 BYPASS: ...
00200A ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2008

W8 00FF W8 00FF

W9 26FE W9 26FE

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 213

16-Bit MCU and DSC Programmer’s Reference Manual

CPBNE Compare Wb with Wn, Branch if Not Equal (Wb  Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPBNE{.B} Wb, Wn, Expr

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
If (Wb) = (Wn), [(PC+2) + 2 * Expr]  PC and NOP  Instruction Register

Status Affected: None

Encoding: 1110 0111 0www wBnn nnnn ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, the PC is recalculated based on
the 6-bit signed offset specified by Expr, and on the next cycle, a NOP is executed
instead. If (Wb)  (Wn), the next instruction is executed as normal (branch is not taken).

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.
The ‘n’ bits select the offset of the branch destination.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1 (5 if branch taken)

Example 1: 002000 HERE: CPBNE.B W2, W3, BYPASS ; If W2 != W3 (Byte mode),
002002 ADD W2, W3, W4 ; Perform branch to BYPASS
002004 ...
002006 ...
002008 BYPASS: ...
00200A ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 200A

W2 00FF W2 00FF

W3 26FE W3 26FE

SR 0000 SR 0001 (C = 1)
DS70000157G-page 214 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPSEQ Compare Wb with Wn, Skip if Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CPSEQ{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) = (Wn)

Status Affected: None

Encoding: 1110 0111 1www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. If (Wb)  (Wn), the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSEQ.B W0, W1 ; If W0 = W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002004 ...
002006 ...
002008 BYPASS: ...
00200A ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W0 1001 W0 1001

W1 1000 W1 1000

SR 0000 SR 0000

Example 2: 018000 HERE: CPSEQ W4, W8 ; If W4 = W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8006

W4 3344 W4 3344

W8 3344 W8 3344

SR 0002 (Z = 1) SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 215

16-Bit MCU and DSC Programmer’s Reference Manual

CPSEQ Compare Wb with Wn, Skip if Equal (Wb = Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPSEQ{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) = (Wn)

Status Affected: None

Encoding: 1110 0111 1www wB00 0001 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) = (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. If (Wb)  (Wn), the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSEQ.B W0, W1 ; If W0 = W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002004 ...
002006 ...
002008 BYPASS: ...
00200A ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W0 1001 W0 1001

W1 1000 W1 1000

SR 0000 SR 0000

Example 2: 018000 HERE: CPSEQ W4, W8 ; If W4 = W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8006

W4 3344 W4 3344

W8 3344 W8 3344

SR 0002 (Z = 1) SR 0002 (Z = 1)
DS70000157G-page 216 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPSGT Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CPSGT{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) > (Wn)

Status Affected: None

Encoding: 1110 0110 0www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) > (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSGT.B W0, W1 ; If W0 > W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 ...
002008 ...
00200A BYPASS ...
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W0 00FF W0 00FF

W1 26FE W1 26FE

SR 0009 (N, C = 1) SR 0009 (N, C = 1)

Example 2: 018000 HERE: CPSGT W4, W5 ; If W4 > W5 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8002

W4 2600 W4 2600

W5 2600 W5 2600

SR 0004 (OV = 1) SR 0004 (OV = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 217

16-Bit MCU and DSC Programmer’s Reference Manual

CPSGT Signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPSGT{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) > (Wn)

Status Affected: None

Encoding: 1110 0110 0www wB00 0001 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) > (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSGT.B W0, W1 ; If W0 > W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 ...
002008 ...
00200A BYPASS ...
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W0 00FF W0 00FF

W1 26FE W1 26FE

SR 0009 (N, C = 1) SR 0009 (N, C = 1)

Example 2: 018000 HERE: CPSGT W4, W5 ; If W4 > W5 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8002

W4 2600 W4 2600

W5 2600 W5 2600

SR 0004 (OV = 1) SR 0004 (OV = 1)
DS70000157G-page 218 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPSLT Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CPSLT{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) < (Wn)

Status Affected: None

Encoding: 1110 0110 1www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) < (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSLT.B W8, W9 ; If W8 < W9 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 ...
002008 ...
00200A BYPASS: ...
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W8 00FF W8 00FF

W9 26FE W9 26FE

SR 0008 (N = 1) SR 0008 (N = 1)

Example 2: 018000 HERE: CPSLT W3, W6 ; If W3 < W6 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8006

W3 2600 W3 2600

W6 3000 W6 3000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 219

16-Bit MCU and DSC Programmer’s Reference Manual

CPSLT Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPSLT{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb) < (Wn)

Status Affected: None

Encoding: 1110 0110 1www wB00 0001 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb) < (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSLT.B W8, W9 ; If W8 < W9 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 ...
002008 ...
00200A BYPASS: ...
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

W8 00FF W8 00FF

W9 26FE W9 26FE

SR 0008 (N = 1) SR 0008 (N = 1)

Example 2: 018000 HERE: CPSLT W3, W6 ; If W3 < W6 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8006

W3 2600 W3 2600

W6 3000 W6 3000

SR 0000 SR 0000
DS70000157G-page 220 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CPSNE Signed Compare Wb with Wn, Skip if Not Equal (Wb  Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} CPSNE{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb)  (Wn)

Status Affected: None

Encoding: 1110 0111 0www wB00 0000 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb)  (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: PSNE.B W2, W3 ; If W2 != W3 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 ...
002008 ...
00200A BYPASS: ...
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W2 00FF W2 00FF

W3 26FE W3 26FE

SR 0001 (C = 1) SR 0001 (C = 1)

Example 2: 018000 HERE: CPSNE W0, W8 ; If W0 != W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8002

W0 3000 W0 3000

W8 3000 W8 3000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 221

16-Bit MCU and DSC Programmer’s Reference Manual

CPSNE Signed Compare Wb with Wn, Skip if Not Equal (Wb  Wn)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} CPSNE{.B} Wb, Wn

Operands: Wb [W0 ... W15]
Wn [W0 ... W15]

Operation: (Wb) – (Wn)
Skip if (Wb)  (Wn)

Status Affected: None

Encoding: 1110 0111 0www wB00 0001 ssss

Description: Compare the contents of Wb with the contents of Wn by performing the subtraction,
(Wb) – (Wn), but do not store the result. If (Wb)  (Wn), the next instruction (fetched
during the current instruction execution) is discarded, and on the next cycle, a NOP is
executed instead. Otherwise, the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Wn source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1 (2 or 3 if skip taken)

Example 1: 002000 HERE: CPSNE.B W2, W3 ; If W2 != W3 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006 ...
002008 ...
00200A BYPASS: ...
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2006

W2 00FF W2 00FF

W3 26FE W3 26FE

SR 0001 (C = 1) SR 0001 (C = 1)

Example 2: 018000 HERE: CPSNE W0, W8 ; If W0 != W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006 ...
018008 ...

Before
Instruction

After
Instruction

PC 01 8000 PC 01 8002

W0 3000 W0 3000

W8 3000 W8 3000

SR 0000 SR 0000
DS70000157G-page 222 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

CTXTSWP(1) CPU Register Context Swap Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} CTXTSWP #lit3

Operands: lit3 [0 ... 4]

Operation: If context defined by lit3 is valid,
Then

Switch CPU register context to context defined by lit3
Else

Execute as 2-cycle NOP

Status Affected: None

Encoding: 1111 1110 1110 0000 0000 0kkk

Description: This instruction will force a CPU register context switch (W0 through W14, and
Accumulators A and B) from the current context to the target context defined by the
value defined by #lit3. If the specified context is not implemented on the device, this
instruction will execute as a 2-cycle NOP.

A successful context switch will update the current context identifier and the manual
context identifier (held in CCTXI<2:0> (CTXTSTAT<10:8>) and MCTXI<2:0>
(CTXTSTAT<2:0>), respectively) to reflect the new active CPU register context.

Words: 1

Cycles: 2

Note 1: This instruction is present only in some devices of the device families. Please see the specific device data
sheet to ensure that this instruction is supported on a specific device.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 223

16-Bit MCU and DSC Programmer’s Reference Manual

CTXTSWP(1) CPU Register Context Swap Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} CTXTSWP Wn

Operands: Wn [W0 ... W15]

Operation: If context defined by the contents of Wn<2:0> is valid,
Then

Switch CPU register context to context defined by the contents of Wn<2:0>
Else

Execute as 2-cycle NOP

Status Affected: None

Encoding: 1111 1110 1111 0000 0000 ssss

Description: This instruction will force a CPU register context switch (W0 through W14, and
Accumulators A and B) from the current context to the target context defined by the
value in the three Least Significant bits of Wn. If the specified context is not
implemented on the device, this instruction will execute as a 2-cycle NOP.

A successful context switch will update the current context identifier and the manual
context identifier (held in CCTXI<2:0> (CTXTSTAT<10:8>) and MCTXI<2:0>
(CTXTSTAT<2:0>), respectively) to reflect the new active CPU register context.

Words: 1

Cycles: 2

Note 1: This instruction is present only in some devices of the device families. Please see the specific device data
sheet to ensure that this instruction is supported on a specific device.
DS70000157G-page 224 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

DAW.B Decimal Adjust Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DAW.B Wn

Operands: Wn [W0 ... W15]

Operation: If (Wn<3:0> > 9) or (DC = 1)
(Wn<3:0>) + 6  Wn<3:0>

Else
(Wn<3:0>)  Wn<3:0>

If (Wn<7:4> > 9) or (C = 1)
(Wn<7:4>) + 6  Wn<7:4>

Else
(Wn<7:4>)  Wn<7:4>

Status Affected: C

Encoding: 1111 1101 0100 0000 0000 ssss

Description: Adjust the Least Significant Byte in Wn to produce a Binary Coded Decimal (BCD)
result. The Most Significant Byte of Wn is not changed and the Carry flag is used to
indicate any decimal rollover. Register Direct Addressing must be used for Wn.

The ‘s’ bits select the source/destination register.

Note 1: This instruction is used to correct the data format after two packed BCD
bytes have been added.

2: This instruction operates in Byte mode only and the .B extension must be
included with the opcode.

Words: 1

Cycles: 1

Example 1: DAW.B W0 ; Decimal adjust W0

Before
Instruction

After
Instruction

W0 771A W0 7720

SR 0002 (DC = 1) SR 0002 (DC = 1)

Example 2: DAW.B W3 ; Decimal adjust W3

Before
Instruction

After
Instruction

W3 77AA W3 7710

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 225

16-Bit MCU and DSC Programmer’s Reference Manual

DEC Decrement f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DEC{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) – 1  destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1101 0BDf ffff ffff ffff

Description: Subtract one from the contents of the file register and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored in
the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC.B 0x200 ; Decrement (0x200) (Byte mode)

Before
Instruction

After
Instruction

Data 200 80FF Data 200 80FE

SR 0000 SR 0009 (N, C = 1)

Example 2: DEC RAM400, WREG ; Decrement RAM400 and store to WREG
; (Word mode)

Before
Instruction

After
Instruction

WREG 1211 WREG 0822

RAM400 0823 RAM400 0823

SR 0000 SR 0000
DS70000157G-page 226 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

DEC Decrement Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DEC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) – 1 Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1001 0Bqq qddd dppp ssss

Description: Subtract one from the contents of the source register Ws and place the result in the
destination register Wd. Either Register Direct or Indirect Addressing may be used by
Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC.B [W7++], [W8++] ; DEC [W7] and store to [W8] (Byte mode)
 ; Post-increment W7, W8

Before
Instruction

After
Instruction

W7 2301 W7 2302

W8 2400 W8 2401

Data 2300 5607 Data 2300 5607

Data 2400 ABCD Data 2400 AB55

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 227

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: DEC W5, [W6++] ; Decrement W5 and store to [W6] (Word mode)
 ; Post-increment W6

Before
Instruction

After
Instruction

W5 D004 W5 D004

W6 2000 W6 2002

Data 2000 ABA9 Data 2000 D003

SR 0000 SR 0009 (N, C = 1)
DS70000157G-page 228 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

DEC2 Decrement f by 2

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DEC2{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) – 2 destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1101 1BDf ffff ffff ffff

Description: Subtract two from the contents of the file register and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored in
the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC2.B 0x200 ; Decrement (0x200) by 2 (Byte mode)

Before
Instruction

After
Instruction

Data 200 80FF Data 200 80FD

SR 0000 SR 0009 (N, C = 1)

Example 2: DEC2 RAM400, WREG ; Decrement RAM400 by 2 and
 ; store to WREG (Word mode)

Before
Instruction

After
Instruction

WREG 1211 WREG 0821

RAM400 0823 RAM400 0823

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 229

16-Bit MCU and DSC Programmer’s Reference Manual

DEC2 Decrement Ws by 2

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DEC2{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) – 2 Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1001 1Bqq qddd dppp ssss

Description: Subtract two from the contents of the source register Ws and place the result in the
destination register Wd. Either Register Direct or Indirect Addressing may be used by
Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: DEC2.B [W7--], [W8--] ; DEC [W7] by 2, store to [W8] (Byte mode)
; Post-decrement W7, W8

Before
Instruction

After
Instruction

W7 2301 W7 2300

W8 2400 W8 23FF

Data 2300 0107 Data 2300 0107

Data 2400 ABCD Data 2400 ABFF

SR 0000 SR 0008 (N = 1)
DS70000157G-page 230 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: DEC2 W5, [W6++] ; DEC W5 by 2, store to [W6] (Word mode)
; Post-increment W6

Before
Instruction

After
Instruction

W5 D004 W5 D004

W6 1000 W6 1002

Data 1000 ABA9 Data 1000 D002

SR 0000 SR 0009 (N, C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 231

16-Bit MCU and DSC Programmer’s Reference Manual

DISI Disable Interrupts Temporarily

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DISI #lit14

Operands: lit14 [0 ... 16383]

Operation: lit14 DISICNT
1 DISI
Disable interrupts for (lit14 + 1) cycles

Status Affected: None

Encoding: 1111 1100 00kk kkkk kkkk kkkk

Description: Disable interrupts of Priority 0 through Priority 6 for (lit14 + 1) instruction cycles.
Priority 0 through Priority 6 interrupts are disabled, starting in the cycle that DISI
executes, and remain disabled for the next (lit 14) cycles. The lit14 value is written to
the DISICNT register and the DISI flag (INTCON2<14>) is set to ‘1’. This instruction
can be used before executing time-critical code to limit the effects of interrupts.

Note 1: This instruction does not prevent Priority 7 interrupts and traps from running.
See the specific device family reference manual for details.

2: This instruction does not prevent any interrupts when the device is in
Sleep mode.

Words: 1

Cycles: 1

Example 1: 002000 HERE: DISI #100 ; Disable interrupts for 101 cycles
002002 ; next 100 cycles protected by DISI
002004 ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2002

DISICNT 0000 DISICNT 0100

INTCON2 0000 INTCON2 4000 (DISI = 1)

SR 0000 SR 0000
DS70000157G-page 232 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

DIV.S Signed Integer Divide

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DIV.S{W} Wm, Wn

DIV.SD Wm, Wn

Operands: Wm [W0 ... W15] for word operation
Wm [W0, W2, W4 ... W14] for double operation
Wn [W2 ... W15]

Operation: For Word Operation (default):
Wm W0
If (Wm<15> = 1):

0xFFFF W1
Else:

0x0 W1
W1:W0/Wn W0
Remainder W1

For Double Operation (DIV.SD):
Wm + 1:Wm W1:W0
W1:W0/Wn W0
Remainder W1

Status Affected: N, OV, Z, C

Encoding: 1101 1000 0ttt tvvv vW00 ssss

Description: Iterative, signed integer divide, where the dividend is stored in Wm (for a 16-bit by 16-bit
divide) or Wm + 1:Wm (for a 32-bit by 16-bit divide) and the divisor is stored in Wn. In the
default word operation, Wm is first copied to W0 and sign-extended through W1 to perform
the operation. In the double operation, Wm + 1:Wm is first copied to W1:W0. The 16-bit
quotient of the divide operation is stored in W0 and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction (with an iteration
count of 17) to generate the correct quotient and remainder. The N flag will be set if the
remainder is negative and cleared otherwise. The OV flag will be set if the divide operation
resulted in an overflow and cleared otherwise. The Z flag will be set if the remainder is ‘0’
and cleared otherwise. The C flag is used to implement the divide algorithm and its final
value should not be used.

The ‘t’ bits select the most significant word of the dividend for the double operation.
These bits are clear for the word operation.
The ‘v’ bits select the least significant word of the dividend.
The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-bit).

Note 1: The ‘s’ bits select the Divisor register. The extension .D in the instruction
denotes a double-word (32-bit) dividend rather than a word dividend. You may
use a .W extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in 16 bits.
When this occurs for the double operation (DIV.SD), the OV Status bit will be
set and the quotient and remainder should not be used. For the word operation
(DIV.S), only one type of overflow may occur (0x8000/0xFFFF = +32768 or
0x00008000), which allows the OV Status bit to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of execution.

4: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 18 (plus 1 for REPEAT execution) for PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F,
dsPIC33E

6 (plus 1 for REPEAT execution) for dsPIC33C
© 2005-2018 Microchip Technology Inc. DS70000157G-page 233

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: REPEAT #17 ; Execute DIV.S 18 times
DIV.S W3, W4 ; Divide W3 by W4
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 5555 W0 013B

W1 1234 W1 0003

W3 3000 W3 3000

W4 0027 W4 0027

SR 0000 SR 0000

Example 2: REPEAT #17 ; Execute DIV.SD 18 times
DIV.SD W0, W12 ; Divide W1:W0 by W12
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 2500 W0 FA6B

W1 FF42 W1 EF00

W12 2200 W12 2200

SR 0000 SR 0008 (N = 1)
DS70000157G-page 234 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

DIV.U Unsigned Integer Divide

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} DIV.U{W} Wm, Wn

DIV.UD Wm, Wn

Operands: Wm [W0 ... W15] for word operation
Wm [W0, W2, W4 ... W14] for double operation
Wn [W2 ... W15]

Operation: For Word Operation (default):
 Wm W0
 0x0 W1
 W1:W0/Wn W0
 Remainder W1

For Double Operation (DIV.UD):
 Wm + 1:Wm W1:W0
 W1:W0/Wns W0
 Remainder W1

Status Affected: N, OV, Z, C

Encoding: 1101 1000 1ttt tvvv vW00 ssss

Description: Iterative, unsigned integer divide, where the dividend is stored in Wm (for a 16-bit by
16-bit divide) or Wm + 1:Wm (for a 32-bit by 16-bit divide) and the divisor is stored in
Wn. In the word operation, Wm is first copied to W0 and W1 is cleared to perform the
divide. In the double operation, Wm + 1:Wm is first copied to W1:W0. The 16-bit
quotient of the divide operation is stored in W0 and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction (with an
iteration count of 17) to generate the correct quotient and remainder. The N flag will
always be cleared. The OV flag will be set if the divide operation resulted in an over-
flow and cleared otherwise. The Z flag will be set if the remainder is ‘0’ and cleared
otherwise. The C flag is used to implement the divide algorithm and its final value
should not be used.

The ‘t’ bits select the most significant word of the dividend for the double operation.
These bits are clear for the word operation.
The ‘v’ bits select the least significant word of the dividend.
The ‘W’ bit selects the dividend size (‘0’ for 16-bit, ‘1’ for 32-bit).
The ‘s’ bits select the Divisor register.

Note 1: The extension .D in the instruction denotes a double-word (32-bit)
dividend rather than a word dividend. You may use a .W extension to
denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in
16 bits. This may only occur for the double operation (DIV.UD). When an
overflow occurs, the OV Status bit will be set, and the quotient and
remainder should not be used.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.

4: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 18 (plus 1 for REPEAT execution) for PIC24F, PIC24H, PIC24E, dsPIC30F, dsPIC33F,
dsPIC33E

6 (plus 1 for REPEAT execution) for dsPIC33C
© 2005-2018 Microchip Technology Inc. DS70000157G-page 235

16-Bit MCU and DSC Programmer’s Reference Manual
DIVF Fractional Divide

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} DIVF Wm, Wn

Operands: Wm [W0 ... W15]
Wn [W2 ... W15]

Operation: 0x0 W0
Wm W1
W1:W0/Wn W0
Remainder W1

Status Affected: N, OV, Z, C

Encoding: 1101 1001 0ttt t000 0000 ssss

Description: Iterative, signed fractional 16-bit by 16-bit divide, where the dividend is stored in Wm
and the divisor is stored in Wn. To perform the operation, W0 is first cleared and Wm
is copied to W1. The 16-bit quotient of the divide operation is stored in W0 and the
16-bit remainder is stored in W1. The sign of the remainder will be the same as the
sign of the dividend.

This instruction must be executed 18 times using the REPEAT instruction (with an
iteration count of 17) to generate the correct quotient and remainder. The N flag will
be set if the remainder is negative and cleared otherwise. The OV flag will be set if
the divide operation resulted in an overflow and cleared otherwise. The Z flag will be
set if the remainder is ‘0’ and cleared otherwise. The C flag is used to implement the
divide algorithm and its final value should not be used.

The ‘t’ bits select the Dividend register.
The ‘s’ bits select the Divisor register.

Note 1: For the fractional divide to be effective, Wm must be less than Wn. If Wm
is greater than or equal to Wn, unexpected results will occur because the
fractional result will be greater than or equal to 1.0. When this occurs, the
OV Status bit will be set, and the quotient and remainder should not be
used.

2: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.

3: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 18 (plus 1 for REPEAT execution) for dsPIC30F, dsPIC33F, dsPIC33E

6 (plus 1 for REPEAT execution) for dsPIC33C
DS70000157G-page 236 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: REPEAT #17 ; Execute DIVF 18 times
DIVF W8, W9 ; Divide W8 by W9
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 8000 W0 2000

W1 1234 W1 0000

W8 1000 W8 1000

W9 4000 W9 4000

SR 0000 SR 0002 (Z = 1)

Example 2: REPEAT #17 ; Execute DIVF 18 times
DIVF W8, W9 ; Divide W8 by W9
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 8000 W0 F000

W1 1234 W1 0000

W8 1000 W8 1000

W9 8000 W9 8000

SR 0000 SR 0002 (Z = 1)

Example 3: REPEAT #17 ; Execute DIVF 18 times
DIVF W0, W1 ; Divide W0 by W1
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 8002 W0 7FFE

W1 8001 W1 8002

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 237

16-Bit MCU and DSC Programmer’s Reference Manual
DIVF2 Signed Fractional Divide, 16/16 (W1:W0 Preserved)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} DIVF2 Wm, Wn

Operands: Wn [W2 ... W15]; Wm [W2 ... W15]

Operation: Wm = Dividend, Wn = Divisor:
0x0000  W(m–1)
Wm:W(m–1)/Wn  W(m–1); Remainder  Wm

Status Affected: C, N, OV, Z

Encoding: 1101 1001 0ttt t000 0010 ssss

Description: Iterative, signed fractional 16-bit by 16-bit divide, producing a 16-bit quotient and a 16-bit
remainder. The sign of the remainder will be the same as that of the dividend.

This instruction must be executed 6 times to generate the correct quotient and
remainder. This may only be achieved by executing a REPEAT with an iteration count of 5
(i.e., 5+1 iterations in all) and the DIVF instruction as its target.

The N flag will be set if the remainder is negative and cleared otherwise. The OV flag will
be set if the divide operation resulted in an overflow and cleared otherwise. The Z flag will
be set if the remainder is ‘0’ and cleared otherwise. The C flag is used to implement the
divide algorithm and its final value should not be used.

The ‘s’ bits select the address of the source (divisor) register.
The ‘t’ bits select the address of the source (dividend) register.

Note 1: For the fractional divide to be effective, Wm must be less than Wn. If Wm is
greater than or equal to Wn, unexpected results will occur because the fractional
result will be greater than or equal to 1.0. When this occurs, the OV Status bit
will be set, and the quotient and remainder should not be used.

2: Dividing by zero will initiate an arithmetic error trap during the first cycle of execution.

3: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 6 (plus 1 for REPEAT instruction execution)

Example 1: REPEAT #17 ; Execute DIV.U 18 times
DIV.U W2, W4 ; Divide W2 by W4
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 5555 W0 0040

W1 1234 W1 0000

W2 8000 W2 8000

W4 0200 W4 0200

SR 0000 SR 0002 (Z = 1)
DS70000157G-page 238 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: REPEAT #17 ; Execute DIV.UD 18 times
DIV.UD W10, W12 ; Divide W11:W10 by W12
 ; Store quotient to W0, remainder to W1

Before
Instruction

After
Instruction

W0 5555 W0 01F2

W1 1234 W1 0100

W10 2500 W10 2500

W11 0042 W11 0042

W12 2200 W12 2200

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 239

16-Bit MCU and DSC Programmer’s Reference Manual

DIV2.S Signed Integer Divide (W1:W0 Preserved)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} DIV2.S{W} Wm, Wn

DIV2.SD Wm, Wn

Operands: Wm  [W0 ... W15] for word operation
Wm  [W0, W2, W4 ... W14] for double operation
Wn  [W2 ... W15]

Operation: For Word Operation (default):
W(m+1):Wm/Wn  Wm; Remainder  W(m+1)

For Double Operation (DIV2.SD):
W(m+1):Wm/Wn  Wm; Remainder  W(m+1)

Status Affected: C, N, OV, Z

Encoding: 1101 1000 0ttt tvvv v110 ssss

Description: Iterative, signed integer 32-bit by 16-bit divide to a 16-bit quotient and a 16-bit
remainder. The sign of the remainder will be the same as that of the dividend. Wm must
be an even number and holds the least significant word of the dividend. The most
significant word of the dividend is held in W(m+1).

This instruction must be executed 6 times to generate the correct quotient and
remainder. This may only be achieved by executing a REPEAT with an iteration count of
5 (i.e., 5+1 iterations in all) and the DIV2.S instruction as its target.

The N flag will be set if the remainder is negative and cleared otherwise. The OV flag
will be set if the divide operation resulted in an overflow and cleared otherwise. The Z
flag will be set if the remainder is ‘0’ and cleared otherwise. The C flag is used to
implement the divide algorithm and its final value should not be used.

The ‘s’ bits select the address of the source (divisor) register.
The ‘t’ bits select the address of the source (dividend, most significant word) register.
The ‘v’ bits select the address of the source (dividend, least significant word) register.

Note 1: The extension .D in the instruction denotes a double-word (32-bit) dividend
rather than a word dividend. You may use a .W extension to denote a word
operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in
16 bits. When this occurs for the double operation (DIV2.SD), the OV Status
bit will be set, and the quotient and remainder should not be used. For the
word operation (DIV2.S), only one type of overflow may occur
(0x8000/0xFFFF = +32768 or 0x00008000), which allows the OV Status bit
to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.

4: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 6 (plus 1 for REPEAT instruction execution)
DS70000157G-page 240 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

DIV2.U Unsigned Integer Divide (W1:W0 Preserved)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} DIV2.U{W} Wm, Wn

DIV2.UD Wm, Wn

Operands: Wm  [W0 ... W15] for word operation
Wm  [W0, W2, W4 ... W14] for double operation
Wn  [W2 ... W15]

Operation: W(m+1):Wm = Dividend, Wn = Divisor:
W(m+1):Wm/Wn  Wm; Remainder  W(m+1)

For Word Operation (default):
0 → W(m+1)
W(m+1):Wm/Wn  Wm; Remainder  W(m+1)

For Double Operation (DIV2.SD):
W(m+1):Wm/Wn  Wm; Remainder  W(m+1)

Status Affected: C, N, OV, Z

Encoding: 1101 1000 1ttt tvvv v110 ssss

Description: Iterative, unsigned integer 16-bit by 16-bit or 32-bit by 16-bit divide, producing a 16-bit
quotient and a 16-bit remainder. Wm must be an even number and holds the least
significant word of the dividend. The most significant word of the dividend is held in
W(m+1).

This instruction must be executed 6 times to generate the correct quotient and
remainder. This may only be achieved by executing a REPEAT with an iteration count of
5 (i.e., 5+1 iterations in all) and the DIV.UD instruction as its target.

The N flag is always cleared. The OV flag will be set if the divide operation resulted in
an overflow and cleared otherwise. The Z flag will be set if the remainder is ‘0’ and
cleared otherwise. The C flag is used to implement the divide algorithm and its final
value should not be used.

The ‘s’ bits select the address of the source (divisor) register.
The ‘t’ bits select the address of the source (dividend, most significant word) register.

Note 1: The extension .D in the instruction denotes a double-word (32-bit) dividend
rather than a word dividend. You may use a .W extension to denote a word
operation, but it is not required.

2: Unexpected results will occur if the quotient can not be represented in
16 bits. This may only occur for the double operation (DIV2.UD). When an
overflow occurs, the OV Status bit will be set, and the quotient and
remainder should not be used.

3: Dividing by zero will initiate an arithmetic error trap during the first cycle of
execution.

4: This instruction is interruptible on each instruction cycle boundary.

Words: 1

Cycles: 6 (plus 1 for REPEAT instruction execution)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 241

16-Bit MCU and DSC Programmer’s Reference Manual

DO Initialize Hardware Loop Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} DO #lit14, Expr

Operands: lit14 [0 ... 16383]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16  [-32768 ... +32767].

Operation: PUSH DO shadows (DCOUNT, DOEND, DOSTART)
(lit14)  DCOUNT
(PC) + 4  PC
(PC)  DOSTART
(PC) + (2 * Slit16)  DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

Encoding: 0000 1000 00kk kkkk kkkk kkkk

0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (lit14 + 1) times. The DO
loop begins at the address following the DO instruction and ends at the
address 2 * Slit16 instruction words away. The 14-bit count value (lit14) supports a
maximum loop count value of 16384 and the 16-bit offset value (Slit16) supports
offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DO loop
parameters specified by the instruction. The DO level count, DL<2:0>
(CORCON<8:10>), is then incremented. After the DO loop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored, and DL<2:0> are
decremented.

The ‘k’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from the PC to the last instruction executed in the loop.

Special Features, Restrictions:

The following features and restrictions apply to the DO instruction.

1. Using a loop count of 0 will result in the loop being executed one time.

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DO loop cannot be:
• an instruction which changes program control flow

• a DO or REPEAT instruction
Unexpected results may occur if any of these instructions are used.

4. If a hard trap occurs in the second to last instruction or third to last instruction of
a DO loop, the loop will not function properly. The hard trap includes exceptions
of Priority Level 13 through Level 15, inclusive.

Note 1: The DO instruction is interruptible and supports 1 level of hardware nesting.
Nesting up to an additional 5 levels may be provided in software by the user.
See the specific device family reference manual for details.

2: The linker will convert the specified expression into the offset to be used.

Words: 2

Cycles: 2
DS70000157G-page 242 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: 002000 LOOP6: DO #5, END6 ; Initiate DO loop (6 reps)
002004 ADD W1, W2, W3 ; First instruction in loop
002006 ...
002008 ...
00200A END6: SUB W2, W3, W4 ; Last instruction in loop
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

DCOUNT 0000 DCOUNT 0005

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 200A

CORCON 0000 CORCON 0100 (DL = 1)

SR 0001 (C = 1) SR 0201 (DA, C = 1)

Example 2: 01C000 LOOP12: DO #0x160, END12 ; Init DO loop (353 reps)
01C004 DEC W1, W2 ; First instruction in loop
01C006 ...
01C008 ...
01C00A ...
01C00C ...
01C00E CALL _FIR88 ; Call the FIR88 subroutine
01C012 NOP
01C014 END12: NOP ; Last instruction in loop

; (Required NOP filler)

Before
Instruction

After
Instruction

PC 01 C000 PC 01 C004

DCOUNT 0000 DCOUNT 0160

DOSTART FF FFFF DOSTART 01 C004

DOEND FF FFFF DOEND 01 C014

CORCON 0000 CORCON 0100 (DL = 1)

SR 0008 (N = 1) SR 0208 (DA, N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 243

16-Bit MCU and DSC Programmer’s Reference Manual

DO Initialize Hardware Loop Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} DO #lit15, Expr

Operands: lit15 [0 ... 32767]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16  [-32768 ... +32767].

Operation: PUSH DO shadows (DCOUNT, DOEND, DOSTART)
(lit15)  DCOUNT
(PC) + 4  PC
(PC)  DOSTART
(PC) + (2 * Slit16)  DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

Encoding: 0000 1000 0kkk kkkk kkkk kkkk

0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (lit15 + 1) times. The DO
loop begins at the address following the DO instruction and ends at the
address 2 * Slit16 instruction words away. The 15-bit count value (lit15) supports a
maximum loop count value of 32768 and the 16-bit offset value (Slit16) supports offsets
of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DO loop
parameters specified by the instruction. The DO level count, DL<2:0> bits
(CORCON<8:10>), is then incremented. After the DO loop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored and DL<2:0> are
decremented.

The ‘k’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from the PC to the last instruction executed in the loop.

Special Features, Restrictions:

The following features and restrictions apply to the DO instruction.

1. Using a loop count of 0 will result in the loop being executed one time.

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DO loop cannot be:
• an instruction which changes program control flow

• a DO or REPEAT instruction
Unexpected results may occur if any of these instructions are used.

4. If a hard trap occurs in the second to last instruction or third to last instruction of
a DO loop, the loop will not function properly. The hard trap includes exceptions of
Priority Level 13 through Level 15, inclusive.

5. The first and last instructions of the DO loop should not be a PSV read, table read
or table write.

Note 1: The DO instruction is interruptible and supports 1 level of hardware nesting.
Nesting up to an additional 5 levels may be provided in software by the user.
See the specific device family reference manual for details.

2: The linker will convert the specified expression into the offset to be used.

Words: 2

Cycles: 2
DS70000157G-page 244 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: 002000 LOOP6: DO #5, END6 ; Initiate DO loop (6 reps)
002004 ADD W1, W2, W3 ; First instruction in loop
002006 ...
002008 ...
00200A END6: SUB W2, W3, W4 ; Last instruction in loop
00200C ...

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

DCOUNT 0000 DCOUNT 0005

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 200A

CORCON 0000 CORCON 0100 (DL = 1)

SR 0001 (C = 1) SR 0201 (DA, C = 1)

Example 2: 01C000 LOOP12: DO #0x160, END12 ; Init DO loop (353 reps)
01C004 DEC W1, W2 ; First instruction in loop
01C006 ...
01C008 ...
01C00A ...
01C00C ...
01C00E CALL _FIR88 ; Call the FIR88 subroutine
01C012 NOP
01C014 END12: NOP ; Last instruction in loop

; (Required NOP filler)

Before
Instruction

After
Instruction

PC 01 C000 PC 01 C004

DCOUNT 0000 DCOUNT 0160

DOSTART FF FFFF DOSTART 01 C004

DOEND FF FFFF DOEND 01 C014

CORCON 0000 CORCON 0100 (DL = 1)

SR 0008 (N = 1) SR 0208 (DA, N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 245

16-Bit MCU and DSC Programmer’s Reference Manual

DO Initialize Hardware Loop Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} DO Wn, Expr

Operands: Wn [W0 ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16  [-32768 ... +32767].

Operation: PUSH Shadows (DCOUNT, DOEND, DOSTART)
(Wn<13:0>)  DCOUNT
(PC) + 4  PC
(PC)  DOSTART
(PC) + (2 * Slit16)  DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

0000 1000 1000 0000 0000 ssss

Encoding: 0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (Wn + 1) times. The DO loop
begins at the address following the DO instruction and ends at the address 2 * Slit16
instruction words away. The lower 14 bits of Wn support a maximum count value of
16384 and the 16-bit offset value (Slit16) supports offsets of 32K instruction words in
both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DO loop
parameters specified by the instruction. The DO level count, DL<2:0>
(CORCON<8:10>), is then incremented. After the DO loop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored, and DL<2:0> are
decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:

The following features and restrictions apply to the DO instruction.

1. Using a loop count of 0 will result in the loop being executed one time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DO loop cannot be:

• an instruction which changes program control flow

• a DO or REPEAT instruction

Unexpected results may occur if these last instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of nesting. Nesting up
to an additional 5 levels may be provided in software by the user. See the
specific device family reference manual for details.

2: The linker will convert the specified expression into the offset to be used.

Words: 2

Cycles: 2
DS70000157G-page 246 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: 002000 LOOP6: DO W0, END6 ; Initiate DO loop (W0 reps)
002004 ADD W1, W2, W3 ; First instruction in loop
002006 ...
002008 ...
00200A ...
00200C REPEAT #6
00200E SUB W2, W3, W4
002010 END6: NOP ; Last instruction in loop
 ; (Required NOP filler)

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W0 0012 W0 0012

DCOUNT 0000 DCOUNT 0012

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010

CORCON 0000 CORCON 0100 (DL = 1)

SR 0000 SR 0080 (DA = 1)

Example 2: 002000 LOOPA: DO W7, ENDA ; Initiate DO loop (W7 reps)
002004 SWAP W0 ; First instruction in loop
002006 ...
002008 ...
00200A ...
002010 ENDA: MOV W1, [W2++] ; Last instruction in loop

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W7 E00F W7 E00F

DCOUNT 0000 DCOUNT 200F

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010

CORCON 0000 CORCON 0100 (DL = 1)

SR 0000 SR 0080 (DA = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 247

16-Bit MCU and DSC Programmer’s Reference Manual

DO Initialize Hardware Loop Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} DO Wn, Expr

Operands: Wn [W0 ... W15]
Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16  [-32768 ... +32767].

Operation: PUSH Shadows (DCOUNT, DOEND, DOSTART)
(Wn)  DCOUNT
(PC) + 4  PC
(PC)  DOSTART
(PC) + (2 * Slit16)  DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

0000 1000 1000 0000 0000 ssss

Encoding: 0000 0000 nnnn nnnn nnnn nnnn

Description: Initiate a no overhead hardware DO loop, which is executed (Wn + 1) times. The DO loop
begins at the address following the DO instruction and ends at the address 2 * Slit16
instruction words away. The 16 bits of Wn support a maximum count value of 65536
and the 16-bit offset value (Slit16) supports offsets of 32K instruction words in both
directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first PUSHed
into their respective shadow registers, and then updated with the new DO loop
parameters specified by the instruction. The DO level count, DL<2:0>
(CORCON<8:10>), is then incremented. After the DO loop completes execution, the
PUSHed DCOUNT, DOSTART and DOEND registers are restored, and DL<2:0> are
decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions that are offset
from (PC + 4), which is the last instruction executed in the loop.

Special Features, Restrictions:

The following features and restrictions apply to the DO instruction.

1. Using a loop count of 0 will result in the loop being executed one time.

2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur if these
offsets are used.

3. The very last two instructions of the DO loop cannot be:

• an instruction which changes program control flow

• a DO or REPEAT instruction

Unexpected results may occur if these last instructions are used.

4. The first and last instructions of the DO loop should not be a PSV read, table read
or table write.

Note 1: The DO instruction is interruptible and supports 1 level of nesting. Nesting up
to an additional 5 levels may be provided in software by the user. See the
specific device family reference manual for details.

2: The linker will convert the specified expression into the offset to be used.

Words: 2

Cycles: 2
DS70000157G-page 248 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: 002000 LOOP6: DO W0, END6 ; Initiate DO loop (W0 reps)
002004 ADD W1, W2, W3 ; First instruction in loop
002006 ...
002008 ...
00200A ...
00200C REPEAT #6
00200E SUB W2, W3, W4
002010 END6: NOP ; Last instruction in loop
 ; (Required NOP filler)

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W0 0012 W0 0012

DCOUNT 0000 DCOUNT 0012

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010

CORCON 0000 CORCON 0100 (DL = 1)

SR 0000 SR 0080 (DA = 1)

Example 2: 002000 LOOPA: DO W7, ENDA ; Initiate DO loop (W7 reps)
002004 SWAP W0 ; First instruction in loop
002006 ...
002008 ...
00200A ...
002010 ENDA: MOV W1, [W2++] ; Last instruction in loop

Before
Instruction

After
Instruction

PC 00 2000 PC 00 2004

W7 E00F W7 E00F

DCOUNT 0000 DCOUNT 200F

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 2010

CORCON 0000 CORCON 0100 (DL = 1)

SR 0000 SR 0080 (DA = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 249

16-Bit MCU and DSC Programmer’s Reference Manual
ED Euclidean Distance (No Accumulate)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} ED Wm * Wm, Acc, [Wx], [Wy], Wxd

[Wx] + = kx, [Wy] + = ky,

[Wx] – = kx, [Wy] – = ky,

[W9 + W12], [W11 + W12],

Operands: Acc  [A,B]
Wm * Wm  [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx  [W8, W9]; kx  [-6, -4, -2, 2, 4, 6]
Wy  [W10, W11]; ky  [-6, -4, -2, 2, 4, 6]
Wxd  [W4 ... W7]

Operation: (Wm) * (Wm)  Acc(A or B)
([Wx] – [Wy])  Wxd
(Wx) + kx Wx
(Wy) + ky  Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A1xx 00ii iijj jj11

Description: Compute the square of Wm, and compute the difference of the prefetch values
specified by [Wx] and [Wy]. The results of Wm * Wm are sign-extended to 40 bits and
stored in the specified accumulator. The results of [Wx] – [Wy] are stored in Wxd,
which may be the same as Wm.

Operands, Wx, Wxd and Wyd, specify the prefetch operations which support Indirect
and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch difference Wxd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.

Words: 1

Cycles: 1

Example 1: ED W4*W4, A, [W8]+=2, [W10]-=2, W4 ; Square W4 to ACCA
; [W8]-[W10] to W4
; Post-increment W8
; Post-decrement W10

Before
Instruction

After
Instruction

W4 009A W4 0057

W8 1100 W8 1102

W10 2300 W10 22FE

ACCA 00 3D0A 0000 ACCA 00 0000 5CA4

Data 1100 007F Data 1100 007F

Data 2300 0028 Data 2300 0028

SR 0000 SR 0000
DS70000157G-page 250 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: ED W5*W5, B, [W9]+=2, [W11+W12], W5 ; Square W5 to ACCB
; [W9]-[W11+W12] to W5
; Post-increment W9

Before
Instruction

After
Instruction

W5 43C2 W5 3F3F

W9 1200 W9 1202

W11 2500 W11 2500

W12 0008 W12 0008

ACCB 00 28E3 F14C ACCB 00 11EF 1F04

Data 1200 6A7C Data 1200 6A7C

Data 2508 2B3D Data 2508 2B3D

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 251

16-Bit MCU and DSC Programmer’s Reference Manual

EDAC Euclidean Distance

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} EDAC Wm * Wm, Acc, [Wx], [Wy], Wxd

[Wx] + = kx, [Wy] + = ky,

[Wx] – = kx, [Wy] – = ky,

[W9 + W12], [W11 + W12],

Operands: Acc  [A,B]
Wm * Wm  [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Wx  [W8, W9]; kx  [-6, -4, -2, 2, 4, 6]
Wy  [W10, W11]; ky  [-6, -4, -2, 2, 4, 6]
Wxd  [W4 ... W7]

Operation: (Acc(A or B)) + (Wm) * (Wm)  Acc(A or B)
([Wx] – [Wy])  Wxd
(Wx) + kx Wx
(Wy) + ky Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A1xx 00ii iijj jj10

Description: Compute the square of Wm, and also the difference of the prefetch values specified by
[Wx] and [Wy]. The results of Wm * Wm are sign-extended to 40 bits and added to the
specified accumulator. The results of [Wx] – [Wy] are stored in Wxd, which may be the
same as Wm.

Operands, Wx, Wxd and Wyd, specify the prefetch operations which support Indirect
and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch difference Wxd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.

Words: 1

Cycles: 1
DS70000157G-page 252 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: EDAC W4*W4, A, [W8]+=2, [w10]-=2, W4 ; Square W4 and
; add to ACCA
; [W8]-[W10] to W4
; Post-increment W8
; Post-decrement W10

Before
Instruction

After
Instruction

W4 009A W4 0057

W8 1100 W8 1102

W10 2300 W10 22FE

ACCA 00 3D0A 3D0A ACCA 00 3D0A 99AE

Data 1100 007F Data 1100 007F

Data 2300 0028 Data 2300 0028

SR 0000 SR 0000

Example 2: EDAC W5*W5, B, [w9]+=2, [W11+W12], W5 ; Square W5 and
; add to ACCB
; [W9]-[W11+W12] to W5
; Post-increment W9

Before
Instruction

After
Instruction

W5 43C2 W5 3F3F

W9 1200 W9 1202

W11 2500 W11 2500

W12 0008 W12 0008

ACCB 00 28E3 F14C ACCB 00 3AD3 1050

Data 1200 6A7C Data 1200 6A7C

Data 2508 2B3D Data 2508 2B3D

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 253

16-Bit MCU and DSC Programmer’s Reference Manual

EXCH Exchange Wns and Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} EXCH Wns, Wnd

Operands: Wns  [W0 ... W15]
Wnd  [W0 ... W15]

Operation: (Wns)  (Wnd)

Status Affected: None

Encoding: 1111 1101 0000 0ddd d000 ssss

Description: Exchange the word contents of two Working registers. Register Direct Addressing
must be used for Wns and Wnd.

The ‘d’ bits select the address of the first register.
The ‘s’ bits select the address of the second register.

Note: This instruction only executes in Word mode.

Words: 1

Cycles: 1

Example 1: EXCH W1, W9 ; Exchange the contents of W1 and W9

 Before
Instruction

 After
Instruction

W1 55FF W1 A3A3

W9 A3A3 W9 55FF

SR 0000 SR 0000

Example 2: EXCH W4, W5 ; Exchange the contents of W4 and W5

 Before
Instruction

 After
Instruction

W4 ABCD W4 4321

W5 4321 W5 ABCD

SR 0000 SR 0000
DS70000157G-page 254 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

FBCL Find First Bit Change from Left

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} FBCL Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws  [W0 ... W15]
Wnd  [W0 ... W15]

Operation: Max_Shift = 15
Sign = (Ws) & 0x8000
Temp = (Ws) << 1
Shift = 0
While ((Shift < Max_Shift) && (Temp & 0x8000) == Sign))

Temp = Temp << 1
Shift = Shift + 1

-Shift  (Wnd)

Status Affected: C

Encoding: 1101 1111 0000 0ddd dppp ssss

Description: Find the first occurrence of a one (for a positive value) or zero (for a negative value),
starting from the Most Significant bit after the sign bit of Ws and working towards the
Least Significant bit of the word operand. The bit number result is sign-extended to
16 bits and placed in Wnd.

The next Most Significant bit after the sign bit is allocated bit number 0 and the Least
Significant bit is allocated bit number -14. This bit ordering allows for the immediate
use of Wd with the SFTAC instruction for scaling values up. If a bit change is not found,
a result of -15 is returned and the C flag is set. When a bit change is found, the C flag
is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 255

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: FBCL W1, W9 ; Find 1st bit change from left in W1
; and store result to W9

Before
Instruction

After
Instruction

W1 55FF W1 55FF

W9 FFFF W9 0000

SR 0000 SR 0000

Example 2: FBCL W1, W9 ; Find 1st bit change from left in W1
; and store result to W9

Before
Instruction

After
Instruction

W1 FFFF W1 FFFF

W9 BBBB W9 FFF1

SR 0000 SR 0001 (C = 1)

Example 3: FBCL [W1++], W9 ; Find 1st bit change from left in [W1]
; and store result to W9
; Post-increment W1

Before
Instruction

After
Instruction

W1 2000 W1 2002

W9 BBBB W9 FFF9

Data 2000 FF0A Data 2000 FF0A

SR 0000 SR 0000
DS70000157G-page 256 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

FF1L Find First One from Left

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} FF1L Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws  [W0 ... W15]
Wnd  [W0 ... W15]

Operation: Max_Shift = 17
Temp = (Ws)
Shift = 1
While ((Shift < Max_Shift) && !(Temp & 0x8000))

Temp = Temp << 1
Shift = Shift + 1

If (Shift == Max_Shift)
0  (Wnd)

Else
Shift  (Wnd)

Status Affected: C

Encoding: 1100 1111 1000 0ddd dppp ssss

Description: Finds the first occurrence of a one starting from the Most Significant bit of Ws and
working towards the Least Significant bit of the word operand. The bit number result
is zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Most Significant bit (allocated number 1) and advances
to the Least Significant bit (allocated number 16). A result of zero indicates a ‘1’ was
not found and the C flag will be set. If a ‘1’ is found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 257

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: FF1L W2, W5 ; Find the 1st one from the left in W2
 ; and store result to W5

Before
Instruction

After
Instruction

W2 000A W2 000A

W5 BBBB W5 000D

SR 0000 SR 0000

Example 2: FF1L [W2++], W5 ; Find the 1st one from the left in [W2]
; and store the result to W5
; Post-increment W2

Before
Instruction

After
Instruction

W2 2000 W2 2002

W5 BBBB W5 0000

Data 2000 0000 Data 2000 0000

SR 0000 SR 0001 (C = 1)
DS70000157G-page 258 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

FF1R Find First One from Right

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} FF1R Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws  [W0 ... W15]
Wnd  [W0 ... W15]

Operation: Max_Shift = 17
Temp = (Ws)
Shift = 1
While ((Shift < Max_Shift) && !(Temp & 0x1))

Temp = Temp >> 1
Shift = Shift + 1

If (Shift == Max_Shift)
0  (Wnd)

Else
Shift  (Wnd)

Status Affected: C

Encoding: 1100 1111 0000 0ddd dppp ssss

Description: Finds the first occurrence of a one starting from the Least Significant bit of Ws and
working towards the Most Significant bit of the word operand. The bit number result is
zero-extended to 16 bits and placed in Wnd.

Bit numbering begins with the Least Significant bit (allocated number 1) and advances
to the Most Significant bit (allocated number 16). A result of zero indicates a ‘1’ was
not found and the C flag will be set. If a ‘1’ is found, the C flag is cleared.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 259

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: FF1R W1, W9 ; Find the 1st one from the right in W1
; and store the result to W9

Before
Instruction

After
Instruction

W1 000A W1 000A

W9 BBBB W9 0002

SR 0000 SR 0000

Example 2: FF1R [W1++], W9 ; Find the 1st one from the right in [W1]
; and store the result to W9
; Post-increment W1

Before
Instruction

After
Instruction

W1 2000 W1 2002

W9 BBBB W9 0010

Data 2000 8000 Data 2000 8000

SR 0000 SR 0000
DS70000157G-page 260 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

FLIM Force (Signed) Data Range Limit

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} FLIM Wb, Ws,

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15];
Wb [W0, W2, W4, W6, W8, W10, W12, W14];

Operation: If (Ws) > (Wb)
Then

(Wb) Ws);
0  Z; 0  N; 0  OV;

If (Ws) < (Wb+1)
Then

(Wb+1) Ws;

0  Z; 1  N; 0  OV;
Else

1 Z; 0  N; 0  OV;

N, Z, OV

Encoding: 1110 0100 0www w000 0ppp ssss

Description: Simultaneously compare a 16-bit signed data value in Ws to a maximum signed limit
value held in Wb and a minimum signed limit value held in W(b+1).

If Ws is greater than Wb, set Ws to the limit value held in Wb. The Z, N and OV Status
bits are set such that a subsequent BRA GT instruction will take a branch.

If Ws is less than W(b+1), set Ws to the limit value held in W(b+1). The Z, N and OV
Status bits are set such that a subsequent BRA LT instruction will take a branch.

If Ws is less than or equal to the maximum limit in Wb, and greater than or equal to the
minimum limit in W(b+1), Ws is not modified (i.e., data is within range and limits are not
applied). The Z Status bit is set such that a subsequent BRA Z instruction will take a
branch.

The OV Status bit is always cleared by this instruction.

The ‘s’ bits select the address of the source (data value) register.
The ‘w’ bits select the address of the base (data limit) register.
The ‘p’ bits select the source addressing mode.

Note 1: Although the instruction assumes signed values for all operands, both upper
and lower limit values may be of the same sign.

2: The Status bits are set based upon the value loaded into Wnd.

3: If the operand is greater than the maximum limit value in Wb, the CPU will
write back the Wb value, regardless of whether the operand is less than the
minimum value held in W(b+1) or not.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 261

16-Bit MCU and DSC Programmer’s Reference Manual

LIM.V Force (Signed) Data Range Limit with Limit Excess Result

plemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

ntax: {label:} FLIM.V Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

erands: Ws [W0 ... W15];
Wb [W0, W2, W4, W6, W8, W10, W12, W14];
Wnd [W0 ... W15]

eration: If (Ws) > (Wb)
Then

(0x0001  Wnd OR (Ws–Wb)  Wnd;
(Wb) Ws);
0  Z; 0  N; 0  OV;)

If (Ws) < (Wb+1)
Then

(0xFFFF  Wnd OR (Ws–W(b+1))  Wnd;
W(b+1) Ws;
0  Z; 1  N; 0  OV;)

Else
(0  Wnd;
1  Z; 0  N; 0  OV;)

N, Z, OV

coding: 1110 0101 xwww wddd dppp ssss

scription: Simultaneously compare a 16-bit signed data value in Ws to a maximum signed limit value held in Wb
and a minimum signed limit value held in W(b+1). Write the limit excess value into Wnd.

If Ws is greater than Wb, either write the (signed) value by which the limit is exceeded to Wnd (FLIM.V,
where instruction bit x = 1) or set Wnd to +1 (FLIM, where instruction bit x = 0). In both cases, set Ws to
the limit value held in Wb. Whenever Ws is greater than Wb, Wnd will always be a positive value. The Z,
N and OV Status bits are set such that a subsequent BRA GT instruction will take a branch.

If Ws is less than W(b+1), either write the (signed) value by which the limit is exceeded to Wnd (FLIM.V,
where instruction bit x = 1) or set Wnd to -1 (FLIM, where instruction bit x = 0). In both cases, set Ws to
the limit value held in W(b+1). Whenever Ws is less than W(b+1), Wnd will always be a negative value.
The Z, N and OV Status bits are set such that a subsequent BRA LT instruction will take a branch.

If Ws is less than or equal to the maximum limit in Wb, and greater than or equal to the minimum limit in
W(b+1), Ws is not modified (i.e., data is within range and limits are not applied). Wnd is cleared and the Z
Status bit is set such that a subsequent BRA Z instruction will take a branch.

The OV Status bit is always cleared by this instruction.
The ‘s’ bits select the address of the source (data value) register.
The ‘w’ bits select the address of the base (data limit) register.
The ‘d’ bits select the address of the destination (limit test result) register.
The ‘p’ bits select the source addressing mode.
The ‘x’ bit defines the presence and result format for Wnd.

Note 1: Although the instruction assumes signed values for all operands, both upper and lower
limit values may be of the same sign.

2: The Status bits are set based upon the value loaded into Wnd.
3: If the operand is greater than the maximum limit value in Wb, the CPU will write back the

Wb value, regardless of whether the operand is less than the minimum value held in
W(b+1) or not.

rds: 1

cles: 1
F
Im

Sy

Op

Op

En

De

Wo

Cy
DS70000157G-page 262 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

GOTO Unconditional Jump

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} GOTO Expr

Operands: Expr may be label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where lit23  [0 ... 8388606].

Operation: lit23  PC
NOP  Instruction Register

Status Affected: None

Encoding: 1st word 0000 0100 nnnn nnnn nnnn nnn0

 2nd word 0000 0000 0000 0000 0nnn nnnn

Description: Unconditional jump to anywhere within the 4M instruction word program memory range.
The PC is loaded with the 23-bit literal specified in the instruction. Since the PC must
always reside on an even address boundary, lit23<0> is ignored.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the lit23 to be used.

Words: 2

Cycles: 2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)
4 (PIC24E, dsPIC33E, dsPIC33C)

Example 1: 026000 GOTO _THERE
026004 MOV W0, W1

027844 _THERE: MOV #0x400, W2
027846 ...

; Jump to _THERE

; Code execution
; resumes here

Before
Instruction

After
Instruction

PC 02 6000 PC 02 7844

SR 0000 SR 0000

Example 2: 000100 _code: ...

026000 GOTO _code+2
026004 ...

; start of code

; Jump to _code+2

Before
Instruction

After
Instruction

PC 02 6000 PC 00 0102

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 263

16-Bit MCU and DSC Programmer’s Reference Manual

GOTO Unconditional Indirect Jump

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} GOTO Wn

Operands: Wn  [W0 ... W15]

Operation: 0  PC<22:16>
(Wn<15:1>)  PC<15:1>
0  PC<0>
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0001 0100 0000 0000 ssss

Description: Unconditional indirect jump within the first 32K words of program memory. Zero is
loaded into PC<22:16> and the value specified in (Wn) is loaded into PC<15:1>.
Since the PC must always reside on an even address boundary, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1

Cycles: 2

Example 1: 006000 GOTO W4
006002 MOV W0, W1

007844 _THERE: MOV #0x400, W2
007846 ...

; Jump unconditionally
; to 16-bit value in W4

; Code execution
; resumes here

Before
Instruction

After
Instruction

W4 7844 W4 7844

PC 00 6000 PC 00 7844

SR 0000 SR 0000
DS70000157G-page 264 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

GOTO Unconditional Indirect Jump

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} GOTO Wn

Operands: Wn  [W0 ... W15]

Operation: 0  PC<22:16>
(Wn<15:1>)  PC<15:1>
0  PC<0>
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0001 0000 0100 0000 ssss

Description: Unconditional indirect jump within the first 32K words of program memory. Zero is
loaded into PC<22:16> and the value specified in (Wn) is loaded into PC<15:1>. Since
the PC must always reside on an even address boundary, Wn<0> is ignored.

The ‘s’ bits select the source register.

Words: 1

Cycles: 4

Example 1: 006000 GOTO W4
006002 MOV W0, W1

007844 _THERE: MOV #0x400, W2
007846 ...

; Jump unconditionally
; to 16-bit value in W4

; Code execution
; resumes here

Before
Instruction

After
Instruction

W4 7844 W4 7844

PC 00 6000 PC 00 7844

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 265

16-Bit MCU and DSC Programmer’s Reference Manual

GOTO.L Unconditional Indirect Jump Long

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} GOTO.L Wn

Operands: Wn  [W0, W2, W4, W6, W8, W10, W12]

Operation: PC<23>  PC<23> (see text); (Wn+1)<6:0>  PC<22:16>; (Wn)  PC<15:0>

Status Affected: None

Encoding: 0000 0001 1www w100 0000 ssss

Description: Unconditional indirect jump to any user program memory address.

The Least Significant 7 bits of (Wn+1) are loaded in PC<22:16> and the 16-bit value
(Wn) is loaded into PC<15:0>.

PC<23> is not modified by this instruction.

The contents of (Wn+1)<15:7> are ignored.

The value of Wn<0> is also ignored and PC<0> is always set to ‘0’.

GOTO is a two-cycle instruction.

The ‘s’ bits select the address of the Wn source register.
The ‘w’ bits specify the address of the Wn+1 source register.

Words: 1

Cycles: 4

Example 1: 026000 GOTO.L W4
026004 MOV W0, W1

026844 _FIR: MOV #0x400, W2
026846 ...

; Call _FIR subroutine

; _FIR subroutine start

Before
Instruction

After
Instruction

PC 02 6000 PC 02 6844

W4 6844 W4 6844

W5 0002 W5 0002

W15 A268 W15 A26C

Data A268 FFFF Data A268 6004

Data A26A FFFF Data A26A 0002

SR 0000 SR 0000
DS70000157G-page 266 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

INC Increment f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} INC{.B} f {,WREG}

Operands: f  [0 ... 8191]

Operation: (f) + 1  destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1100 0BDf ffff ffff ffff

Description: Add one to the contents of the file register and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC.B 0x1000 ; Increment 0x1000 (Byte mode)

Before
Instruction

After
Instruction

Data 1000 8FFF Data 1000 8F00

SR 0000 SR 0101 (DC, C = 1)

Example 2: INC 0x1000, WREG ; Increment 0x1000 and store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG ABCD WREG 9000

Data 1000 8FFF Data 1000 8FFF

SR 0000 SR 0108 (DC, N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 267

16-Bit MCU and DSC Programmer’s Reference Manual

INC Increment Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} INC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws  [W0 ... W15]
Wd  [W0 ... W15]

Operation: (Ws) + 1  Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1000 0Bqq qddd dppp ssss

Description: Add one to the contents of the source register Ws and place the result in the destination
register Wd. Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC.B W1, [++W2] ; Pre-increment W2
 ; Increment W1 and store to W2
 ; (Byte mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 2001

Data 2000 ABCD Data 2000 80CD

SR 0000 SR 010C (DC, N, OV = 1)

Example 2: INC W1, W2 ; Increment W1 and store to W2
 ; (Word mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 FF80

SR 0000 SR 0108 (DC, N = 1)
DS70000157G-page 268 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

INC2 Increment f by 2

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} INC2{.B} f {,WREG}

Operands: f  [0 ... 8191]

Operation: (f) + 2  destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1100 1BDf ffff ffff ffff

Description: Add two to the contents of the file register and place the result in the destination register.
The optional WREG operand determines the destination register. If WREG is specified, the
result is stored in WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC2.B 0x1000 ; Increment 0x1000 by 2
 ; (Byte mode)

Before
Instruction

After
Instruction

Data 1000 8FFF Data 1000 8F01

SR 0000 SR 0101 (DC, C = 1)

Example 2: INC2 0x1000, WREG ; Increment 0x1000 by 2 and store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG ABCD WREG 9001

Data 1000 8FFF Data 1000 8FFF

SR 0000 SR 0108 (DC, N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 269

16-Bit MCU and DSC Programmer’s Reference Manual

INC2 Increment Ws by 2

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} INC2{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws  [W0 ... W15]
Wd  [W0 ... W15]

Operation: (Ws) + 2  Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1000 1Bqq qddd dppp ssss

Description: Add two to the contents of the source register Ws and place the result in the destination
register Wd. Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: INC2.B W1, [++W2] ; Pre-increment W2
 ; Increment by 2 and store to W1
 ; (Byte mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 2001

Data 2000 ABCD Data 2000 81CD

SR 0000 SR 010C (DC, N, OV = 1)

Example 2: INC2 W1, W2 ; Increment W1 by 2 and store to W2
 ; (word mode)

Before
Instruction

After
Instruction

W1 FF7F W1 FF7F

W2 2000 W2 FF81

SR 0000 SR 0108 (DC, N = 1)
DS70000157G-page 270 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

IOR Inclusive OR f and WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} IOR{.B} f {,WREG}

Operands: f  [0 ... 8191]

Operation: (f).IOR.(WREG)  destination designated by D

Status Affected: N, Z

Encoding: 1011 0111 0BDf ffff ffff ffff

Description: Compute the logical inclusive OR operation of the contents of the Working register
WREG and the contents of the file register, and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: IOR.B 0x1000 ; IOR WREG to (0x1000) (Byte mode)
 ; (Byte mode)

Before
Instruction

After
Instruction

WREG 1234 WREG 1234

Data 1000 FF00 Data 1000 FF34

SR 0000 SR 0000

Example 2: IOR 0x1000, WREG ; IOR (0x1000) to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

WREG 1234 WREG 1FBF

Data 1000 0FAB Data 1000 0FAB

SR 0008 (N = 1) SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 271

16-Bit MCU and DSC Programmer’s Reference Manual

IOR Inclusive OR Literal and Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} IOR{.B} #lit10, Wn

Operands: lit10  [0 ... 255] for byte operation
lit10  [0 ... 1023] for word operation
Wn  [W0 ... W15]

Operation: lit10.IOR.(Wn)  Wn

Status Affected: N, Z

Encoding: 1011 0011 0Bkk kkkk kkkk dddd

Description: Compute the logical inclusive OR operation of the 10-bit literal operand and the
contents of the Working register Wn, and place the result back into the Working
register Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for information
on using 10-bit literal operands in Byte mode.

Words: 1

Cycles: 1

Example 1: IOR.B #0xAA, W9 ; IOR 0xAA to W9
 ; (Byte mode)

Before
Instruction

After
Instruction

W9 1234 W9 12BE

SR 0000 SR 0008 (N = 1)

Example 2: IOR #0x2AA, W4 ; IOR 0x2AA to W4
 ; (Word mode)

Before
Instruction

After
Instruction

W4 A34D W4 A3EF

SR 0000 SR 0008 (N = 1)
DS70000157G-page 272 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

IOR Inclusive OR Wb and Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} IOR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb  [W0 ... W15]
lit5  [0 ... 31]
Wd  [W0 ... W15]

Operation: (Wb).IOR.lit5  Wd

Status Affected: N, Z

Encoding: 0111 0www wBqq qddd d11k kkkk

Description: Compute the logical inclusive OR operation of the contents of the base register Wb
and the 5-bit literal operand, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: IOR.B W1, #0x5, [W9++] ; IOR W1 and 0x5 (Byte mode)
 ; Store to [W9]
 ; Post-increment W9

Before
Instruction

After
Instruction

W1 AAAA W1 AAAA

W9 2000 W9 2001

Data 2000 0000 Data 2000 00AF

SR 0000 SR 0008 (N = 1)

Example 2: IOR W1, #0x0, W9 ; IOR W1 with 0x0 (Word mode)
 ; Store to W9

Before
Instruction

After
Instruction

W1 0000 W1 0000

W9 A34D W9 0000

SR 0000 SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 273

16-Bit MCU and DSC Programmer’s Reference Manual

IOR Inclusive OR Wb and Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} IOR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb  [W0 ... W15]
Ws  [W0 ... W15]
Wd  [W0 ... W15]

Operation: (Wb).IOR.(Ws)  Wd

Status Affected: N, Z

Encoding: 0111 0www wBqq qddd dppp ssss

Description: Compute the logical inclusive OR operation of the contents of the source register Ws and
the contents of the base register Wb, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 274 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: IOR.B W1, [W5++], [W9++] ; IOR W1 and [W5] (Byte mode)
 ; Store result to [W9]
 ; Post-increment W5 and W9

Before
Instruction

After
Instruction

W1 AAAA W1 AAAA

W5 2000 W5 2001

W9 2400 W9 2401

Data 2000 1155 Data 2000 1155

Data 2400 0000 Data 2400 00FF

SR 0000 SR 0008 (N = 1)

Example 2: IOR W1, W5, W9 ; IOR W1 and W5 (Word mode)
 ; Store the result to W9

 Before
 Instruction

After
Instruction

W1 AAAA W1 AAAA

W5 5555 W5 5555

W9 A34D W9 FFFF

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 275

16-Bit MCU and DSC Programmer’s Reference Manual

LAC Load Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} LAC Ws, {#Slit4,} Acc

[Ws],

[Ws++],

[Ws--],

[--Ws],

[++Ws],

[Ws+Wb],

Operands: Ws  [W0 ... W15]
Wb  [W0 ... W15]
Slit4  [-8 ... +7]
Acc  [A,B]

Operation: ShiftSlit4(Extend(Ws))  Acc(A or B)

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1010 Awww wrrr rggg ssss

Description: Read the contents of the source register. Optionally perform a signed 4-bit shift and store
the result in the specified accumulator. The shift range is -8:7, where a negative operand
indicates an arithmetic left shift and a positive operand indicates an arithmetic right shift.
The data stored in the source register is assumed to be 1.15 fractional data, and is
automatically sign-extended (through bit 39) and zero-backfilled (bits<15:0>) prior to
shifting.

The ‘A’ bit specifies the destination accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the accumulator preshift.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits specify the source register Ws.

Note: If the operation moves more than sign-extension data into the Accumulator Upper
register (ACCxU), or causes a saturation, the appropriate overflow and saturation
bits will be set.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 276 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: LAC [W4++], #-3, B ; Load ACCB with [W4] << 3
 ; Contents of [W4] do not change
 ; Post increment W4
 ; Assume saturation disabled
 ; (SATB = 0)

Before
Instruction

After
Instruction

W4 2000 W4 2002

ACCB 00 5125 ABCD ACCB FF 9108 0000

Data 2000 1221 Data 2000 1221

SR 0000 SR 4800 (OB, OAB = 1)

Example 2: LAC [--W2], #7, A ; Pre-decrement W2
 ; Load ACCA with [W2] >> 7
 ; Contents of [W2] do not change
 ; Assume saturation disabled
 ; (SATA = 0)

Before
Instruction

After
Instruction

W2 4002 W2 4000

ACCA 00 5125 ABCD ACCA FF FF22 1000

Data 4000 9108 Data 4000 9108

Data 4002 1221 Data 4002 1221

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 277

16-Bit MCU and DSC Programmer’s Reference Manual

LAC.D Load Accumulator Double

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} LAC.D Ws, [, #Slit4], Acc

[Ws],

[Ws++]

[Ws--]

[--Ws],

[++Ws]

Operands: Register Direct: Wns [W0, W2, W4, W6, W8, W10, W12, W14];
Register Indirect: Wns [W0 ... W15];
Slit4 [-8 ... +7] Acc [A,B]

Operation: ShiftSlit4(Extend(Ws))  ACC (A,B)

Status Affected: OA, SA or OB, SB

Encoding: 1101 1011 A000 0rrr rppp ssss

Description: Read the contents of the source register. Optionally perform a signed 4-bit shift and
store the result in the specified accumulator. The shift range is -8:7, where a negative
operand indicates an arithmetic left shift and a positive operand indicates an arithmetic
right shift. The data stored in the source register is assumed to be 1.31 fractional data,
and is automatically sign-extended (through bit 39) and zero-backfilled (bits<15:0>)
prior to shifting.

The ‘A’ bit specifies the destination accumulator.
The ‘s’ bits specify the source register Wns.
The ‘p’ bits select the source addressing mode.
The ‘r’ bits encode the optional operand Slit4, which determines the amount of the
accumulator preshift; if the operand Slit4 is absent, a ‘0’ is encoded.

See Table 5-7 for modifier addressing information.

Note 1: Unlike the LAC instruction, the LAC.D instruction does not support Indirect
with Register Offset Addressing mode.

2: Positive values of operand Slit4 represent arithmetic shift right. Negative
values of operand Slit4 represent shift left.

3: The LAC.D instruction cannot be executed within a REPEAT loop.

Words: 1

Cycles: 2(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 278 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

LDSLV Load Slave Processor Program RAM

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} LDSLV [Wns] [Wnd++] #lit2

[Wns++]

Operands: Wns [W0 ... W15];
Wnd [W0 ... W15];
lit2 [0 ... 3]

Operation: Master (EAs) Slave EAd

Status Affected: None

Encoding: 0000 0011 00kk 0ddd d0p1 ssss

Description: This instruction moves a single instruction word from the target Slave PRAM image
(held in the Master program space Flash) into the Slave PRAM. The source address
must be located within PSV address space (i.e., DSRPAG  0x200). The destination
address uses DSWPAG and the destination EA to create a 24-bit Slave PS PRAM write
address.

Starting with an aligned double instruction word destination address (see note), move
the contents of the source Effective Address (in Master program space) to the
destination Effective Address (in the Slave PRAM address space).

If the (single instruction word) destination address is even, capture the data in the Slave
PRAM wrapper. If the (single instruction word) destination address is odd, the ECC
parity bits are calculated from the current and captured source data (48-bits), then
stored together with the data into the PRAM double instruction word destination
Effective Address.

The target Slave processor is selected by the value defined by lit2.

The instruction may be regarded as a PSV operation, and hence, may be executed
within a REPEAT loop to accelerate data processing.

The ‘s’ bits select the address of the source register.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits select the target Slave processor.
The ‘p’ bit selects the destination addressing mode (see note).

Note 1: This instruction supports a subset of addressing modes. The Source
Addressing mode bit field is constrained to 2 options and the Destination
Addressing mode bit field is not required.

2: An aligned double instruction word destination address is an even address
that addresses the least significant word of a double instruction word.

3: This instruction only supports Word mode.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 279

16-Bit MCU and DSC Programmer’s Reference Manual

LNK Allocate Stack Frame

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} LNK #lit14

Operands: lit14  [0 ... 16382]

Operation: (W14)  (TOS)
(W15) + 2  W15
(W15)  W14
(W15) + lit14  W15

Status Affected: None

Encoding: 1111 1010 00kk kkkk kkkk kkk0

Description: This instruction allocates a stack frame of size lit14 bytes for a subroutine calling
sequence. The stack frame is allocated by PUSHing the contents of the Frame Pointer
(W14) onto the stack, storing the updated Stack Pointer (W15) to the Frame Pointer
and then incrementing the Stack Pointer by the unsigned 14-bit literal operand. This
instruction supports a maximum stack frame of 16382 bytes.

The ‘k’ bits specify the size of the stack frame.

Note: Since the Stack Pointer can only reside on a word boundary, lit14 must be even.

Words: 1

Cycles: 1

Example 1: LNK #0xA0 ; Allocate a stack frame of 160 bytes

Before
Instruction

After
Instruction

W14 2000 W14 2002

W15 2000 W15 20A2

Data 2000 0000 Data 2000 2000

SR 0000 SR 0000
DS70000157G-page 280 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

LNK Allocate Stack Frame

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} LNK #lit14

Operands: lit14  [0 ... 16382]

Operation: (W14)  (TOS)
(W15) + 2  W15
(W15)  W14
1  SFA Status bit
(W15) + lit14  W15

Status Affected: SFA

Encoding: 1111 1010 00kk kkkk kkkk kkk0

Description: This instruction allocates a stack frame of size lit14 bytes for a subroutine calling
sequence. The stack frame is allocated by PUSHing the contents of the Frame Pointer
(W14) onto the stack, storing the updated Stack Pointer (W15) to the Frame Pointer
and then incrementing the Stack Pointer by the unsigned 14-bit literal operand. This
instruction supports a maximum stack frame of 16382 bytes.

The ‘k’ bits specify the size of the stack frame.

Note: Since the Stack Pointer can only reside on a word boundary, lit14 must be even.

Words: 1

Cycles: 1

Example 1: LNK #0xA0 ; Allocate a stack frame of 160 bytes

Before
Instruction

After
Instruction

W14 2000 W14 2002

W15 2000 W15 20A2

Data 2000 0000 Data 2000 2000

SR 0000 SR 0000

CORCON 0000 CORCON 0004
© 2005-2018 Microchip Technology Inc. DS70000157G-page 281

16-Bit MCU and DSC Programmer’s Reference Manual

LSR Logical Shift Right f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} LSR{.B} f {,WREG}

Operands: f  [0 ... 8191]

Operation: For Byte Operation:
0  Dest<7>
(f<7:1>)  Dest<6:0>
(f<0>)  C

For Word Operation:
0  Dest<15>
(f<15:1>)  Dest<14:0>
(f<0>)  C

Status Affected: N, Z, C

Encoding: 1101 0101 0BDf ffff ffff ffff

Description: Shift the contents of the file register one bit to the right and place the result in the desti-
nation register. The Least Significant bit of the file register is shifted into the Carry bit of
the STATUS Register. Zero is shifted into the Most Significant bit of the destination
register.

The optional WREG operand determines the destination register. If WREG is specified,
the result is stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but
it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C0
DS70000157G-page 282 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: LSR.B 0x600 ; Logically shift right (0x600) by one
 ; (Byte mode)

Before
Instruction

After
Instruction

Data 600 55FF Data 600 557F

SR 0000 SR 0001 (C = 1)

Example 2: LSR 0x600, WREG ; Logically shift right (0x600) by one
 ; Store to WREG
 ; (Word mode)

Before
Instruction

After
Instruction

Data 600 55FF Data 600 55FF

WREG 0000 WREG 2AFF

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 283

16-Bit MCU and DSC Programmer’s Reference Manual

LSR Logical Shift Right Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} LSR{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws  [W0 ... W15]
Wd  [W0 ... W15]

Operation: For Byte Operation:
0  Wd<7>
(Ws<7:1>)  Wd<6:0>
(Ws<0>)  C

 For Word Operation:
0  Wd<15>
(Ws<15:1>)  Wd<14:0>
(Ws<0>)  C

Status Affected: N, Z, C

Encoding: 1101 0001 0Bqq qddd dppp ssss

Description: Shift the contents of the source register Ws one bit to the right and place the result in
the destination register Wd. The Least Significant bit of Ws is shifted into the Carry bit
of the STATUS Register. Zero is shifted into the Most Significant bit of Wd. Either
Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C0
DS70000157G-page 284 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: LSR.B W0, W1 ; LSR W0 (Byte mode)
 ; Store result to W1

Before
Instruction

After
Instruction

W0 FF03 W0 FF03

W1 2378 W1 2301

SR 0000 SR 0001 (C = 1)

Example 2: LSR W0, W1 ; LSR W0 (Word mode)
 ; Store the result to W1

Before
Instruction

After
Instruction

W0 8000 W0 8000

W1 2378 W1 4000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 285

16-Bit MCU and DSC Programmer’s Reference Manual

LSR Logical Shift Right by Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} LSR Wb, #lit4, Wnd

Operands: Wb  [W0 ... W15]
lit4  [0 ... 15]
Wnd  [W0 ... W15]

Operation: lit4<3:0>  Shift_Val
0  Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val>  Wnd<15-Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 0www wddd d100 kkkk

Description: Logical shift right the contents of the source register Wb by the 4-bit unsigned literal
and store the result in the destination register Wnd. Direct Addressing must be used
for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1: LSR W4, #14, W5 ; LSR W4 by 14
 ; Store result to W5

Before
Instruction

After
Instruction

W4 C800 W4 C800

W5 1200 W5 0003

SR 0000 SR 0000

Example 2: LSR W4, #1, W5 ; LSR W4 by 1
; Store result to W5

 Before
Instruction

 After
Instruction

W4 0505 W4 0505

W5 F000 W5 0282

SR 0000 SR 0000
DS70000157G-page 286 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

LSR Logical Shift Right by Wns

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} LSR Wb, Wns, Wnd

Operands: Wb  [W0 ... W15]
Wns  [W0 ...W15]
Wnd  [W0 ... W15]

Operation: Wns<4:0>  Shift_Val
0  Wnd<15:15-Shift_Val + 1>
Wb<15:Shift_Val>  Wnd<15 – Shift_Val:0>

Status Affected: N, Z

Encoding: 1101 1110 0www wddd d000 ssss

Description: Logical shift right the contents of the source register Wb by the 5 Least Significant
bits of Wns (only up to 15 positions) and store the result in the destination register
Wnd. Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1

Cycles: 1

Example 1: LSR W0, W1, W2 ; LSR W0 by W1
 ; Store result to W2

Before
Instruction

After
Instruction

W0 C00C W0 C00C

W1 0001 W1 0001

W2 2390 W2 6006

SR 0000 SR 0000

Example 2: LSR W5, W4, W3 ; LSR W5 by W4
; Store result to W3

Before
Instruction

After
Instruction

W3 DD43 W3 0000

W4 000C W4 000C

W5 0800 W5 0800

SR 0000 SR 0002 (Z = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 287

16-Bit MCU and DSC Programmer’s Reference Manual
MAC Multiply and Accumulate

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MAC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wn [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]
AWB [W13, [W13] + = 2]

Operation: (Acc(A or B))  (Wm) * (Wn)  Acc(A or B)
([Wx]) Wxd; (Wx) + kx  Wx
([Wy])  Wyd; (Wy) + ky Wy
(Acc(B or A)) rounded  AWB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 0mmm A0xx yyii iijj jjaa

Description: Multiply the contents of two Working registers. Optionally prefetch operands in preparation
for another MAC type instruction and optionally store the unspecified accumulator results.
The 32-bit result of the signed multiply is sign-extended to 40 bits and added to the
specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.14.1 “MAC
Prefetches”. Operand AWB specifies the optional store of the “other” accumulator, as
described in Section 4.15.4 “MAC Write-Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.
The ‘a’ bits select the accumulator Write-Back destination.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12> in
dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or
mixed-sign. Only dsPIC33E/dsPIC33C devices support mixed-sign
multiplication.

Words: 1

Cycles: 1
DS70000157G-page 288 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: MAC W4*W5, A, [W8]+=6, W4, [W10]+=2, W5
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-increment W8 by 6
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x00C0 (fractional multiply, normal saturation)

Before
Instruction

After
Instruction

W4 A022 W4 2567

W5 B900 W5 909C

W8 0A00 W8 0A06

W10 1800 W10 1802

ACCA 00 1200 0000 ACCA 00 472D 2400

Data 0A00 2567 Data 0A00 2567

Data 1800 909C Data 1800 909C

CORCON 00C0 CORCON 00C0

SR 0000 SR 0000

Example 2: MAC W4*W5, A, [W8]-=2, W4, [W10]+=2, W5, W13
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-decrement W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; Write Back ACCB to W13
; CORCON = 0x00D0 (fractional multiply, super saturation)

Before
Instruction

After
Instruction

W4 1000 W4 5BBE

W5 3000 W5 C967

W8 0A00 W8 09FE

W10 1800 W10 1802

W13 2000 W13 0001

ACCA 23 5000 2000 ACCA 23 5600 2000

ACCB 00 0000 8F4C ACCB 00 0000 1F4C

Data 0A00 5BBE Data 0A00 5BBE

Data 1800 C967 Data 1800 C967

CORCON 00D0 CORCON 00D0

SR 0000 SR 8800 (OA, OAB = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 289

16-Bit MCU and DSC Programmer’s Reference Manual

MAC Square and Accumulate

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MAC Wm * Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wm [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]

Operation: (Acc(A or B)) + (Wm) * (Wm)  Acc(A or B)
([Wx])  Wxd; (Wx) + kx Wx
([Wy])  Wyd; (Wy) + ky Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A0xx yyii iijj jj00

Description: Square the contents of a Working register. Optionally prefetch operands in preparation for
another MAC type instruction. The 32-bit result of the signed multiply is sign-extended to
40 bits and added to the specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.14.1 “MAC
Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12>
in dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or
mixed-sign. Only dsPIC33E/dsPIC33C devices support mixed-sign
multiplication.

Words: 1

Cycles: 1
DS70000157G-page 290 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: MAC W4*W4, B, [W9+W12], W4, [W10]-=2, W5
; Square W4 and add to ACCB
; Fetch [W9+W12] to W4
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x00C0 (fractional multiply, normal saturation)

Before
Instruction

After
Instruction

W4 A022 W4 A230

W5 B200 W5 650B

W9 0C00 W9 0C00

W10 1900 W10 18FE

W12 0020 W12 0020

ACCB 00 2000 0000 ACCB 00 67CD 0908

Data 0C20 A230 Data 0C20 A230

Data 1900 650B Data 1900 650B

CORCON 00C0 CORCON 00C0

SR 0000 SR 0000

Example 2: MAC W7*W7, A, [W11]-=2, W7
; Square W7 and add to ACCA
; Fetch [W11] to W7, Post-decrement W11 by 2
; CORCON = 0x00D0 (fractional multiply, super saturation)

Before
Instruction

After
Instruction

W7 76AE W7 23FF

W11 2000 W11 1FFE

ACCA FE 9834 4500 ACCA FF 063E 0188

Data 2000 23FF Data 2000 23FF

CORCON 00D0 CORCON 00D0

SR 0000 SR 8800 (OA, OAB = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 291

16-Bit MCU and DSC Programmer’s Reference Manual

MAX Accumulator Force Maximum Data Range Limit

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} MAX Acc

Operands: Acc [A,B]

Operation: If (MAX A) Then
If ACCA – ACCB > 0 Then

(ACCB ACCA;
0 Z; 0N; 0OV;)

Else
(1 Z; 0 N; 0 OV;)

If (MAX B) Then
If ACCB – ACCA > 0 Then

(ACCA ACCB;
0 Z; 0N; 0OV;)

Else
(1 Z; 0 N; 0 OV;)

Status Affected: N, OV, Z

Encoding: 1100 1110 A00x x000 0000 0000

Description: The target accumulator (defined in the instruction) is clamped to the maximum limit value
previously loaded into the other accumulator (sign-extended 32-bit value). The comparison
examines the full 40-bit value of the target accumulator, and will therefore, clamp an
overflowed accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. The Z and N Status bits are set such that a sub-
sequent BRA GT instruction will take a branch. In addition, Z is set such that a subsequent
MIN instruction will execute as a NOP if the limit is exceeded. If the limit is not exceeded
(Z = 1), the MIN instruction will execute as normal.

If the target accumulator is not greater than the limit accumulator, the target accumulator is
unaffected. The Z Status bit is set such that a subsequent BRA Z instruction will take a
branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘x’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute
SFTAC <AccX>, #0 after MAX operation to update DSP status to reflect
contents of AccX.

Words: 1

Cycles: 1
DS70000157G-page 292 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MAX.V Accumulator Force Maximum Data Range Limit with Limit Excess Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} MAX.V Acc Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd [W0 ... W15]
A [A,B]

Operation: If (MAX A) Then
If ACCA – ACCB > 0 Then

(0x0001 Wd or ACCA – ACCB Wd (see text);
ACCB ACCA;
0 Z; 0 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

If (MAX B) Then
If ACCB – ACCA > 0 Then

(0x0001 Wd or ACCB – ACCA Wd (see text);
ACCA ACCB;
1 Z; 0 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

Status Affected: N, OV, Z

Encoding: 1100 1110 A00x x000 0qqq dddd

Description: The target accumulator (defined in the instruction) is clamped to the maximum limit value
previously loaded into the other accumulator. The comparison examines the full 40-bit
value of the target accumulator, and will therefore, clamp an overflowed accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. For MAX (instruction bit field xx = 2’b10), set Wd
to +1. For MAX.V (instruction bit field xx = 2’b11), write the (signed) value by which the limit
is exceeded to Wd. This is sourced from the Least Significant 16 bits of the 40-bit result. If the
limit is exceeded by a value greater than that which can be represented by a signed 16-bit
number, saturate the Wd write to the maximum positive value (i.e., set Wd to 0x7FFF).

The Z and N Status bits are set such that a subsequent BRA GT instruction will take a
branch if the limit is exceeded. In addition, Z is set such that a subsequent MIN{.V}
instruction will execute as a NOP if the limit is exceeded. If the limit is not exceeded (Z = 1),
the MIN{.V} instruction will execute as normal.

If the target accumulator is not greater than the limit accumulator, the target accumulator is
unaffected and Wd is cleared. The Z Status bit is set such that a subsequent BRA Z
instruction will take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘d’ bits select the address of the destination register.
The ‘q’ bits select the destination addressing mode.
The ‘x’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute
SFTAC <AccX>, #0 after MAX.V operation to update DSP status to reflect
contents of AccX.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 293

16-Bit MCU and DSC Programmer’s Reference Manual

MIN Accumulator Force Minimum Data Range Limit (Unconditional Execution)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} MIN Acc

Operands: A [A,B]

Operation: If (MIN A) Then
If ACCA – ACCB < 0 Then

(ACCB  ACCA;
0 Z; 1 N; 0 OV;)

Else
(1 Z; 0 N; 0 OV;)

If (MIN B) Then
If ACCB – ACCA < 0 Then

(ACCA ACCB;
0 Z; 1 N; 0 OV;)

Else
(1 Z; 0 N; 0 OV;)

Status Affected: N, OV, Z

Encoding: 1100 1110 A01x x000 0000 0000

Description: The target accumulator (defined in the instruction) is clamped to the minimum limit value
previously loaded into the other accumulator. The comparison examines the full 40-bit
value of the target accumulator, and will therefore, clamp an overflowed accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. The Z and N Status bits are set such that a
subsequent BRA LT instruction will take a branch.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected. The Z Status bit is set (Z = 1) such that a subsequent BRA Z instruction will
take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘x’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute
SFTAC <AccX>, #0 after MIN execution to update DSP status to reflect
contents of AccX.

Words: 1

Cycles: 1
DS70000157G-page 294 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MIN.V Accumulator Force Minimum Data Range Limit with Limit Excess Result
(Unconditional Execution)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} MIN.V Acc Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd [W0 ... W15]
A [A,B]

Operation: If (MIN A) Then
If ACCA – ACCB < 0 Then

(0xFFFF Wd or ACCA – ACCB Wd (see text);
ACCB ACCA;
0 Z; 1 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

If (MIN B) Then
If ACCB – ACCA < 0 Then

(0xFFFF Wd or ACCB – ACCA Wd (see text);
ACCA ACCB;
0 Z; 1 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

Status Affected: N, OV, Z

Encoding: 1100 1110 A01x x000 0qqq dddd

Description: The target accumulator (defined in the instruction) is clamped to the minimum limit value
previously loaded into the other accumulator. The comparison examines the full 40-bit
value of the target accumulator.

If the target accumulator is greater than the limit accumulator, load the target accumulator
with the contents of the limit accumulator. For MIN (instruction bit field xx = 2’b10), set Wd
to -1. For MIN.V (instruction bit field xx = 2’b11), write the (signed) value by which the limit
is exceeded to Wd. This is sourced from the Least Significant 16 bits of the 40-bit result. If the
limit is exceeded by a value greater than that which can be represented by a signed 16-bit
number, saturate the Wd write to the maximum negative value (i.e., set Wd to 0x8000).

The Z and N Status bits are set such that a subsequent BRA LT instruction will take a
branch if the limit is exceeded.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected and Wd is cleared. The Z Status bit is set such that a subsequent BRA Z
instruction will take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘d’ bits select the address of the destination register.
The ‘q’ bits select the destination addressing mode.
The ‘x’ bits define the presence and result format for Wd.

Note: OA and SA or OB and SB Status bits are not modified by this instruction. Execute
SFTAC <AccX>, #0 after MIN.V execution to update DSP status to reflect
contents of AccX.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 295

16-Bit MCU and DSC Programmer’s Reference Manual

MINZ Accumulator Force Minimum Data Range Limit (Conditional Execution)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} MINZ Acc

Operands: Acc [A,B]

Operation: If (Z = 0) execute as NOP

Else
If (MINZ A) Then

If ACCA – ACCB < 0 Then
ACCB ACCA;
0 Z; 1 N; 0 OV;)

Else
1 Z; 0 N; 0 OV;)

If (MINZ B) Then
If ACCB – ACCA < 0 Then

ACCA ACCB;
0 Z; 1 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

Status Affected: N, OV, Z

Encoding: 1100 1110 A01x x100 0000 0000

Description: If MINZ is executed when Z = 1 (see note), the target accumulator (defined in the
instruction) is clamped to the minimum limit value previously loaded into the other
accumulator. If MINZ is executed when Z = 0, the instruction is skipped (executed as a
NOP).

The comparison examines the full 40-bit value of the target accumulator, and will therefore,
clamp an overflowed accumulator.

If the target accumulator is less than the limit accumulator, load the target accumulator with
the contents of the limit accumulator. The Z and N Status bits are set such that a
subsequent BRA LT instruction will take a branch.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected. The Z Status bit is set (Z = 1) such that a subsequent BRA Z instruction will
take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘x’ bits define the presence and result format for Wd.

Note 1: Execution of the accumulator maximum clamp instruction (MAX) is expected to
be immediately followed by execution of the conditionally executed accumulator
minimum clamp instruction (MINZ). If MAX resulted in a clamp condition (Z = 0),
MINZ will be skipped. Use the unconditionally executed MIN instruction if it is
required to be executed in isolation.

2: OA and SA or OB and SB Status bits are not modified by this instruction.
Execute SFTAC <AccX>, #0 after MINZ execution to update DSP status to
reflect the contents of AccX.

Words: 1

Cycles: 1
DS70000157G-page 296 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MINZ.V Accumulator Force Minimum Data Range Limit with Limit Excess Result
(Conditional Execution)

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} MINZ.V Acc Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd [W0 ... W15]
A [A,B]

Operation: If (Z = 0) execute as a NOP

Else
If (MINZ A) Then

If (ACCA – ACCB < 0 Then
(0xFFFF Wd or ACCA – ACCB Wd (see text);
ACCB ACCA;
0 Z; 1 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

If (MINZ B) Then
If ACCB – ACCA < 0 Then

(0xFFFF Wd or ACCB – ACCA Wd (see text);
ACCA ACCB;
0 Z; 1 N; 0 OV;)

Else
(0 Wd;
1 Z; 0 N; 0 OV;)

Status Affected: N, OV, Z

Encoding: 1100 1110 A01x x100 0qqq dddd
© 2005-2018 Microchip Technology Inc. DS70000157G-page 297

16-Bit MCU and DSC Programmer’s Reference Manual
Description: If MINZ is executed when Z = 1 (see note), the target accumulator (defined in the instruc-
tion) is clamped to the minimum limit value previously loaded into the other accumulator. If
MINZ is executed when Z = 0, the instruction is skipped (executed as a NOP).

The comparison examines the full 40-bit value of the target accumulator, and will therefore,
clamp an overflowed accumulator.

If the target accumulator is less than the limit accumulator, load the target accumulator with
the contents of the limit accumulator. For MINZ (instruction bit field xx = 2’b10), set Wd
to -1. For MINZ.V (instruction bit field xx = 2’b11), write the (signed) value by which the limit
is exceeded to Wd. This is sourced from the Least Significant 16 bits of the 40-bit result. If the
limit is exceeded by a value greater than that which can be represented by a signed 16-bit
number, saturate the Wd write to the maximum negative value (i.e., set Wd to 0x8000).

The Z and N Status bits are set such that a subsequent BRA LT instruction will take a
branch if the limit is exceeded.

If the target accumulator is not less than the limit accumulator, the target accumulator is
unaffected and Wd is cleared. The Z Status bit is set such that a subsequent BRA Z
instruction will take a branch.

The OV Status bit is always cleared by this instruction.

The ‘A’ bit specifies the destination accumulator.
The ‘d’ bits select the address of the destination register.
The ‘q’ bits select the destination addressing mode.
The ‘x’ bits define the presence and result format for Wd.

Note 1: Execution of the MINZ.V instruction is intended to immediately follow execution
of a MAX instruction. If MAX resulted in a clamp condition (Z = 0), the MINZ.V
instruction will be skipped.

2: OA and SA or OB and SB Status bits are not modified by this instruction.
Execute SFTAC <AccX>, #0 after MINZ.V execution to update DSP status to
reflect the contents of AccX.

Words: 1

Cycles: 1

MINZ.V Accumulator Force Minimum Data Range Limit with Limit Excess Result
(Conditional Execution)
DS70000157G-page 298 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOV Move f to Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) destination designated by D

Status Affected: N, Z

Encoding: 1011 1111 1BDf ffff ffff ffff

Description: Move the contents of the specified file register to the destination register. The optional
WREG operand determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored back to the file register and
the only effect is to modify the STATUS Register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a word
operation. You may use a .W extension to denote a word operation, but it is not
required.

2: The WREG is set to Working register W0.

3: When moving word data from file register memory, the “MOV f to Wnd”
(page 301) instruction allows any Working register (W0:W15) to be the
destination register.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: MOV.B TMR0, WREG ; move (TMR0) to WREG (Byte mode)

Before
Instruction

After
Instruction

WREG (W0) 9080 WREG (W0) 9055

TMR0 2355 TMR0 2355

SR 0000 SR 0000

Example 2: MOV 0x800 ; update SR based on (0x800) (Word mode)

Before
Instruction

After
Instruction

Data 0800 B29F Data 0800 B29F

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 299

16-Bit MCU and DSC Programmer’s Reference Manual

MOV Move WREG to f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV{.B} WREG, f

Operands: f [0 ... 8191]

Operation: (WREG) f

Status Affected: None

Encoding: 1011 0111 1B1f ffff ffff ffff

Description: Move the contents of the default Working register WREG into the specified file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not
required.

2: The WREG is set to Working register W0.

3: When moving word data from the Working register array to file register
memory, the “MOV Wns to f” (page 302) instruction allows any Working
register (W0:W15) to be the source register.

Words: 1

Cycles: 1

Example 1: MOV.B WREG, 0x801 ; move WREG to 0x801 (Byte mode)

Before
Instruction

After
Instruction

WREG (W0) 98F3 WREG (W0) 98F3

Data 0800 4509 Data 0800 F309

SR 0000 SR 0008 (N = 1)

Example 2: MOV WREG, DISICNT ; move WREG to DISICNT

Before
Instruction

After
Instruction

WREG (W0) 00A0 WREG (W0) 00A0

DISICNT 0000 DISICNT 00A0

SR 0000 SR 0000
DS70000157G-page 300 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOV Move f to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV f, Wnd

Operands: f [0 ... 65534]
Wnd [W0 ... W15]

Operation: (f) Wnd

Status Affected: None

Encoding: 1000 0fff ffff ffff ffff dddd

Description: Move the word contents of the specified file register to Wnd. The file register may reside
anywhere in the 32K words of data memory, but must be word-aligned. Register Direct
Addressing must be used for Wnd.

The ‘f’ bits select the address of the file register.
The ‘d’ bits select the destination register.

Note 1: This instruction operates on word operands only.

2: Since the file register address must be word-aligned, only the upper 15 bits of
the file register address are encoded (bit 0 is assumed to be ‘0’).

3: To move a byte of data from file register memory, the
“MOV f to Destination” instruction (page 299) may be used.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV CORCON, W12 ; move CORCON to W12

Before
Instruction

After
Instruction

W12 78FA W12 00F0

CORCON 00F0 CORCON 00F0

SR 0000 SR 0000

Example 2: MOV 0x27FE, W3 ; move (0x27FE) to W3

Before
Instruction

After
Instruction

W3 0035 W3 ABCD

Data 27FE ABCD Data 27FE ABCD

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 301

16-Bit MCU and DSC Programmer’s Reference Manual

MOV Move Wns to f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV Wns, f

Operands: f [0 ... 65534]
Wns [W0 ... W15]

Operation: (Wns) f

Status Affected: None

Encoding: 1000 1fff ffff ffff ffff ssss

Description: Move the word contents of the Working register Wns to the specified file register. The file
register may reside anywhere in the 32K words of data memory, but must be word-aligned.
Register Direct Addressing must be used for Wn.

The ‘f’ bits select the address of the file register.
The ‘s’ bits select the source register.

Note 1: This instruction operates on word operands only.

2: Since the file register address must be word-aligned, only the upper 15 bits of
the file register address are encoded (bit 0 is assumed to be ‘0’).

3: To move a byte of data to file register memory, the “MOV WREG to f” instruction
(page 300) may be used.

Words: 1

Cycles: 1

Example 1: MOV W4, XMDOSRT ; move W4 to XMODSRT

Before
Instruction

After
Instruction

W4 1200 W4 1200

XMODSRT 1340 XMODSRT 1200

SR 0000 SR 0000

Example 2: MOV W8, 0x1222 ; move W8 to data address 0x1222

Before
Instruction

After
Instruction

W8 F200 W8 F200

Data 1222 FD88 Data 1222 F200

SR 0000 SR 0000
DS70000157G-page 302 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOV.B Move 8-Bit Literal to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV.B #lit8, Wnd

Operands: lit8 [0 ... 255]
Wnd [W0 ... W15]

Operation: lit8 Wnd

Status Affected: None

Encoding: 1011 0011 1100 kkkk kkkk dddd

Description: The unsigned 8-bit literal ‘k’ is loaded into the lower byte of Wnd. The upper byte of Wnd is
not changed. Register Direct Addressing must be used for Wnd.

The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the address of the Working register.

Note: This instruction operates in Byte mode and the .B extension must be provided.

Words: 1

Cycles: 1

Example 1: MOV.B #0x17, W5 ; load W5 with #0x17 (Byte mode)

Before
Instruction

After
Instruction

W5 7899 W5 7817

SR 0000 SR 0000

Example 2: MOV.B #0xFE, W9 ; load W9 with #0xFE (Byte mode)

Before
Instruction

After
Instruction

W9 AB23 W9 ABFE

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 303

16-Bit MCU and DSC Programmer’s Reference Manual

MOV Move 16-Bit Literal to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV #lit16, Wnd

Operands: lit16 [-32768 ... 65535]
Wnd [W0 ... W15]

Operation: lit16 Wnd

Status Affected: None

Encoding: 0010 kkkk kkkk kkkk kkkk dddd

Description: The 16-bit literal ‘k’ is loaded into Wnd. Register Direct Addressing must be used for Wnd.

The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the address of the Working register.

Note 1: This instruction operates only in Word mode.

2: The literal may be specified as a signed value [-32768:32767] or unsigned
value [0:65535].

Words: 1

Cycles: 1

Example 1: MOV #0x4231, W13 ; load W13 with #0x4231

Before
Instruction

After
Instruction

W13 091B W13 4231

SR 0000 SR 0000

Example 2: MOV #0x4, W2 ; load W2 with #0x4

Before
Instruction

After
Instruction

W2 B004 W2 0004

SR 0000 SR 0000

Example 3: MOV #-1000, W8 ; load W8 with #-1000

Before
Instruction

After
Instruction

W8 23FF W8 FC18

SR 0000 SR 0000
DS70000157G-page 304 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOV Move [Ws with Offset] to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV{.B} [Ws + Slit10], Wnd

Operands: Ws [W0 ... W15]
Slit10 [-512 ... 511] for byte operation
Slit10 [-1024 ... 1022] (even only) for word operation
Wnd [W0 ... W15]

Operation: [Ws + Slit10] Wnd

Status Affected: None

Encoding: 1001 0kkk kBkk kddd dkkk ssss

Description: The contents of [Ws + Slit10] are loaded into Wnd. In Word mode, the range of Slit10 is
increased to [-1024 ... 1022] and Slit10 must be even to maintain word address alignment.
Register Indirect Addressing must be used for the source and Direct Addressing must be
used for Wnd.

The ‘k’ bits specify the value of the literal.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not required.

2: In Byte mode, the range of Slit10 is not reduced as specified in Section 4.6
“Using 10-bit Literal Operands”, since the literal represents an address offset
from Ws.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MOV.B [W8+0x13], W10 ; load W10 with [W8+0x13]
 ; (Byte mode)

Before
Instruction

After
Instruction

W8 1008 W8 1008

W10 4009 W10 4033

Data 101A 3312 Data 101A 3312

SR 0000 SR 0000

Example 2: MOV [W4+0x3E8], W2 ; load W2 with [W4+0x3E8]
 ; (Word mode)

Before
Instruction

After
Instruction

W2 9088 W2 5634

W4 0800 W4 0800

Data 0BE8 5634 Data 0BE8 5634

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 305

16-Bit MCU and DSC Programmer’s Reference Manual

MOV Move Wns to [Wd with Offset]

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV{.B} Wns, [Wd + Slit10]

Operands: Wns [W0 ... W15]
Slit10 [-512 ... 511] in Byte mode
Slit10 [-1024 ... 1022] (even only) in Word mode
Wd [W0 ... W15]

Operation: (Wns) [Wd + Slit10]

Status Affected: None

Encoding: 1001 1kkk kBkk kddd dkkk ssss

Description: The contents of Wns are stored to [Wd + Slit10]. In Word mode, the range of Slit10 is
increased to [-1024 ... 1022] and Slit10 must be even to maintain word address alignment.
Register Direct Addressing must be used for Wns and Indirect Addressing must be used for
the destination.

The ‘k’ bits specify the value of the literal.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not
required.

2: In Byte mode, the range of Slit10 is not reduced as specified in Section 4.6
“Using 10-bit Literal Operands”, since the literal represents an address offset
from Wd.

Words: 1

Cycles: 1

Example 1: MOV.B W0, [W1+0x7] ; store W0 to [W1+0x7]
 ; (Byte mode)

Before
Instruction

After
Instruction

W0 9015 W0 9015

W1 1800 W1 1800

Data 1806 2345 Data 1806 1545

SR 0000 SR 0000

Example 2: MOV W11,[W1-0x400] ; store W11 to [W1-0x400]
 ; (Word mode)

Before
Instruction

After
Instruction

W1 1000 W1 1000

W11 8813 W11 8813

Data 0C00 FFEA Data 0C00 8813

SR 0000 SR 0000
DS70000157G-page 306 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOV Move Ws to Wd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[--Ws], [--Wd]

[++Ws], [++Wd]

[Ws + Wb], [Wd + Wb]

Operands: Ws [W0 ... W15]
Wb [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) Wd

Status Affected: None

Encoding: 0111 1www wBhh hddd dggg ssss

Description: Move the contents of the source register into the destination register. Either Register Direct
or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits define the offset register Wb.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not
required.

2: When Register Offset Addressing mode is used for both the source and
destination, the offset must be the same because the ‘w’ encoding bits are
shared by Ws and Wd.

3: The instruction, “PUSH Ws”, translates to “MOV Ws, [W15++]”.

4: The instruction, “POP Wd”, translates to “MOV [--W15], Wd”.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 307

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MOV.B [W0--], W4 ; Move [W0] to W4 (Byte mode)
; Post-decrement W0

Before
Instruction

After
Instruction

W0 0A01 W0 0A00

W4 2976 W4 2989

Data 0A00 8988 Data 0A00 8988

SR 0000 SR 0000

Example 2: MOV [W6++], [W2+W3] ; Move [W6] to [W2+W3] (Word mode)
; Post-increment W6

Before
Instruction

After
Instruction

W2 0800 W2 0800

W3 0040 W3 0040

W6 1228 W6 122A

Data 0840 9870 Data 0840 0690

Data 1228 0690 Data 1228 0690

SR 0000 SR 0000
DS70000157G-page 308 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOV.D Double-Word Move from Source to Wnd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MOV.D Wns, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wns [W0, W2, W4 ... W14]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W14]

Operation: For Direct Addressing of Source:
Wns Wnd
Wns + 1 Wnd + 1

For Indirect Addressing of Source:
 See Description

Status Affected: None

Encoding: 1011 1110 0000 0ddd 0ppp ssss

Description: Move the double word specified by the source to a destination Working register pair
(Wnd:Wnd + 1). If Register Direct Addressing is used for the source, the contents of two
successive Working registers (Wns:Wns + 1) are moved to Wnd:Wnd + 1. If Indirect
Addressing is used for the source, Ws specifies the Effective Address for the least
significant word of the double word. Any pre/post-increment or pre/post-decrement will
adjust Ws by 4 bytes to accommodate for the double word.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the address of the first source register.

Note 1: This instruction only operates on double words. See Figure 4-3 for information
on how double words are aligned in memory.

2: Wnd must be an even numbered Working register.

3: The instruction, “POP.D Wnd”, translates to “MOV.D [--W15], Wnd”.

Words: 1

Cycles: 2(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 309

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MOV.D W2, W6 ; Move W2 to W6 (Double mode)

Before
Instruction

After
Instruction

W2 12FB W2 12FB

W3 9877 W3 9877

W6 9833 W6 12FB

W7 FCC6 W7 9877

SR 0000 SR 0000

Example 2: MOV.D [W7--], W4 ; Move [W7] to W4 (Double mode)
 ; Post-decrement W7

Before
Instruction

After
Instruction

W4 B012 W4 A319

W5 FD89 W5 9927

W7 0900 W7 08FC

Data 0900 A319 Data 0900 A319

Data 0902 9927 Data 0902 9927

SR 0000 SR 0000
DS70000157G-page 310 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOVPAG Move Literal to Page Register

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MOVPAG #lit10, DSRPAG

#lit9, DSWPAG

#lit8, TBLPAG

Operands: lit10 [0 ... 1023], lit9 [0 ... 511], lit8 [0 ... 255]

Operation: lit10 DSRPAG or lit9 DSWPAG or lit8 TBLPAG

Status Affected: None

Encoding: 1111 1110 1100 PPkk kkkk kkkk

Description: The appropriate number of bits from the unsigned literal ‘k’ is loaded into the DSRPAG,
DSWPAG or TBLPAG register. The assembler restricts the literal to a 9-bit unsigned value
when the destination is DSWPAG and an 8-bit unsigned value when the destination is
TBLPAG.

The ‘P’ bits select the destination register.
The ‘k’ bits specify the value of the literal.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1: MOVPAG #0x02, DSRPAG

Before
Instruction

After
Instruction

DSRPAG 0000 DSRPAG 0002
© 2005-2018 Microchip Technology Inc. DS70000157G-page 311

16-Bit MCU and DSC Programmer’s Reference Manual

MOVPAG Move Wn to Page Register

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MOVPAG Wn, DSRPAG

DSWPAG

TBLPAG

Operands: Wn [W0 ... W15]

Operation: Wn<9:0> DSRPAG or Wn<8:0> DSWPAG or Wn<7:0> TBLPAG

Status Affected: None

Encoding: 1111 1110 1101 PP00 0000 ssss

Description: The appropriate number of bits from the register Ws is loaded into the DSRPAG,
DSWPAG or TBLPAG register. The assembler restricts the literal to a 9-bit unsigned
value when the destination is DSWPAG and an 8-bit unsigned value when the destination
is TBLPAG.

The ‘P’ bits select the destination register.
The ‘s’ bits specify the source register.

Note: This instruction operates in word mode only.

Words: 1

Cycles: 1

Example 1: MOVPAG W2, DSRPAG

Before
Instruction

After
Instruction

DSRPAG 0000 DSRPAG 0002

W2 0002 W2 0002
DS70000157G-page 312 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MOVSAC Prefetch Operands and Store Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MOVSAC Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]
AWB [W13, [W13] + = 2]

Operation: ([Wx])  Wxd; (Wx) + kx Wx
([Wy])  Wyd; (Wy) + ky Wy
(Acc(B or A)) rounded  AWB

Status Affected: None

Encoding: 1100 0111 A0xx yyii iijj jjaa

Description: Optionally prefetch operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. Even though an accumulator operation is not
performed in this instruction, an accumulator must be specified to designate which
accumulator to Write-Back.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC
Prefetches”. Operand AWB specifies the optional store of the “other” accumulator, as
described in Section 4.15.4 “MAC Write-Back”.

The ‘A’ bit selects the other accumulator used for Write-Back.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.
The ‘a’ bits select the accumulator Write-Back destination.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 313

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MOVSAC B, [W9], W6, [W11]+=4, W7, W13
; Fetch [W9] to W6
; Fetch [W11] to W7, Post-increment W11 by 4
; Store ACCA to W13

Before
Instruction

After
Instruction

W6 A022 W6 7811

W7 B200 W7 B2AF

W9 0800 W9 0800

W11 1900 W11 1904

W13 0020 W13 3290

ACCA 00 3290 5968 ACCA 00 3290 5968

Data 0800 7811 Data 0800 7811

Data 1900 B2AF Data 1900 B2AF

SR 0000 SR 0000

Example 2: MOVSAC A, [W9]-=2, W4, [W11+W12], W6, [W13]+=2
; Fetch [W9] to W4, Post-decrement W9 by 2
; Fetch [W11+W12] to W6
; Store ACCB to [W13], Post-increment W13 by 2

Before
Instruction

After
Instruction

W4 76AE W4 BB00

W6 2000 W6 52CE

W9 1200 W9 11FE

W11 2000 W11 2000

W12 0024 W12 0024

W13 2300 W13 2302

ACCB 00 9834 4500 ACCB 00 9834 4500

Data 1200 BB00 Data 1200 BB00

Data 2024 52CE Data 2024 52CE

Data 2300 23FF Data 2300 9834

SR 0000 SR 0000
DS70000157G-page 314 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MPY Multiply Wm by Wn to Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MPY Wm * Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wn [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]
AWB [W13], [W13] + = 2

Operation: (Wm) * (Wn)  Acc(A or B)
([Wx]) Wxd; (Wx) + kx Wx
([Wy])  Wyd; (Wy) + ky Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 0mmm A0xx yyii iijj jj11

Description: Multiply the contents of two Working registers and optionally prefetch operands in
preparation for another MAC type instruction. The 32-bit result of the signed multiply is
sign-extended to 40 bits and stored to the specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC Prefetches”.

The ‘m’ bits select the operand registers, Wm and Wn, for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12> in
dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or mixed-sign.
Only dsPIC33E/dsPIC33C devices support mixed-sign multiplication.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 315

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MPY W4*W5, A, [W8]+=2, W6, [W10]-=2, W7
; Multiply W4*W5 and store to ACCA
; Fetch [W8] to W6, Post-increment W8 by 2
; Fetch [W10] to W7, Post-decrement W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 C000 W4 C000

W5 9000 W5 9000

W6 0800 W6 671F

W7 B200 W7 E3DC

W8 1780 W8 1782

W10 2400 W10 23FE

ACCA FF F780 2087 ACCA 00 3800 0000

Data 1780 671F Data 1780 671F

Data 2400 E3DC Data 2400 E3DC

CORCON 0000 CORCON 0000

SR 0000 SR 0000

Example 2: MPY W6*W7, B, [W8]+=2, W4, [W10]-=2, W5
; Multiply W6*W7 and store to ACCB
; Fetch [W8] to W4, Post-increment W8 by 2
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 C000 W4 8FDC

W5 9000 W5 0078

W6 671F W6 671F

W7 E3DC W7 E3DC

W8 1782 W8 1784

W10 23FE W10 23FC

ACCB 00 9834 4500 ACCB FF E954 3748

Data 1782 8FDC Data 1782 8FDC

Data 23FE 0078 Data 23FE 0078

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70000157G-page 316 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MPY Square to Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MPY Wm * Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wm [W4 * W4, W5 * W5, W6 * W6, W7 * W7]
Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]

Operation: (Wm) * (Wm)  Acc(A or B)
([Wx])  Wxd; (Wx) + kx Wx
([Wy]) Wyd; (Wy) + ky Wy

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1111 00mm A0xx yyii iijj jj01

Description: Square the contents of a Working register and optionally prefetch operands in preparation
for another MAC type instruction. The 32-bit result of the signed multiply is sign-extended to
40 bits and stored in the specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing, as described in Section 4.15.1 “MAC
Prefetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12>
in dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or
mixed-sign. Only dsPIC33E/dsPIC33C devices support mixed-sign
multiplication.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 317

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MPY W6*W6, A, [W9]+=2, W6
; Square W6 and store to ACCA
; Fetch [W9] to W6, Post-increment W9 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W6 6500 W6 B865

W9 0900 W9 0902

ACCA 00 7C80 0908 ACCA 00 4FB2 0000

Data 0900 B865 Data 0900 B865

CORCON 0000 CORCON 0000

SR 0000 SR 0000

Example 2: MPY W4*W4, B, [W9+W12], W4, [W10]+=2, W5
; Square W4 and store to ACCB
; Fetch [W9+W12] to W4
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 E228 W4 8911

W5 9000 W5 F678

W9 1700 W9 1700

W10 1B00 W10 1B02

W12 FF00 W12 FF00

ACCB 00 9834 4500 ACCB 00 06F5 4C80

Data 1600 8911 Data 1600 8911

Data 1B00 F678 Data 1B00 F678

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70000157G-page 318 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MPY.N Multiply -Wm by Wn to Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MPY.N Wm * Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wn [W4 * W5; W4 * W6; W4 * W7; W5 * W6; W5 * W7; W6 * W7]
Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]

Operation: -(Wm) * (Wn)  Acc(A or B)
([Wx])  Wxd; (Wx) + kx Wx
([Wy]) Wyd; (Wy) + ky Wy

Status Affected: OA, OB, OAB

Encoding: 1100 0mmm A1xx yyii iijj jj11

Description: Multiply the contents of a Working register by the negative of the contents of another
Working register. Optionally prefetch operands in preparation for another MAC type instruc-
tion and optionally store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40 bits and stored to the specified accumulator.

The ‘m’ bits select the operand registers, Wm and Wn, for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.

Note 1: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

2: The US<1:0> bits (CORCON<13:12> in dsPIC33E/dsPIC33C, CORCON<12> in
dsPIC30F/dsPIC33F) determine if the multiply is unsigned, signed or mixed-sign.
Only dsPIC33E/dsPIC33C devices support mixed-sign multiplication.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 319

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MPY.N W4*W5, A, [W8]+=2, W4, [W10]+=2, W5
; Multiply W4*W5, negate the result and store to ACCA
; Fetch [W8] to W4, Post-increment W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x0001 (integer multiply, no saturation)

Before
Instruction

After
Instruction

W4 3023 W4 0054

W5 1290 W5 660A

W8 0B00 W8 0B02

W10 2000 W10 2002

ACCA 00 0000 2387 ACCA FF FC82 7650

Data 0B00 0054 Data 0B00 0054

Data 2000 660A Data 2000 660A

CORCON 0001 CORCON 0001

SR 0000 SR 0000

Example 2: MPY.N W4*W5, A, [W8]+=2, W4, [W10]+=2, W5
; Multiply W4*W5, negate the result and store to ACCA
; Fetch [W8] to W4, Post-increment W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 3023 W4 0054

W5 1290 W5 660A

W8 0B00 W8 0B02

W10 2000 W10 2002

ACCA 00 0000 2387 ACCA FF F904 ECA0

Data 0B00 0054 Data 0B00 0054

Data 2000 660A Data 2000 660A

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70000157G-page 320 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MSC Multiply and Subtract from Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} MSC Wm * Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}

{,[Wx] + = kx, Wxd} {,[Wy] + = ky, Wyd}

{,[Wx] – = kx, Wxd} {,[Wy] – = ky, Wyd}

{,[W9 + W12], Wxd} {,[W11 + W12], Wyd}

Operands: Wm * Wn [W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7]
Acc [A,B]
Wx [W8, W9]; kx [-6, -4, -2, 2, 4, 6]; Wxd [W4 ... W7]
Wy [W10, W11]; ky [-6, -4, -2, 2, 4, 6]; Wyd [W4 ... W7]
AWB [W13, [W13] + = 2]

Operation: (Acc(A or B)) – (Wm) * (Wn)  Acc(A or B)
([Wx])  Wxd; (Wx) + kx Wx
([Wy]) Wyd; (Wy) + ky Wy
(Acc(B or A)) rounded  AWB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 0mmm A1xx yyii iijj jjaa

Description: Multiply the contents of two Working registers. Optionally prefetch operands in preparation
for another MAC type instruction and optionally store the unspecified accumulator results.
The 32-bit result of the signed multiply is sign-extended to 40 bits and subtracted from the
specified accumulator.

Operands, Wx, Wxd, Wy and Wyd, specify optional prefetch operations, which support
Indirect and Register Offset Addressing as described in Section 4.15.1 “MAC Prefetches”.
Operand AWB specifies the optional store of the “other” accumulator as described in
Section 4.15.4 “MAC Write-Back”.

The ‘m’ bits select the operand registers, Wm and Wn, for the multiply.
The ‘A’ bit selects the accumulator for the result.
The ‘x’ bits select the prefetch Wxd destination.
The ‘y’ bits select the prefetch Wyd destination.
The ‘i’ bits select the Wx prefetch operation.
The ‘j’ bits select the Wy prefetch operation.
The ‘a’ bits select the accumulator Write-Back destination.

Note: The IF bit (CORCON<0>) determines if the multiply is fractional or an integer.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 321

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MSC W6*W7, A, [W8]-=4, W6, [W10]-=4, W7
; Multiply W6*W7 and subtract the result from ACCA
; Fetch [W8] to W6, Post-decrement W8 by 4
; Fetch [W10] to W7, Post-decrement W10 by 4
; CORCON = 0x0001 (integer multiply, no saturation)

Before
Instruction

After
Instruction

W6 9051 W6 D309

W7 7230 W7 100B

W8 0C00 W8 0BFC

W10 1C00 W10 1BFC

ACCA 00 0567 8000 ACCA 00 3738 5ED0

Data 0C00 D309 Data 0C00 D309

Data 1C00 100B Data 1C00 100B

CORCON 0001 CORCON 0001

SR 0000 SR 0000

Example 2: MSC W4*W5, B, [W11+W12], W5, W13
; Multiply W4*W5 and subtract the result from ACCB
; Fetch [W11+W12] to W5
; Write Back ACCA to W13
; CORCON = 0x0000 (fractional multiply, no saturation)

Before
Instruction

After
Instruction

W4 0500 W4 0500

W5 2000 W5 3579

W11 1800 W11 1800

W12 0800 W12 0800

W13 6233 W13 3738

ACCA 00 3738 5ED0 ACCA 00 3738 5ED0

ACCB 00 1000 0000 ACCB 00 0EC0 0000

Data 2000 3579 Data 2000 3579

CORCON 0000 CORCON 0000

SR 0000 SR 0000
DS70000157G-page 322 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL Integer Unsigned Multiply f and WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL{.B} f

Operands: f [0 ... 8191]

Operation: For Byte Operation:
 (WREG)<7:0> * (f)<7:0> W2

For Word Operation:
 (WREG) * (f) W2:W3

Status Affected: None

Encoding: 1011 1100 0B0f ffff ffff ffff

Description: Multiply the default Working register WREG with the specified file register and place the
result in the W2:W3 register pair. Both operands and the result are interpreted as
unsigned integers. If this instruction is executed in Byte mode, the 16-bit result is stored
in W2. In Word mode, the most significant word of the 32-bit result is stored in W3 and the
least significant word of the 32-bit result is stored in W2.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but it
is not required.

2: The WREG is set to Working register W0.

3: The IF bit (CORCON<0>) has no effect on this operation.

4: This is the only instruction which provides for an 8-bit multiply.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.B 0x800 ; Multiply (0x800)*WREG (Byte mode)

Before
Instruction

After
Instruction

WREG (W0) 9823 WREG (W0) 9823

W2 FFFF W2 13B0

W3 FFFF W3 FFFF

Data 0800 2690 Data 0800 2690

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 323

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: MUL TMR1 ; Multiply (TMR1)*WREG (Word mode)

Before
Instruction

After
Instruction

WREG (W0) F001 WREG (W0) F001

W2 0000 W2 C287

W3 0000 W3 2F5E

TMR1 3287 TMR1 3287

SR 0000 SR 0000
DS70000157G-page 324 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.SS Integer 16x16-Bit Signed Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL.SS Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws)  Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1001 1www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. Both source operands and the result Wnd are interpreted as
two’s complement signed integers. Register Direct Addressing must be used for Wb and
Wnd. Register Direct or Register Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
Working register. See Figure 4-2 for information on how double words are
aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.SS W0, W1, W12 ; Multiply W0*W1
 ; Store the result to W12:W13

Before
Instruction

After
Instruction

W0 9823 W0 9823

W1 67DC W1 67DC

W12 FFFF W12 D314

W13 FFFF W13 D5DC

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 325

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: MUL.SS W2, [--W4], W0 ; Pre-decrement W4
 ; Multiply W2*[W4]
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 FFFF W0 28F8

W1 FFFF W1 0000

W2 0045 W2 0045

W4 27FE W4 27FC

Data 27FC 0098 Data 27FC 0098

SR 0000 SR 0000
DS70000157G-page 326 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.SS Integer 16x16-Bit Signed Multiply with Accumulator Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} MUL.SS Wb, Ws, Acc

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Acc [A, B]

Operation: signed (Wb) * signed (Ws)  Acc(A or B)

Status Affected: None

Encoding: 1011 1001 1www w111 Appp ssss

Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). Both
source operands are treated as signed values.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect
upon the operation of this instruction.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.SS W0, W1, A

Before
Instruction

After
Instruction

W0 9823 W0 9823

W1 67DC W1 67DC

ACCA 00 0000 0000 ACCA FF D5DC D314

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 327

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.SU Integer 16x16-Bit Signed-Unsigned Short Literal Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL.SU Wb, #lit5, Wnd

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wnd [W0, W2, W4 ... W12]

Operation: signed (Wb) * unsigned lit5  Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1001 0www wddd d11k kkkk

Description: Multiply the contents of Wb with the 5-bit literal and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The literal is interpreted as an unsigned integer. Register
Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘k’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
numbered Working register. See Figure 4-3 for information on how double
words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1

Example 1: MUL.SU W0, #0x1F, W2 ; Multiply W0 by literal 0x1F
 ; Store the result to W2:W3

Before
Instruction

After
Instruction

W0 C000 W0 C000

W2 1234 W2 4000

W3 C9BA W3 FFF8

SR 0000 SR 0000

Example 2: MUL.SU W2, #0x10, W0 ; Multiply W2 by literal 0x10
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 ABCD W0 2400

W1 89B3 W1 000F

W2 F240 W2 F240

SR 0000 SR 0000
DS70000157G-page 328 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.SU Integer 16x16-Bit Signed-Unsigned Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL.SU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: signed (Wb) * unsigned (Ws)  Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1001 0www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The Ws operand is interpreted as an unsigned integer.
Register Direct Addressing must be used for Wb and Wnd. Register Direct or Register
Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
Working register. See Figure 4-3 for information on how double words are
aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 329

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MUL.SU W8, [W9], W0 ; Multiply W8*[W9]
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 68DC W0 0000

W1 AA40 W1 F100

W8 F000 W8 F000

W9 178C W9 178C

Data 178C F000 Data 178C F000

SR 0000 SR 0000

Example 2: MUL.SU W2, [++W3], W4 ; Pre-Increment W3
 ; Multiply W2*[W3]
 ; Store the result to W4:W5

Before
Instruction

After
Instruction

W2 0040 W2 0040

W3 0280 W3 0282

W4 1819 W4 1A00

W5 2021 W5 0000

Data 0282 0068 Data 0282 0068

SR 0000 SR 0000
DS70000157G-page 330 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.SU Integer 16x16-Bit Signed-Unsigned Multiply with Accumulator Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} MUL.SU Wb, Ws, Acc

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Acc [A, B]

Operation: signed (Wb) * unsigned (Ws)  Acc(A or B)

Status Affected: None

Encoding: 1011 1001 0www w111 Appp ssss

Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). The first
source operand is interpreted as a two’s complement signed value and the second
source operand is interpreted as an unsigned value.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect
upon the operation of this instruction.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.SU W8, W9, A

Before
Instruction

After
Instruction

W8 F000 W8 F000

W9 F000 W9 F000

ACCA 00 0000 0000 ACCA FF F100 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 331

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.SU Integer 16x16-Bit Signed-Unsigned Short Literal Multiply with
Accumulator Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} MUL.SU Wb, #lit5, Acc

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Acc [A, B]

Operation: signed (Wb) * unsigned (lit5)  Acc(A or B)

Status Affected: None

Encoding: 1011 1001 0www w111 A11k kkkk

Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). The first
source operand is interpreted as a two’s complement signed value and the second source
operand is interpreted as an unsigned value.

The ‘w’ bits select the address of the base register.
The ‘k’ bits select the 5-bit literal value.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

Words: 1

Cycles: 1

Example 1: MUL.SU W8, #0x02, A

Before
Instruction

After
Instruction

W8 0042 W8 0042

ACCA 00 0000 0000 ACCA 00 0000 0084

SR 0000 SR 0000
DS70000157G-page 332 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.US Integer 16x16-Bit Unsigned-Signed Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL.US Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws)  Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1000 1www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. The Wb operand is interpreted as an unsigned integer. The Ws
operand and the result Wnd are interpreted as a two’s complement signed integer.
Register Direct Addressing must be used for Wb and Wnd. Register Direct or Register
Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
numbered Working register. See Figure 4-3 for information on how double
words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 333

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MUL.US W0, [W1], W2 ; Multiply W0*[W1] (unsigned-signed)
 ; Store the result to W2:W3

Before
Instruction

After
Instruction

W0 C000 W0 C000

W1 2300 W1 2300

W2 00DA W2 0000

W3 CC25 W3 F400

Data 2300 F000 Data 2300 F000

SR 0000 SR 0000

Example 2: MUL.US W6, [W5++], W10 ; Mult. W6*[W5] (unsigned-signed)
 ; Store the result to W10:W11
 ; Post-Increment W5

Before
Instruction

After
Instruction

W5 0C00 W5 0C02

W6 FFFF W6 FFFF

W10 0908 W10 8001

W11 6EEB W11 7FFE

Data 0C00 7FFF Data 0C00 7FFF

SR 0000 SR 0000
DS70000157G-page 334 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.US Integer 16x16-Bit Unsigned-Signed Multiply with Accumulator Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} MUL.US Wb, Ws, Acc

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Acc [A, B]

Operation: unsigned (Wb) * signed (Ws)  Acc(A or B)

Status Affected: None

Encoding: 1011 1000 0www w111 Appp ssss

Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is sign-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). The first
source operand is interpreted as an unsigned value and the second source operand is
interpreted as a two’s complement signed value.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.US W0, W1, B

Before
Instruction

After
Instruction

W0 C000 W0 0000

W1 F000 W1 F000

ACCB 00 0000 0000 ACCB FF F400 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 335

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.UU Integer 16x16-Bit Unsigned Short Literal Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL.UU Wb, #lit5, Wnd

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wnd [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned lit5  Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1000 0www wddd d11k kkkk

Description: Multiply the contents of Wb with the 5-bit literal and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. Both operands and the result are interpreted as unsigned
integers. Register Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘k’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
Working register. See Figure 4-3 for information on how double words are
aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on
this operation.

Words: 1

Cycles: 1

Example 1: MUL.UU W0, #0xF, W12 ; Multiply W0 by literal 0xF
 ; Store the result to W12:W13

Before
Instruction

After
Instruction

W0 2323 W0 2323

W12 4512 W12 0F0D

W13 7821 W13 0002

SR 0000 SR 0000

Example 2: MUL.UU W7, #0x1F, W0 ; Multiply W7 by literal 0x1F
 ; Store the result to W0:W1

Before
Instruction

After
Instruction

W0 780B W0 55C0

W1 3805 W1 001D

W7 F240 W7 F240

SR 0000 SR 0000
DS70000157G-page 336 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.UU Integer 16x16-Bit Unsigned Multiply

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} MUL.UU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned (Ws)  Wnd:Wnd + 1

Status Affected: None

Encoding: 1011 1000 0www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the 32-bit result in two
successive Working registers. The least significant word of the result is stored in Wnd
(which must be an even numbered Working register) and the most significant word of the
result is stored in Wnd + 1. Both source operands and the result are interpreted as
unsigned integers. Register Direct Addressing must be used for Wb and Wnd. Register
Direct or Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32 bits, Wnd must be an even
numbered Working register. See Figure 4-3 for information on how double
words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 337

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MUL.UU W4, W0, W2 ; Multiply W4*W0 (unsigned-unsigned)
; Store the result to W2:W3

Before
Instruction

After
Instruction

W0 FFFF W0 FFFF

W2 2300 W2 0001

W3 00DA W3 FFFE

W4 FFFF W4 FFFF

SR 0000 SR 0000

Example 2: MUL.UU W0, [W1++], W4 ; Mult. W0*[W1] (unsigned-unsigned)
; Store the result to W4:W5
; Post-Increment W1

Before
Instruction

After
Instruction

W0 1024 W0 1024

W1 2300 W1 2302

W4 9654 W4 6D34

W5 BDBC W5 0D80

Data 2300 D625 Data 2300 D625

SR 0000 SR 0000
DS70000157G-page 338 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MUL.UU Integer 16x16-Bit Unsigned Multiply with Accumulator Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} MUL.UU Wb, Ws, Acc

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Acc [A, B]

Operation: unsigned (Wb) * unsigned (Ws)  Acc(A or B)

Status Affected: None

Encoding: 1011 1000 0www w111 Appp ssss

Description: Performs a 16-bit x 16-bit unsigned multiply with a 32-bit result, which is stored in one of
the DSP engine accumulators: ACCA or ACCB. The 32-bit result is zero-extended to
bit 39 prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). Both source
operands are treated as unsigned values.

The ‘w’ bits select the address of the base register.
The ‘p’ bits select Source Addressing Mode 2.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MUL.UU W4, W0, B

Before
Instruction

After
Instruction

W0 FFFFF W0 FFFFF

W4 FFFFF W4 FFFFF

ACCB 00 0000 0000 ACCB FF FFFE 0001

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 339

16-Bit MCU and DSC Programmer’s Reference Manual

MUL.UU Integer 16x16-Bit Unsigned Short Literal Multiply with Accumulator Destination

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X

Syntax: {label:} MUL.UU Wb, #lit5, Acc

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Acc [A, B]

Operation: unsigned (Wb) * unsigned (lit5)  Acc(A or B)

Status Affected: None

Encoding: 1011 1000 0www w111 A11k kkkk

Description: Performs a 16-bit x 16-bit signed multiply with a 32-bit result, which is stored in one of the
DSP engine accumulators: ACCA or ACCB. The 32-bit result is zero-extended to bit 39
prior to being loaded into the target accumulator.

The source operands are treated as integer or fractional values depending upon the
operating mode of the DSP engine (as defined by the IF bit in CORCON<0>). Both source
operands are treated as unsigned values.

The ‘w’ bits select the address of the base register.
The ‘k’ bits select the 5-bit literal.
The ‘A’ bit selects the destination accumulator for the product.

Note 1: This instruction operates in Word mode only.

2: The state of the Multiplier mode bits (US<1:0> in CORCON) has no effect upon
the operation of this instruction.

Words: 1

Cycles: 1

Example 1: MUL.UU W8, #0x02, A

Before
Instruction

After
Instruction

W8 0042 W8 0042

ACCA 00 0000 0000 ACCA 00 0000 0084

SR 0000 SR 0000
DS70000157G-page 340 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MULW.SS Integer 16x16-Bit Signed Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MULW.SS Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws)  Wnd

Status Affected: None

Encoding: 1011 1001 1www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the result in a Working
register, which must be an even numbered Working register. Both source operands and
the result Wnd are interpreted as two’s complement signed integers. Register Direct
Addressing must be used for Wb and Wnd. Register Direct or Register Indirect
Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 341

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MULW.SS W0, W1, W12 ; Multiply W0*W1
; Store the result to W12

Before
Instruction

After
Instruction

W0 9823 W0 9823

W1 67DC W1 67DC

W12 FFFF W12 D314

SR 0000 SR 0000

Example 2: MULW.SS W2, [--W4], W0 ; Pre-decrement W4
 ; Multiply W2*[W4]
 ; Store the result to W0

Before
Instruction

After
Instruction

W0 FFFF W0 28F8

W2 0045 W2 0045

W4 27FE W4 27FC

Data 27FC 0098 Data 27FC 0098

SR 0000 SR 0000
DS70000157G-page 342 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MULW.SU Integer 16x16-Bit Signed-Unsigned Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MULW.SU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: signed (Wb) * unsigned (Ws)  Wnd

Status Affected: None

Encoding: 1011 1001 0www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the result in a Working
register, which must be an even numbered Working register. The Wb operand and the
result Wnd are interpreted as a two’s complement signed integer. The Ws operand is
interpreted as an unsigned integer. Register Direct Addressing must be used for Wb and
Wnd. Register Direct or Register Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 343

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: MULW.SU W8, [W9], W0 ; Multiply W8*[W9]
; Store the result to W0

Before
Instruction

After
Instruction

W0 68DC W0 0000

W8 F000 W8 F000

W9 178C W9 178C

Data 178C F000 Data 178C F000

SR 0000 SR 0000

Example 2: MULW.SU W2, [++W3], W4 ; Pre-Increment W3
; Multiply W2*[W3]
; Store the result to W4

Before
Instruction

After
Instruction

W2 0040 W2 0040

W3 0280 W3 0282

W4 1819 W4 1A00

Data 0282 0068 Data 0282 0068

SR 0000 SR 0000
DS70000157G-page 344 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MULW.SU Integer 16x16-Bit Signed-Unsigned Short Literal Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MULW.SU Wb, #lit5, Wnd

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wnd [W0, W2, W4 ... W12]

Operation: signed (Wb) * unsigned (lit5)  Wnd

Status Affected: None

Encoding: 1011 1001 0www wddd d11k kkkk

Description: Multiply the contents of Wb with a 5-bit literal value and store the result in a Working
register, which must be an even numbered Working register. The Wb operand and the
result Wnd are interpreted as a two’s complement signed integer. Register Direct
Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘k’ bits select the 5-bit literal value.

Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1

Example 1: MULW.SU W8, #0x04, W0 ; Multiply W8 * #0x04
; Store the result to W0

Before
Instruction

After
Instruction

W0 68DC W0 4000

W8 1000 W8 1000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 345

16-Bit MCU and DSC Programmer’s Reference Manual

MULW.US Integer 16x16-Bit Unsigned-Signed Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MULW.US Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws)  Wnd

Status Affected: None

Encoding: 1011 1000 1www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the result in a Working
register, which must be an even numbered Working register. The Wb operand is
interpreted as an unsigned integer. The Ws operand and the result Wnd are interpreted as
a two’s complement signed integer. Register Direct Addressing must be used for Wb and
Wnd. Register Direct or Register Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
DS70000157G-page 346 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: MULW.US W0, [W1], W2 ; Multiply W0*[W1] (unsigned-signed)
; Store the result to W2

Before
Instruction

After
Instruction

W0 C000 W0 C000

W1 2300 W1 2300

W2 00DA W2 0000

Data 2300 F000 Data 2300 F000

SR 0000 SR 0000

Example 2: MULW.US W6, [W5++], W10 ; Mult. W6*[W5] (unsigned-signed)
; Store the result to W10
; Post-Increment W5

Before
Instruction

After
Instruction

W5 0C00 W5 0C02

W6 FFFF W6 FFFF

W10 0908 W10 8001

Data 0C00 7FFF Data 0C00 7FFF

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 347

16-Bit MCU and DSC Programmer’s Reference Manual

MULW.UU Integer 16x16-Bit Unsigned Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MULW.UU Wb, Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wnd [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned (Ws)  Wnd

Status Affected: None

Encoding: 1011 1000 0www wddd dppp ssss

Description: Multiply the contents of Wb with the contents of Ws and store the result in a Working
register, which must be an even numbered Working register. Both source operands and
the result are interpreted as unsigned integers. Register Direct Addressing must be used
for Wb and Wnd. Register Direct or Indirect Addressing may be used for Ws.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: MULW.UU W4, W0, W2 ; Multiply W4*W0 (unsigned-unsigned)
 ; Store the result to W2

Before
Instruction

After
Instruction

W0 FFFF W0 FFFF
W2 2300 W2 0001
W4 FFFF W4 FFFF
SR 0000 SR 0000
DS70000157G-page 348 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

MULW.UU Integer 16x16-Bit Unsigned Short Literal Multiply with 16-Bit Result

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} MULW.UU Wb, #lit5, Wnd

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wnd [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * unsigned  Wnd

Status Affected: None

Encoding: 1011 1000 0www wddd d11k kkkk

Description: Multiply the contents of Wb with a 5-bit literal value and store the result in a Working
register, which must be an even numbered Working register. Both source operands and
the result are interpreted as unsigned integers. Register Direct Addressing must be used
for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘k’ bits select the 5-bit literal value.

Note 1: This instruction operates in Word mode only.

2: Wnd must be an even numbered Working register.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit and the US<1:0> bits in the CORCON register have no effect on this
operation.

Words: 1

Cycles: 1

Example 1: MULW.UU W4, #0x04, W2 ; Multiply W4*W0 (unsigned-unsigned)
 ; Store the result to W2

Before
Instruction

After
Instruction

W2 2300 W2 4000
W4 1000 W4 1000
SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 349

16-Bit MCU and DSC Programmer’s Reference Manual
NEG Negate f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} NEG{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) + 1  destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1110 0BDf ffff ffff ffff

Description: Compute the two’s complement of the contents of the file register and place the
result in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If WREG is
not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: NEG.B 0x880, WREG ; Negate (0x880) (Byte mode)
; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 9080 WREG (W0) 90AB

Data 0880 2355 Data 0880 2355

SR 0000 SR 0008 (N = 1)

Example 2: NEG 0x1200 ; Negate (0x1200) (Word mode)

Before
Instruction

After
Instruction

Data 1200 8923 Data 1200 76DD

SR 0000 SR 0000
DS70000157G-page 350 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

NEG Negate Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} NEG{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) + 1 Wd

Status Affected: DC, N, OV, Z, C

Encoding: 1110 1010 0Bqq qddd dppp ssss

Description: Compute the two’s complement of the contents of the source register Ws and place
the result in the destination register Wd. Either Register Direct or Indirect
Addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 351

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: NEG.B W3, [W4++] ; Negate W3 and store to [W4] (Byte mode)
; Post-increment W4

Before
Instruction

After
Instruction

W3 7839 W3 7839

W4 1005 W4 1006

Data 1004 2355 Data 1004 C755

SR 0000 SR 0008 (N = 1)

Example 2: NEG [W2++], [--W4] ; Pre-decrement W4 (Word mode)
; Negate [W2] and store to [W4]
; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0902

W4 1002 W4 1000

Data 0900 870F Data 0900 870F

Data 1000 5105 Data 1000 78F1

SR 0000 SR 0000
DS70000157G-page 352 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

NEG Negate Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} NEG Acc

Operands: Acc [A,B]

Operation: If (Acc = A):
-ACCA  ACCA

Else:
-ACCB  ACCB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1011 A001 0000 0000 0000

Description: Compute the two’s complement of the contents of the specified accumulator.
Regardless of the Saturation mode, this instruction operates on all 40 bits of the
accumulator.

The ‘A’ bit specifies the selected accumulator.

Words: 1

Cycles: 1

Example 1: NEG A ; Negate ACCA
; Store result to ACCA
; CORCON = 0x0000 (no saturation)

Before
Instruction

After
Instruction

ACCA 00 3290 59C8 ACCA FF CD6F A638

CORCON 0000 CORCON 0000

SR 0000 SR 0000

Example 2: NEG B ; Negate ACCB
; Store result to ACCB
; CORCON = 0x00C0 (normal saturation)

Before
Instruction

After
Instruction

ACCB FF F230 10DC ACCB 00 0DCF EF24

CORCON 00C0 CORCON 00C0

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 353

16-Bit MCU and DSC Programmer’s Reference Manual

NOP No Operation

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} NOP

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 0000 0000 xxxx xxxx xxxx xxxx

Description: No Operation is performed.

The ‘x’ bits can take any value.

Words: 1

Cycles: 1

Example 1: NOP ; execute no operation

Before
Instruction

After
Instruction

PC 00 1092 PC 00 1094

SR 0000 SR 0000

Example 2: NOP ; execute no operation

Before
Instruction

After
Instruction

PC 00 08AE PC 00 08B0

SR 0000 SR 0000
DS70000157G-page 354 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

NOPR No Operation

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} NOPR

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 1111 1111 xxxx xxxx xxxx xxxx

Description: No Operation is performed.

The ‘x’ bits can take any value.

Words: 1

Cycles: 1

Example 1: NOPR ; execute no operation

Before
Instruction

After
Instruction

PC 00 2430 PC 00 2432

SR 0000 SR 0000

Example 2: NOPR ; execute no operation

Before
Instruction

After
Instruction

PC 00 1466 PC 00 1468

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 355

16-Bit MCU and DSC Programmer’s Reference Manual

NORM Normalize Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} NORM Acc, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wnd [W0 ... W15]
Acc [A,B]

Operation: Refer to text.

Status Affected: OA, SA or OB, SB, N, Z

Encoding: 1100 1110 A110 0000 0qqq dddd

Description: Normalize the contents of the target accumulator. If the accumulator contains an
overflowed value, the contents of the accumulator are shifted right by the minimum
number of bits required to remove the overflow. If the accumulator does not contain an
overflowed value, the contents of the accumulator are shifted left by the minimum
number of bits required to produce the largest fractional data value without an overflow.

If it is not possible to normalize the target accumulator (i.e., it is already normalized, or
it is all ‘0’s or all ‘1’s), Wd is cleared, the Z bit is set and the N bit is cleared. The target
accumulator is unaffected.

If it is possible to normalize the target accumulator, the exponent (shift value) required
to normalize the target accumulator is written into Wd. A positive result indicates that a
right shift of the accumulator was required for normalization. A negative result indicates
that a left shift of the accumulator was required for normalization. The N bit is set to
reflect the sign of the result and the Z bit is cleared.

The ‘A’ bit specifies the destination accumulator.
The ‘d’ bits select the address of the destination register.
The ‘q’ bits select Destination Address Mode 2.

Note 1: OA and SA or OB and SB Status bits are set based on the content of the
target accumulator. Consequently, as the NORM instruction removes any
overflow, OA or OB will always be cleared.

2: The SA/SB bits will remain set if they were already set prior to execution of
the NORM instruction, but these bits can never be affected by this instruction.

Words: 1

Cycles: 1
DS70000157G-page 356 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

POP Pop TOS to f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} POP f

Operands: f [0 ... 65534]

Operation: (W15) – 2  W15
(TOS)  f

Status Affected: None

Encoding: 1111 1001 ffff ffff ffff fff0

Description: The Stack Pointer (W15) is pre-decremented by 2 and the Top-of-Stack (TOS) word
is written to the specified file register, which may reside anywhere in the lower
32K words of data memory.

The ‘f’ bits select the address of the file register.

Note 1: This instruction operates in Word mode only.

2: The file register address must be word-aligned.

Words: 1

Cycles: 1

Example 1: POP 0x1230 ; Pop TOS to 0x1230

Before
Instruction

After
Instruction

W15 1006 W15 1004

Data 1004 A401 Data 1004 A401

Data 1230 2355 Data 1230 A401

SR 0000 SR 0000

Example 2: POP 0x880 ; Pop TOS to 0x880

Before
Instruction

After
Instruction

W15 2000 W15 1FFE

Data 0880 E3E1 Data 0880 A090

Data 1FFE A090 Data 1FFE A090

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 357

16-Bit MCU and DSC Programmer’s Reference Manual
POP Pop TOS to Wd

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} POP Wd

[Wd]

[Wd++]

[Wd--]

[--Wd]

[++Wd]

[Wd+Wb]

Operands: Wd [W0 ... W15]
Wb [W0 ... W15]

Operation: (W15) – 2  W15
(TOS)  Wd

Status Affected: None

Encoding: 0111 1www w0hh hddd d100 1111

Description: The Stack Pointer (W15) is pre-decremented by 2 and the Top-of-Stack (TOS) word
is written to Wd. Either Register Direct or Indirect Addressing may be used for Wd.

The ‘w’ bits define the offset register Wb.
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

Note 1: This instruction operates in Word mode only.

2: This instruction is a specific version of the “MOV Ws, Wd” instruction,
(MOV [--W15], Wd); it reverse assembles as MOV.

Words: 1

Cycles: 1

Example 1: POP W4 ; Pop TOS to W4

Before
Instruction

After
Instruction

W4 EDA8 W4 C45A

W15 1008 W15 1006

Data 1006 C45A Data 1006 C45A

SR 0000 SR 0000

Example 2: POP [++W10] ; Pre-increment W10
 ; Pop TOS to [W10]

Before
Instruction

After
Instruction

W10 0E02 W10 0E04

W15 1766 W15 1764

Data 0E04 E3E1 Data 0E04 C7B5

Data 1764 C7B5 Data 1764 C7B5

SR 0000 SR 0000
DS70000157G-page 358 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

POP.D Double Pop TOS to Wnd:Wnd+1

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} POP.D Wnd

Operands: Wnd [W0, W2, W4, ... W14]

Operation: (W15) – 2  W15
(TOS)  Wnd + 1
(W15) – 2  W15
(TOS)  Wnd

Status Affected: None

Encoding: 1011 1110 0000 0ddd 0100 1111

Description: A double word is POPped from the Top-of-Stack (TOS) and stored to Wnd:Wnd + 1.
The most significant word is stored to Wnd + 1 and the least significant word is
stored to Wnd. Since a double word is POPped, the Stack Pointer (W15) gets
decremented by 4.

The ‘d’ bits select the address of the destination register pair.

Note 1: This instruction operates on double words. See Figure 4-3 for information
on how double words are aligned in memory.

2: Wnd must be an even numbered Working register.

3: This instruction is a specific version of the “MOV.D Ws, Wnd” instruction,
(MOV.D [--W15], Wnd); it reverse assembles as MOV.D.

Words: 1

Cycles: 2

Example 1: POP.D W6 ; Double pop TOS to W6

Before
Instruction

After
Instruction

W6 07BB W6 3210

W7 89AE W7 7654

W15 0850 W15 084C

Data 084C 3210 Data 084C 3210

Data 084E 7654 Data 084E 7654

SR 0000 SR 0000

Example 2: POP.D W0 ; Double pop TOS to W0

Before
Instruction

After
Instruction

W0 673E W0 791C

W1 DD23 W1 D400

W15 0BBC W15 0BB8

Data 0BB8 791C Data 0BB8 791C

Data 0BBA D400 Data 0BBA D400

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 359

16-Bit MCU and DSC Programmer’s Reference Manual

POP.S Pop Shadow Registers

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} POP.S

Operands: None

Operation: POP shadow registers.

Status Affected: DC, N, OV, Z, C

Encoding: 1111 1110 1000 0000 0000 0000

Description: The values in the shadow registers are copied into their respective primary registers.
The following registers are affected: W0-W3, and the C, Z, OV, N and DC STATUS
Register flags.

Note 1: The shadow registers are not directly accessible. They may only be
accessed with PUSH.S and POP.S.

2: The shadow registers are only one-level deep.

Words: 1

Cycles: 1

Example 1: POP.S ; Pop the shadow registers
 ; (See PUSH.S Example 1 for contents of shadows)

Before
Instruction

After
Instruction

W0 07BB W0 0000

W1 03FD W1 1000

W2 9610 W2 2000

W3 7249 W3 3000

SR 00E0 (IPL = 7) SR 00E1 (IPL = 7, C = 1)

Note: After instruction execution, the contents of shadow registers are NOT modified.
DS70000157G-page 360 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

PUSH Push f to TOS

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} PUSH f

Operands: f [0 ... 65534]

Operation: (f)  (TOS)
(W15) + 2  W15

Status Affected: None

Encoding: 1111 1000 ffff ffff ffff fff0

Description: The contents of the specified file register are written to the Top-of-Stack (TOS)
location and then the Stack Pointer (W15) is incremented by 2.

The file register may reside anywhere in the lower 32K words of data memory.

The ‘f’ bits select the address of the file register.

Note 1: This instruction operates in Word mode only.

2: The file register address must be word-aligned.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: PUSH 0x2004 ; Push (0x2004) to TOS

Before
Instruction

After
Instruction

W15 0B00 W15 0B02

Data 0B00 791C Data 0B00 D400

Data 2004 D400 Data 2004 D400

SR 0000 SR 0000

Example 2: PUSH 0xC0E ; Push (0xC0E) to TOS

Before
Instruction

After
Instruction

W15 0920 W15 0922

Data 0920 0000 Data 0920 67AA

Data 0C0E 67AA Data 2004 67AA

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 361

16-Bit MCU and DSC Programmer’s Reference Manual

DS

PUSH Push Ws to TOS

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} PUSH Ws

[Ws]

[Ws++]

[Ws--]

[--Ws]

[++Ws]

[Ws+Wb]

Operands: Ws [W0 ... W15]
Wb [W0 ... W15]

Operation: (Ws)  (TOS)
(W15) + 2  W15

Status Affected: None

Encoding: 0111 1www w001 1111 1ggg ssss

Description: The contents of Ws are written to the Top-of-Stack (TOS) location and then the Stack
Pointer (W15) is incremented by 2.

The ‘w’ bits define the offset register Wb.
The ‘g’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: This instruction is a specific version of the “MOV Ws, Wd” instruction,
(MOV Ws, [W15++]); it reverse assembles as MOV.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
70000157G-page 362 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: PUSH W2 ; Push W2 to TOS

Before
Instruction

After
Instruction

W2 6889 W2 6889

W15 1566 W15 1568

Data 1566 0000 Data 1566 6889

SR 0000 SR 0000

Example 2: PUSH [W5+W10] ; Push [W5+W10] to TOS

Before
Instruction

After
Instruction

W5 1200 W5 1200

W10 0044 W10 0044

W15 0806 W15 0808

Data 0806 216F Data 0806 B20A

Data 1244 B20A Data 1244 B20A

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 363

16-Bit MCU and DSC Programmer’s Reference Manual

PUSH.D Double Push Wns:Wns+1 to TOS

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} PUSH.D Wns

Operands: Wns [W0, W2, W4 ... W14]

Operation: (Wns)  (TOS)
(W15) + 2  W15
(Wns + 1)  (TOS)
(W15) + 2  W15

Status Affected: None

Encoding: 1011 1110 1001 1111 1000 sss0

Description: A double word (Wns:Wns + 1) is PUSHed to the Top-of-Stack (TOS). The least
significant word (Wns) is PUSHed to the TOS first and the most significant word
(Wns + 1) is PUSHed to the TOS last. Since a double word is PUSHed, the Stack
Pointer (W15) gets incremented by 4.

The ‘s’ bits select the address of the source register pair.

Note 1: This instruction operates on double words. See Figure 4-3 for information
on how double words are aligned in memory.

2: Wns must be an even numbered Working register.

3: This instruction is a specific version of the “MOV.D Wns, Wd” instruction,
(MOV.D Wns, [W15++]); it reverse assembles as MOV.D.

Words: 1

Cycles: 2

Example 1: PUSH.D W6 ; Push W6:W7 to TOS

Before
Instruction

After
Instruction

W6 C451 W6 C451

W7 3380 W7 3380

W15 1240 W15 1244

Data 1240 B004 Data 1240 C451

Data 1242 0891 Data 1242 3380

SR 0000 SR 0000

Example 2: PUSH.D W10 ; Push W10:W11 to TOS

Before
Instruction

After
Instruction

W10 80D3 W10 80D3

W11 4550 W11 4550

W15 0C08 W15 0C0C

Data 0C08 79B5 Data 0C08 80D3

Data 0C0A 008E Data 0C0A 4550

SR 0000 SR 0000
DS70000157G-page 364 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

PUSH.S Push Shadow Registers

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} PUSH.S

Operands: None

Operation: Push shadow registers.

Status Affected: None

Encoding: 1111 1110 1010 0000 0000 0000

Description: The contents of the primary registers are copied into their respective shadow
registers. The following registers are shadowed: W0-W3, and the C, Z, OV, N and
DC STATUS Register flags.

Note 1: The shadow registers are not directly accessible. They may only be
accessed with PUSH.S and POP.S.

2: The shadow registers are only one-level deep.

Words: 1

Cycles: 1

Example 1: PUSH.S ; Push primary registers into shadow registers

Before
Instruction

After
Instruction

W0 0000 W0 0000

W1 1000 W1 1000

W2 2000 W2 2000

W3 3000 W3 3000

SR 0001 (C = 1) SR 0001 (C = 1)

Note: After an instruction execution, the contents of the shadow registers are updated.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 365

16-Bit MCU and DSC Programmer’s Reference Manual

PWRSAV Enter Power-Saving Mode

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} PWRSAV #lit1

Operands: lit1 [0,1]

Operation: 0  WDT Count register
0  WDT Prescaler A count
0  WDT Prescaler B count
0  WDTO (RCON<4>)
0  SLEEP (RCON<3>)
0  IDLE (RCON<2>)

If (lit1 = 0):
Enter Sleep mode

Else:
Enter Idle mode

Status Affected: None

Encoding: 1111 1110 0100 0000 0000 000k

Description: Place the processor into the specified power-saving mode. If lit1 = 0, Sleep mode is
entered. In Sleep mode, the clock to the CPU and peripherals is shut down. If an
on-chip oscillator is being used, it is also shut down. If lit1 = 1, Idle mode is entered.
In Idle mode, the clock to the CPU shuts down, but the clock source remains active
and the peripherals continue to operate.

This instruction resets the Watchdog Timer Count register and the Prescaler Count
registers. In addition, the WDTO, SLEEP and IDLE flags of the Reset System and
Control register (RCON) are reset.

Note 1: The processor will exit from Idle or Sleep through an interrupt, processor
Reset or Watchdog Timer time-out. See the specific device data sheet for
details.

2: If awakened from Idle mode, the IDLE bit (RCON<2>) is set to ‘1’ and the
clock source is applied to the CPU.

3: If awakened from Sleep mode, the SLEEP bit (RCON<3>) is set to ‘1’
and the clock source is started.

4: If awakened from a Watchdog Timer time-out, the WDTO bit (RCON<4>)
is set to ‘1’.

Words: 1

Cycles: 1

Example 1: PWRSAV #0 ; Enter SLEEP mode

Before
Instruction

After
Instruction

SR 0040 (IPL = 2) SR 0040 (IPL = 2)

Example 2: PWRSAV #1 ; Enter IDLE mode

Before
Instruction

After
Instruction

SR 0020 (IPL = 1) SR 0020 (IPL = 1)
DS70000157G-page 366 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RCALL Relative Call

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} RCALL Expr

Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 [-32768 ... 32767].

Operation: (PC) + 2  PC
(PC<15:0>)  (TOS)
(W15) + 2  W15
(PC<22:16>)  (TOS)
(W15) + 2  W15
(PC) + (2 * Slit16)  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0111 nnnn nnnn nnnn nnnn

Description: Relative subroutine call with a range of 32K program words forward or backward from
the current PC. Before the call is made, the return address (PC + 2) is PUSHed onto
the stack. After the return address is stacked, the sign-extended 17-bit value (2 * Slit16)
is added to the contents of the PC and the result is stored in the PC.

The ‘n’ bits are a signed literal that specifies the size of the relative call (in program
words) from (PC + 2).

Note: When possible, this instruction should be used instead of CALL, since it only
consumes one word of program memory.

Words: 1

Cycles: 2
© 2005-2018 Microchip Technology Inc. DS70000157G-page 367

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: 012004 RCALL _Task1
012006 ADD W0, W1, W2

012458 _Task1: SUB W0, W2, W3
01245A ...

; Call _Task1

; _Task1 subroutine

Before
Instruction

After
Instruction

PC 01 2004 PC 01 2458

W15 0810 W15 0814

Data 0810 FFFF Data 0810 2006

Data 0812 FFFF Data 0812 0001

SR 0000 SR 0000

Example 2: 00620E RCALL _Init
006210 MOV W0, [W4++]

007000 _Init: CLR W2
007002 ...

; Call _Init

; _Init subroutine

Before
Instruction

After
Instruction

PC 00 620E PC 00 7000

W15 0C50 W15 0C54

Data 0C50 FFFF Data 0C50 6210

Data 0C52 FFFF Data 0C52 0000

SR 0000 SR 0000
DS70000157G-page 368 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RCALL Relative Call

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} RCALL Expr

Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 [-32768 ... 32767].

Operation: (PC) + 2  PC
(PC<15:1>)  TOS<15:1>, SFA Status bit  TOS<0>
(W15) + 2  W15
(PC<22:16>)  (TOS)
(W15) + 2  W15
0  SFA Status bit
(PC) + (2 * Slit16)  PC
NOP  Instruction Register

Status Affected: SFA

Encoding: 0000 0111 nnnn nnnn nnnn nnnn

Description: Relative subroutine call with a range of 32K program words forward or backward from
the current PC. Before the call is made, the return address (PC + 2) is PUSHed onto
the stack. After the return address is stacked, the sign-extended 17-bit value
(2 * Slit16) is added to the contents of the PC and the result is stored in the PC.

The ‘n’ bits are a signed literal that specifies the size of the relative call (in program
words) from (PC + 2).

Note: When possible, this instruction should be used instead of CALL, since it only
consumes one word of program memory.

Words: 1

Cycles: 4
© 2005-2018 Microchip Technology Inc. DS70000157G-page 369

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: 012004 RCALL _Task1
012006 ADD W0, W1, W2

012458 _Task1: SUB W0, W2, W3
01245A ...

; Call _Task1

; _Task1 subroutine

Before
Instruction

After
Instruction

PC 01 2004 PC 01 2458

W15 0810 W15 0814

Data 0810 FFFF Data 0810 2006

Data 0812 FFFF Data 0812 0001

SR 0000 SR 0000

Example 2: 00620E CALL _Init
006210 MOV W0, [W4++]

007000 _Init: CLR W2
007002 ...

; Call _Init

; _Init subroutine

Before
Instruction

After
Instruction

PC 00 620E PC 00 7000

W15 0C50 W15 0C54

Data 0C50 FFFF Data 0C50 6210

Data 0C52 FFFF Data 0C52 0000

SR 0000 SR 0000
DS70000157G-page 370 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RCALL Computed Relative Call

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} RCALL Wn

Operands: Wn [W0 ... W15]

Operation: (PC) + 2  PC
(PC<15:0>)  (TOS)
(W15) + 2  W15
(PC<22:16>)  (TOS)
(W15) + 2  W15
(PC) + (2 * (Wn))  PC
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0001 0010 0000 0000 ssss

Description: Computed, relative subroutine call specified by the Working register Wn. The range of
the call is 32K program words forward or backward from the current PC. Before the call
is made, the return address (PC + 2) is PUSHed onto the stack. After the return address
is stacked, the sign-extended 17-bit value (2 * (Wn)) is added to the contents of the PC
and the result is stored in the PC. Register Direct Addressing must be used for Wn.

The ‘s’ bits select the source register.

Words: 1

Cycles: 2

Example 1: 00FF8C EX1: INC W2, W3
00FF8E ...

010008
01000A RCALL W6
01000C MOVE W4, [W10]

; Destination of RCALL

; RCALL with W6

Before
Instruction

After
Instruction

PC 01 000A PC 00 FF8C

W6 FFC0 W6 FFC0

W15 1004 W15 1008

Data 1004 98FF Data 1004 000C

Data 1006 2310 Data 1006 0001

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 371

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 000302 RCALL W2
000304 FF1L W0, W1

000450 EX2: CLR W2
000452 ...

; RCALL with W2

; Destination of RCALL

Before
Instruction

After
Instruction

PC 00 0302 PC 00 0450

W2 00A6 W2 00A6

W15 1004 W15 1008

Data 1004 32BB Data 1004 0304

Data 1006 901A Data 1006 0000

SR 0000 SR 0000
DS70000157G-page 372 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RCALL Computed Relative Call

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} RCALL Wn

Operands: Wn [W0 ... W15]

Operation: (PC) + 2  PC
(PC<15:1>)  TOS<15:1>, SFA Status bit  TOS<0>
(W15) + 2  W15
(PC<22:16>)  (TOS)
(W15) + 2  W15
0  SFA Status bit
(PC) + (2 * (Wn))  PC
NOP  Instruction Register

Status Affected: SFA

Encoding: 0000 0001 0000 0010 0000 ssss

Description: Computed, relative subroutine call specified by the Working register Wn. The range of
the call is 32K program words forward or backward from the current PC. Before the call
is made, the return address (PC + 2) is PUSHed onto the stack. After the return address
is stacked, the sign-extended 17-bit value (2 * (Wn)) is added to the contents of the PC
and the result is stored in the PC. Register Direct Addressing must be used for Wn.

The ‘s’ bits select the source register.

Words: 1

Cycles: 4

Example 1: 00FF8C EX1: INC W2, W3
00FF8E ...

010008
01000A RCALL W6
01000C MOVE W4, [W10]

; Destination of RCALL

; RCALL with W6

Before
Instruction

After
Instruction

PC 01 000A PC 00 FF8C

W6 FFC0 W6 FFC0

W15 1004 W15 1008

Data 1004 98FF Data 1004 000C

Data 1006 2310 Data 1006 0001

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 373

16-Bit MCU and DSC Programmer’s Reference Manual
Example 2: 000302 RCALL W2
000304 FF1L W0, W1

000450 EX2: CLR W2
000452 ...

; RCALL with W2

; Destination of RCALL

Before
Instruction

After
Instruction

PC 00 0302 PC 00 0450

W2 00A6 W2 00A6

W15 1004 W15 1008

Data 1004 32BB Data 1004 0304

Data 1006 901A Data 1006 0000

SR 0000 SR 0000
DS70000157G-page 374 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

REPEAT Repeat Next Instruction ‘lit14+1’ Times

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} REPEAT #lit14

Operands: lit14 [0 ... 16383]

Operation: (lit14)  RCOUNT
(PC) + 2  PC
Enable code looping.

Status Affected: RA

Encoding: 0000 1001 00kk kkkk kkkk kkkk

Description: Repeat the instruction immediately following the REPEAT instruction (lit14 + 1)
times. The repeated instruction (or target instruction) is held in the Instruction
Register (IR) for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the repeat
count value specified in the instruction. RCOUNT is decremented with each
execution of the target instruction. When RCOUNT equals zero, the target
instruction is executed one more time and then normal instruction execution
continues with the instruction following the target instruction.

The ‘k’ bits are an unsigned literal that specifies the loop count.

Special Features, Restrictions:

1. When the repeat literal is ‘0’, REPEAT has the effect of a NOP and the RA bit is
not set.

2. The target REPEAT instruction cannot be:

• An instruction that changes program flow

• A DO, DISI, LNK, MOV.D, PWRSAV, REPEAT or UNLK instruction

• A 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1

Cycles: 1

Example 1: 000452 REPEAT #9 ; Execute ADD 10 times
000454 ADD [W0++], W1, [W2++] ; Vector update

Before
Instruction

After
Instruction

PC 00 0452 PC 00 0454

RCOUNT 0000 RCOUNT 0009

SR 0000 SR 0010 (RA = 1)

Example 2: 00089E REPEAT #0x3FF ; Execute CLR 1024 times
0008A0 CLR [W6++] ; Clear the scratch space

Before
Instruction

After
Instruction

PC 00 089E PC 00 08A0

RCOUNT 0000 RCOUNT 03FF

SR 0000 SR 0010 (RA = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 375

16-Bit MCU and DSC Programmer’s Reference Manual

REPEAT Repeat Next Instruction ‘lit15+1’ Times

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} REPEAT #lit15

Operands: lit15 [0 ... 32767]

Operation: (lit15)  RCOUNT
(PC) + 2  PC
Enable code looping.

Status Affected: RA

Encoding: 0000 1001 0kkk kkkk kkkk kkkk

Description: Repeat the instruction immediately following the REPEAT instruction (lit15 + 1)
times. The repeated instruction (or target instruction) is held in the Instruction
Register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the repeat
count value specified in the instruction. RCOUNT is decremented with each
execution of the target instruction. When RCOUNT equals zero, the target
instruction is executed one more time and then normal instruction execution
continues with the instruction following the target instruction.

The ‘k’ bits are an unsigned literal that specifies the loop count.

Special Features, Restrictions:

1. When the repeat literal is ‘0’, REPEAT has the effect of a NOP and the RA bit is
not set.

2. The target REPEAT instruction cannot be:

• An instruction that changes program flow

• A DISI, LNK, MOV.D, PWRSAV, REPEAT or UNLK instruction

• A 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1

Cycles: 1

Example 1: 000452 REPEAT #9 ; Execute ADD 10 times
000454 ADD [W0++], W1, [W2++] ; Vector update

Before
Instruction

After
Instruction

PC 00 0452 PC 00 0454

RCOUNT 0000 RCOUNT 0009

SR 0000 SR 0010 (RA = 1)

Example 2: 00089E REPEAT #0x3FF ; Execute CLR 1024 times
0008A0 CLR [W6++] ; Clear the scratch space

Before
Instruction

After
Instruction

PC 00 089E PC 00 08A0

RCOUNT 0000 RCOUNT 03FF

SR 0000 SR 0010 (RA = 1)
DS70000157G-page 376 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

REPEAT Repeat Next Instruction Wn+1 Times

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} REPEAT Wn

Operands: Wn [W0 ... W15]

Operation: (Wn<13:0>)  RCOUNT
(PC) + 2  PC
Enable code looping.

Status Affected: RA

Encoding: 0000 1001 1000 0000 0000 ssss

Description: Repeat the instruction immediately following the REPEAT instruction (Wn<13:0>)
times. The instruction to be repeated (or target instruction) is held in the Instruction
Register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the lower
14 bits of Wn. RCOUNT is decremented with each execution of the target
instruction. When RCOUNT equals zero, the target instruction is executed one more
time and then normal instruction execution continues with the instruction following
the target instruction.

The ‘s’ bits specify the Wn register that contains the repeat count.

Special Features, Restrictions:

1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is not set.

2. The target REPEAT instruction cannot be:

• An instruction that changes program flow

• A DO, DISI, LNK, MOV.D, PWRSAV, REPEAT or ULNK instruction

• A 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1

Cycles: 1

Example 1: 000A26 REPEAT W4 ; Execute COM (W4+1) times
000A28 COM [W0++], [W2++] ; Vector complement

Before
Instruction

After
Instruction

PC 00 0A26 PC 00 0A28

W4 0023 W4 0023

RCOUNT 0000 RCOUNT 0023

SR 0000 SR 0010 (RA = 1)

Example 2: 00089E REPEAT W10 ; Execute TBLRD (W10+1) times
0008A0 TBLRDL [W2++], [W3++] ; Decrement (0x840)

Before
Instruction

After
Instruction

PC 00 089E PC 00 08A0

W10 00FF W10 00FF

RCOUNT 0000 RCOUNT 00FF

SR 0000 SR 0010 (RA = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 377

16-Bit MCU and DSC Programmer’s Reference Manual

REPEAT Repeat Next Instruction Wn+1 Times

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} REPEAT Wn

Operands: Wn [W0 ... W15]

Operation: (Wn)  RCOUNT
(PC) + 2  PC
Enable code looping.

Status Affected: RA

Encoding: 0000 1001 1000 0000 0000 ssss

Description: Repeat the instruction immediately following the REPEAT instruction (Wn) times.
The instruction to be repeated (or target instruction) is held in the Instruction
Register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with Wn. RCOUNT
is decremented with each execution of the target instruction. When RCOUNT
equals zero, the target instruction is executed one more time and then normal
instruction execution continues with the instruction following the target instruction.

The ‘s’ bits specify the Wn register that contains the repeat count.

Special Features, Restrictions:

1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is not set.

2. The target REPEAT instruction cannot be:

• An instruction that changes program flow

• A DO, DISI, LNK, MOV.D, PWRSAV, REPEAT or ULNK instruction

• A 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1

Cycles: 1

Example 1: 000A26 REPEAT W4 ; Execute COM (W4+1) times
000A28 COM [W0++], [W2++] ; Vector complement

Before
Instruction

After
Instruction

PC 00 0A26 PC 00 0A28

W4 0023 W4 0023

RCOUNT 0000 RCOUNT 0023

SR 0000 SR 0010 (RA = 1)

Example 2: 00089E REPEAT W10 ; Execute TBLRD (W10+1) times
0008A0 TBLRDL [W2++], [W3++] ; Decrement (0x840)

Before
Instruction

After
Instruction

PC 00 089E PC 00 08A0

W10 00FF W10 00FF

RCOUNT 0000 RCOUNT 00FF

SR 0000 SR 0010 (RA = 1)
DS70000157G-page 378 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RESET Reset

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RESET

Operands: None

Operation: Force all registers that are affected by a MCLR Reset to their Reset condition.
1  SWR (RCON<6>)
0  PC

Status Affected: OA, OB, OAB, SA, SB, SAB, DA, DC, IPL<2:0>, RA, N, OV, Z, C, SFA

Encoding: 1111 1110 0000 0000 0000 0000

Description: This instruction provides a way to execute a software Reset. All core and peripheral
registers will take their power-on value. The PC will be set to ‘0’, the location of the
RESET GOTO instruction. The SWR bit (RCON<6>) will be set to ‘1’ to indicate that
the RESET instruction was executed.

Note: Refer to the specific device family reference manual for the power-on
value of all registers.

Words: 1

Cycles: 1

Example 1: 00202A RESET ; Execute software RESET on dsPIC33F

Before
Instruction

After
Instruction

PC 00 202A PC 00 0000
W0 8901 W0 0000

W1 08BB W1 0000
W2 B87A W2 0000
W3 872F W3 0000
W4 C98A W4 0000
W5 AAD4 W5 0000

W6 981E W6 0000
W7 1809 W7 0000
W8 C341 W8 0000
W9 90F4 W9 0000

W10 F409 W10 0000
W11 1700 W11 0000

W12 1008 W12 0000
W13 6556 W13 0000
W14 231D W14 0000
W15 1704 W15 0800

SPLIM 1800 SPLIM 0000
TBLPAG 007F TBLPAG 0000

PSVPAG 0001 PSVPAG 0000
CORCON 00F0 CORCON 0020 (SATDW = 1)

RCON 0000 RCON 0040 (SWR = 1)
SR 0021 (IPL, C = 1) SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 379

16-Bit MCU and DSC Programmer’s Reference Manual

RETFIE Return from Interrupt

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} RETFIE

Operands: None

Operation: (W15) – 2  W15
(TOS<15:8>)  (SR<7:0>)
(TOS<7>)  (IPL3, CORCON<3>)
(TOS<6:0>)  (PC<22:16>)
(W15) – 2  W15
(TOS<15:0>)  (PC<15:0>)
NOP  Instruction Register

Status Affected: IPL<3:0>, RA, N, OV, Z, C

Encoding: 0000 0110 0100 0000 0000 0000

Description: Return from Interrupt Service Routine. The stack is POPped, which loads the low
byte of the STATUS Register, IPL<3> (CORCON<3>) and the Most Significant Byte
of the PC. The stack is POPped again, which loads the lower 16 bits of the PC.

Note 1: Restoring IPL<3> and the low byte of the STATUS Register restores the
Interrupt Priority Level to the level before the execution was processed.

2: Before RETFIE is executed, the appropriate interrupt flag must be
cleared in software to avoid recursive interrupts.

Words: 1

Cycles: 3 (2 if exception pending)

Example 1: 000A26 RETFIE ; Return from ISR

Before
Instruction

After
Instruction

PC 00 0A26 PC 01 0230

W15 0834 W15 0830

Data 0830 0230 Data 0830 0230

Data 0832 8101 Data 0832 8101

CORCON 0001 CORCON 0001

SR 0000 SR 0081 (IPL = 4, C = 1)

Example 2: 008050 RETFIE ; Return from ISR

Before
Instruction

After
Instruction

PC 00 8050 PC 00 7008

W15 0926 W15 0922

Data 0922 7008 Data 0922 7008

Data 0924 0300 Data 0924 0300

CORCON 0000 CORCON 0000

SR 0000 SR 0003 (Z, C = 1)
DS70000157G-page 380 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RETFIE Return from Interrupt

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} RETFIE

Operands: None

Operation: (W15) – 2  W15
(TOS<15:8>)  (SR<7:0>)
(TOS<7>)  (IPL3, CORCON<3>)
(TOS<6:0>)  (PC<22:16>)
(W15) – 2  W15
(TOS<15:1>)  (PC<15:1>)
TOS<0>  SFA Status bit
NOP  Instruction Register

Status Affected: IPL<3:0>, RA, N, OV, Z, C, SFA

Encoding: 0000 0110 0100 0000 0000 0000

Description: Return from Interrupt Service Routine. The stack is POPped, which loads the low
byte of the STATUS Register, IPL<3> (CORCON<3>) and the Most Significant Byte
of the PC. The stack is POPped again, which loads the lower 16 bits of the PC.

Note 1: Restoring IPL<3> and the low byte of the STATUS Register restores the
Interrupt Priority Level to the level before the execution was processed.

2: Before RETFIE is executed, the appropriate interrupt flag must be
cleared in software to avoid recursive interrupts.

Words: 1

Cycles: 6 (5 if exception pending)

Example 1: 000A26 RETFIE ; Return from ISR

Before
Instruction

After
Instruction

PC 00 0A26 PC 01 0230

W15 0834 W15 0830

Data 0830 0230 Data 0830 0230

Data 0832 8101 Data 0832 8101

CORCON 0001 CORCON 0001

SR 0000 SR 0081 (IPL = 4, C = 1)

Example 2: 008050 RETFIE ; Return from ISR

Before
Instruction

After
Instruction

PC 00 8050 PC 00 7008

W15 0926 W15 0922

Data 0922 7008 Data 0922 7008

Data 0924 0300 Data 0924 0300

CORCON 0000 CORCON 0000

SR 0000 SR 0003 (Z, C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 381

16-Bit MCU and DSC Programmer’s Reference Manual

RETLW Return with Literal in Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} RETLW{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: (W15) – 2  W15
TOS<15:8>  SR<7:0>
TOS<7:0>  IPL<3>: PC<22:16>
(W15) – 2  W15
(TOS)  (PC<15:0>)
lit10  Wn
NOP Instruction Register

Status Affected: None

Encoding: 0000 0101 0Bkk kkkk kkkk dddd

Description: Return from subroutine with the specified, unsigned 10-bit literal stored in Wn. The
software stack is POPped twice to restore the PC and the signed literal is stored in
Wn. Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the destination register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

Words: 1

Cycles: 3 (2 if exception pending)

Example 1: 000440 RETLW.B #0xA, W0 ; Return with 0xA in W0

Before
Instruction

After
Instruction

PC 00 0440 PC 00 7006

W0 9846 W0 980A

W15 1988 W15 1984

Data 1984 7006 Data 1984 7006

Data 1986 0000 Data 1986 0000

SR 0000 SR 0000
DS70000157G-page 382 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: 00050A RETLW #0x230, W2 ; Return with 0x230 in W2

Before
Instruction

After
Instruction

PC 00 050A PC 01 7008

W2 0993 W2 0230

W15 1200 W15 11FC

Data 11FC 7008 Data 11FC 7008

Data 11FE 0001 Data 11FE 0001

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 383

16-Bit MCU and DSC Programmer’s Reference Manual

RETLW Return with Literal in Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} RETLW{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: (W15) – 2  W15
TOS<15:8>  SR<7:0>
TOS<7:0>  IPL<3>: PC<22:16>
(W15) – 2  W15
(TOS<15:1>)  (PC<15:1>)
TOS<0>  SFA Status bit
lit10  Wn
NOP Instruction Register

Status Affected: SFA

Encoding: 0000 0101 0Bkk kkkk kkkk dddd

Description: Return from subroutine with the specified, unsigned 10-bit literal stored in Wn. The
software stack is POPped twice to restore the PC and the signed literal is stored in
Wn. Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the value of the literal.
The ‘d’ bits select the destination register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned value
[0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

Words: 1

Cycles: 6 (5 if exception pending)

Example 1: 000440 RETLW.B #0xA, W0 ; Return with 0xA in W0

Before
Instruction

After
Instruction

PC 00 0440 PC 00 7006

W0 9846 W0 980A

W15 1988 W15 1984

Data 1984 7006 Data 1984 7006

Data 1986 0000 Data 1986 0000

SR 0000 SR 0000
DS70000157G-page 384 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 2: 00050A RETLW #0x230, W2 ; Return with 0x230 in W2

Before
Instruction

After
Instruction

PC 00 050A PC 01 7008

W2 0993 W2 0230

W15 1200 W15 11FC

Data 11FC 7008 Data 11FC 7008

Data 11FE 0001 Data 11FE 0001

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 385

16-Bit MCU and DSC Programmer’s Reference Manual

RETURN Return

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} RETURN

Operands: None

Operation: (W15) – 2  W15
(TOS)  (PC<22:16>)
(W15) – 2  W15
(TOS)  (PC<15:0>)
NOP  Instruction Register

Status Affected: None

Encoding: 0000 0110 0000 0000 0000 0000

Description: Return from subroutine. The software stack is POPped twice to restore the PC.
Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

Words: 1

Cycles: 3 (2 if exception pending)

Example 1: 001A06 RETURN ; Return from subroutine

Before
Instruction

After
Instruction

PC 00 1A06 PC 01 0004

W15 1248 W15 1244

Data 1244 0004 Data 1244 0004

Data 1246 0001 Data 1246 0001

SR 0000 SR 0000

Example 2: 005404 RETURN ; Return from subroutine

Before
Instruction

After
Instruction

PC 00 5404 PC 00 0966

W15 090A W15 0906

Data 0906 0966 Data 0906 0966

Data 0908 0000 Data 0908 0000

SR 0000 SR 0000
DS70000157G-page 386 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RETURN Return

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} RETURN

Operands: None

Operation: (W15) – 2  W15
(TOS)  (PC<22:16>)
(W15) – 2  W15
(TOS<15:1)  (PC<15:1>)
TOS<0>  SFA Status bit
NOP  Instruction Register

Status Affected: SFA

Encoding: 0000 0110 0000 0000 0000 0000

Description: Return from subroutine. The software stack is POPped twice to restore the PC.
Since two POPs are made, the Stack Pointer (W15) is decremented by 4.

Words: 1

Cycles: 6 (5 if exception pending)

Example 1: 001A06 RETURN ; Return from subroutine

Before
Instruction

After
Instruction

PC 00 1A06 PC 01 0004

W15 1248 W15 1244

Data 1244 0004 Data 1244 0004

Data 1246 0001 Data 1246 0001

SR 0000 SR 0000

Example 2: 005404 RETURN ; Return from subroutine

Before
Instruction

After
Instruction

PC 00 5404 PC 00 0966

W15 090A W15 0906

Data 0906 0966 Data 0906 0966

Data 0908 0000 Data 0908 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 387

16-Bit MCU and DSC Programmer’s Reference Manual

RLC Rotate Left f through Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RLC{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: For Byte Operation:
(C)  Dest<0>
(f<6:0>)  Dest<7:1>
(f<7>)  C

For Word Operation:
(C)  Dest<0>
(f<14:0>)  Dest<15:1>
(f<15>)  C

Status Affected: N, Z, C

Encoding: 1101 0110 1BDf ffff ffff ffff

Description: Rotate the contents of the file register f, one bit to the left through the Carry flag, and
place the result in the destination register. The Carry flag of the STATUS Register is
shifted into the Least Significant bit of the destination and it is then overwritten with
the Most Significant bit of Ws.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for f, ‘1’ for WREG).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1

C

Example 1: RLC.B 0x1233 ; Rotate Left w/ C (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1232 D007

SR 0000 SR 0009 (N, C = 1)

Example 2: RLC 0x820, WREG ; Rotate Left w/ C (0x820) (Word mode)
; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 42DD

Data 0820 216E Data 0820 216E

SR 0001 (C = 1) SR 0000 (C = 0)
DS70000157G-page 388 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RLC Rotate Left Ws through Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RLC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
(C)  Wd<0>
(Ws<6:0>)  Wd<7:1>
(Ws<7>)  C

For Word Operation:
(C)  Wd<0>
(Ws<14:0>)  Wd<15:1>
(Ws<15>)  C

Status Affected: N, Z, C

Encoding: 1101 0010 1Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws, one bit to the left through the Carry
flag, and place the result in the destination register Wd. The Carry flag of the
STATUS Register is shifted into the Least Significant bit of Wd and it is then
overwritten with the Most Significant bit of Ws. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

C

© 2005-2018 Microchip Technology Inc. DS70000157G-page 389

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: RLC.B W0, W3 ; Rotate Left w/C (W0) (Byte mode)
; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 58ED

SR 0001 (C = 1) SR 0009 (N = 1)

Example 2: RLC [W2++], [W8] ; Rotate Left w/C [W2] (Word mode)
; Post-increment W2
; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E 8082

Data 2008 C041 Data 2008 C041

SR 0001 (C = 1) SR 0009 (N, C = 1)
DS70000157G-page 390 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RLNC Rotate Left f without Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RLNC{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: For Byte Operation:
(f<6:0>)  Dest<7:1>
(f<7>)  Dest<0>

For Word Operation:
(f<14:0>)  Dest<15:1>
(f<15>)  Dest<0>

Status Affected: N, Z

Encoding: 1101 0110 0BDf ffff ffff ffff

Description: Rotate the contents of the file register f, one bit to the left, and place the result in the
destination register. The Most Significant bit of f is stored in the Least Significant bit
of the destination and the Carry flag is not affected.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: RLNC.B 0x1233 ; Rotate Left (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1233 D107

SR 0000 SR 0008 (N = 1)

Example 2: RLNC 0x820, WREG ; Rotate Left (0x820) (Word mode)
 ; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 42DC

Data 0820 216E Data 0820 216E

SR 0001 (C = 1) SR 0000 (C = 0)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 391

16-Bit MCU and DSC Programmer’s Reference Manual

RLNC Rotate Left Ws without Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RLNC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
(Ws<6:0>)  Wd<7:1>
(Ws<7>)  Wd<0>

For Word Operation:
(Ws<14:0>)  Wd<15:1>
(Ws<15>)  Wd<0>

Status Affected: N, Z

Encoding: 1101 0010 0Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws, one bit to the left, and place the result
in the destination register Wd. The Most Significant bit of Ws is stored in the Least
Significant bit of Wd and the Carry flag is not affected. Either Register Direct or
Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for byte, ‘1’ for word).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 392 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: RLNC.B W0, W3 ; Rotate Left (W0) (Byte mode)
; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 58EC

SR 0001 (C = 1) SR 0009 (N, C = 1)

Example 2: RLNC [W2++], [W8] ; Rotate Left [W2] (Word mode)
; Post-increment W2
; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E 8083

Data 2008 C041 Data 2008 C041

SR 0001 (C = 1) SR 0009 (N, C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 393

16-Bit MCU and DSC Programmer’s Reference Manual

RRC Rotate Right f through Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RRC{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: For Byte Operation:
(C)  Dest<7>
(f<7:1>)  Dest<6:0>
(f<0>)  C

For Word Operation:
(C)  Dest<15>
(f<15:1>)  Dest<14:0>
(f<0>)  C

Status Affected: N, Z, C

Encoding: 1101 0111 1BDf ffff ffff ffff

Description: Rotate the contents of the file register f, one bit to the right through the Carry flag,
and place the result in the destination register. The Carry flag of the STATUS
Register is shifted into the Most Significant bit of the destination and it is then
overwritten with the Least Significant bit of Ws.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for byte, ‘1’ for word).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C

DS70000157G-page 394 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: RRC.B 0x1233 ; Rotate Right w/C (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1232 7407

SR 0000 SR 0000

Example 2: RRC 0x820, WREG ; Rotate Right w/C (0x820) (Word mode)
; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 90B7

Data 0820 216E Data 0820 216E

SR 0001 (C = 1) SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 395

16-Bit MCU and DSC Programmer’s Reference Manual

RRC Rotate Right Ws through Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RRC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
(C)  Wd<7>
(Ws<7:1>)  Wd<6:0>
(Ws<0>)  C

For Word Operation:
(C)  Wd<15>
(Ws<15:1>)  Wd<14:0>
(Ws<0>)  C

Status Affected: N, Z, C

Encoding: 1101 0011 1Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws, one bit to the right through the Carry
flag, and place the result in the destination register Wd. The Carry flag of the
STATUS Register is shifted into the Most Significant bit of Wd and it is then
overwritten with the Least Significant bit of Ws. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C

DS70000157G-page 396 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: RRC.B W0, W3 ; Rotate Right w/ C (W0) (Byte mode)
; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 58BB

SR 0001 (C = 1) SR 0008 (N = 1)

Example 2: RRC [W2++], [W8] ; Rotate Right w/ C [W2] (Word mode)
; Post-increment W2
; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E E020

Data 2008 C041 Data 2008 C041

SR 0001 (C = 1) SR 0009 (N, C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 397

16-Bit MCU and DSC Programmer’s Reference Manual

DS

RRNC Rotate Right f without Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RRNC{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: For Byte Operation:
(f<7:1>)  Dest<6:0>
(f<0>)  Dest<7>

For Word Operation:
(f<15:1>)  Dest<14:0>
(f<0>)  Dest<15>

Status Affected: N, Z

Encoding: 1101 0111 0BDf ffff ffff ffff

Description: Rotate the contents of the file register f, one bit to the right, and place the result in
the destination register. The Least Significant bit of f is stored in the Most Significant
bit of the destination and the Carry flag is not affected.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: RRNC.B 0x1233 ; Rotate Right (0x1233) (Byte mode)

Before
Instruction

After
Instruction

Data 1232 E807 Data 1232 7407

SR 0000 SR 0000

Example 2: RRNC 0x820, WREG ; Rotate Right (0x820) (Word mode)
; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 5601 WREG (W0) 10B7

Data 0820 216E Data 0820 216E

SR 0001 (C = 1) SR 0001 (C = 1)
70000157G-page 398 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

RRNC Rotate Right Ws without Carry

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} RRNC{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
(Ws<7:1>)  Wd<6:0>
(Ws<0>)  Wd<7>

For Word Operation:
(Ws<15:1>)  Wd<14:0>
(Ws<0>)  Wd<15>

Status Affected: N, Z

Encoding: 1101 0011 0Bqq qddd dppp ssss

Description: Rotate the contents of the source register Ws, one bit to the right, and place the
result in the destination register Wd. The Least Significant bit of Ws is stored in the
Most Significant bit of Wd and the Carry flag is not affected. Either Register Direct or
Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 399

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: RRNC.B W0, W3 ; Rotate Right (W0) (Byte mode)
 ; Store the result in W3

Before
Instruction

After
Instruction

W0 9976 W0 9976

W3 5879 W3 583B

SR 0001 (C = 1) SR 0001 (C = 1)

Example 2: RRNC [W2++], [W8] ; Rotate Right [W2] (Word mode)
 ; Post-increment W2
 ; Store result in [W8]

Before
Instruction

After
Instruction

W2 2008 W2 200A

W8 094E W8 094E

Data 094E 3689 Data 094E E020

Data 2008 C041 Data 2008 C041

SR 0000 SR 0008 (N = 1)
DS70000157G-page 400 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SAC Store Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} SAC Acc, {#Slit4,} Wd

[Wd]

[Wd++]

[Wd--]

[--Wd]

[++Wd]

[Wd + Wb]

Operands: Acc [A,B]
Slit4 [-8 ... +7]
Wb, Wd [W0 ... W15]

Operation: ShiftSlit4(Acc) (optional)
(Acc[31:16])  Wd

Status Affected: None

Encoding: 1100 1100 Awww wrrr rhhh dddd

Description: Perform an optional, signed 4-bit shift of the specified accumulator, then store the
shifted contents of ACCxH (Acc[31:16]) to Wd. The shift range is -8:7, where a
negative operand indicates an arithmetic left shift and a positive operand indicates
an arithmetic right shift. Either Register Direct or Indirect Addressing may be used
for Wd.

The ‘A’ bit specifies the source accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional accumulator preshift.
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of Acc.

2: This instruction stores the truncated contents of Acc. The instruction,
SAC.R, may be used to store the rounded accumulator contents.

3: If data write saturation is enabled (SATDW (CORCON<5>) = 1), the
value stored to Wd is subject to saturation after the optional shift is
performed.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 401

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: SAC A, #4, W5
; Right shift ACCA by 4
; Store result to W5
; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 B900 W5 0120

ACCA 00 120F FF00 ACCA 00 120F FF00

CORCON 0010 CORCON 0010

SR 0000 SR 0000

Example 2: SAC B, #-4, [W5++]
; Left shift ACCB by 4
; Store result to [W5], Post-increment W5
; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 2000 W5 2002

ACCB FF C891 8F4C ACCB FF C891 1F4C

Data 2000 5BBE Data 2000 8000

CORCON 0010 CORCON 0010

SR 0000 SR 0000
DS70000157G-page 402 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SAC.D Store Accumulator Double

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} SAC.D Acc, [, #Slit4], Wnd

[Wnd]

[Wnd++]

[Wnd--]

[--Wnd]

[++Wnd]

Operands: Register Direct: Wnd [W0, W2, W4, W6, W8, W10, W12, W14];
Register Indirect: Wnd [W0 ... W15];
Acc [A,B]
Slit4 [-8 ... +7]

Operation: ShiftSlit4(Acc) (optional); (Acc[31:0])  Wnd

Status Affected: None

Encoding: 1101 1100 A0qq qrrr r000 dddd

Description: Optionally shift accumulator, then store accumulator, Acc<31:0>, to the destination
Effective Address.

The ‘A’ bit specifies the source accumulator.
The ‘d’ bits specify the destination register Wnd.
The ‘q’ bits select the destination addressing mode.
The ‘r’ bits encode the optional operand Slit4, which determines the amount of the
accumulator preshift; if the operand Slit4 is absent, a ‘0’ is encoded.

Note 1: Unlike SAC and SAC.R instructions, the SAC.D instruction does not support
Indirect with Register Offset Addressing mode.

2: Positive values of operand Slit4 represent arithmetic shift right. Negative
values of operand Slit4 represent shift left.

3: The SAC.D instruction cannot be executed within a REPEAT loop.

Words: 1

Cycles: 2
© 2005-2018 Microchip Technology Inc. DS70000157G-page 403

16-Bit MCU and DSC Programmer’s Reference Manual

SAC.R Store Rounded Accumulator

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} SAC.R Acc, {#Slit4,} Wd

 [Wd]

[Wd++]

[Wd--]

[--Wd]

[++Wd]

[Wd + Wb]

Operands: Acc [A,B]
Slit4 [-8 ... +7]
Wb [W0 ... W15]
Wd [W0 ... W15]

Operation: ShiftSlit4(Acc) (optional)
Round(Acc)
(Acc[31:16])  Wd

Status Affected: None

Encoding: 1100 1101 Awww wrrr rhhh dddd

Description: Perform an optional, signed 4-bit shift of the specified accumulator, then store the
rounded contents of ACCxH (Acc[31:16]) to Wd. The shift range is -8:7, where a
negative operand indicates an arithmetic left shift and a positive operand indicates
an arithmetic right shift. The Rounding mode (Conventional or Convergent) is set by
the RND bit (CORCON<1>). Either Register Direct or Indirect Addressing may be
used for Wd.

The ‘A’ bit specifies the source accumulator.
The ‘w’ bits specify the offset register Wb.
The ‘r’ bits encode the optional accumulator preshift.
The ‘h’ bits select the destination addressing mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of the Acc.

2: This instruction stores the rounded contents of Acc. The instruction, SAC,
may be used to store the truncated accumulator contents.

3: If data write saturation is enabled (SATDW (CORCON<5>) = 1), the
value stored to Wd is subject to saturation after the optional shift is
performed.

Words: 1

Cycles: 1
DS70000157G-page 404 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: SAC.R A, #4, W5
; Right shift ACCA by 4
; Store rounded result to W5
; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 B900 W5 0121

ACCA 00 120F FF00 ACCA 00 120F FF00

CORCON 0010 CORCON 0010

SR 0000 SR 0000

Example 2: SAC.R B, #-4, [W5++]
; Left shift ACCB by 4
; Store rounded result to [W5], Post-increment W5
; CORCON = 0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

W5 2000 W5 2002

ACCB FF F891 8F4C ACCB FF F891 8F4C

Data 2000 5BBE Data 2000 8919

CORCON 0010 CORCON 0010

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 405

16-Bit MCU and DSC Programmer’s Reference Manual

SE Sign-Extend Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SE Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
Wnd [W0 ... W15]

Operation: Ws<7:0>  Wnd<7:0>

If (Ws<7> = 1):
0xFF  Wnd<15:8>

Else:
0  Wnd<15:8>

Status Affected: N, Z, C

Encoding: 1111 1011 0000 0ddd dppp ssss

Description: Sign-extend the byte in Ws and store the 16-bit result in Wnd. Either Register Direct
or Indirect Addressing may be used for Ws and Register Direct Addressing must be
used for Wnd. The C flag is set to the complement of the N flag.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This operation converts a byte to a word and it uses no .B or .W extension.

2: The source Ws is addressed as a byte operand, so any address
modification is by ‘1’.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 406 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: SE W3, W4 ; Sign-extend W3 and store to W4

Before
Instruction

After
Instruction

W3 7839 W3 7839

W4 1005 W4 0039

SR 0000 SR 0001 (C = 1)

Example 2: SE [W2++], W12 ; Sign-extend [W2] and store to W12
; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0901

W12 1002 W12 FF8F

Data 0900 008F Data 0900 008F

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 407

16-Bit MCU and DSC Programmer’s Reference Manual

SETM Set f or WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SETM{.B} f

WREG

Operands: f [0 ... 8191]

Operation: For Byte Operation:
0xFF destination designated by D

For Word Operation:
0xFFFF destination designated by D

Status Affected: None

Encoding: 1110 1111 1BDf ffff ffff ffff

Description: All the bits of the specified register are set to ‘1’. If WREG is specified, the bits of
WREG are set. Otherwise, the bits of the specified file register are set.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1

Example 1: SETM.B 0x891 ; Set 0x891 (Byte mode)

Before
Instruction

After
Instruction

Data 0890 2739 Data 0890 FF39

SR 0000 SR 0000

Example 2: SETM WREG ; Set WREG (Word mode)

Before
Instruction

After
Instruction

WREG (W0) 0900 WREG (W0) FFFF

SR 0000 SR 0000
DS70000157G-page 408 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SETM Set Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SETM{.B} Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wd [W0 ... W15]

Operation: For Byte Operation:
0xFF Wd for byte operation

For Word Operation:
0xFFFF Wd for word operation

Status Affected: None

Encoding: 1110 1011 1Bqq qddd d000 0000

Description: All the bits of the specified register are set to ‘1’. Either Register Direct or Indirect
Addressing may be used for Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1

Example 1: SETM.B W13 ; Set W13 (Byte mode)

Before
Instruction

After
Instruction

W13 2739 W13 27FF

SR 0000 SR 0000

Example 2: SETM [--W6] ; Pre-decrement W6 (Word mode)
; Set [W6]

Before
Instruction

After
Instruction

W6 1250 W6 124E

Data 124E 3CD9 Data 124E FFFF

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 409

16-Bit MCU and DSC Programmer’s Reference Manual

SFTAC Arithmetic Shift Accumulator by Slit6

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} SFTAC Acc, #Slit6

Operands: Acc [A,B]
Slit6 [-16 ... 16]

Operation: Shiftk(Acc) Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1000 A000 0000 01kk kkkk

Description: Arithmetic shift the 40-bit contents of the specified accumulator by the signed, 6-bit
literal and store the result back into the accumulator. The shift range is -16:16, where
a negative operand indicates a left shift and a positive operand indicates a right shift.
Any bits which are shifted out of the accumulator are lost.

The ‘A’ bit selects the accumulator for the result.
The ‘k’ bits determine the number of bits to be shifted.

Note 1: If saturation is enabled for the target accumulator (SATA, CORCON<7>
or SATB, CORCON<6>), the value stored to the accumulator is subject to
saturation.

2: If the shift amount is greater than 16 or less than -16, no modification will
be made to the accumulator and an arithmetic trap will occur.

Words: 1

Cycles: 1

Example 1: SFTAC A, #12
; Arithmetic right shift ACCA by 12
; Store result to ACCA
; CORCON = 0x0080 (SATA = 1)

Before
Instruction

After
Instruction

ACCA 00 120F FF00 ACCA 00 0001 20FF

CORCON 0080 CORCON 0080

SR 0000 SR 0000

Example 2: SFTAC B, #-10
; Arithmetic left shift ACCB by 10
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)

Before
Instruction

After
Instruction

ACCB FF FFF1 8F4C ACCB FF C63D 3000

CORCON 0040 CORCON 0040

SR 0000 SR 0000
DS70000157G-page 410 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SFTAC Arithmetic Shift Accumulator by Wb

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} SFTAC Acc, Wb

Operands: Acc [A,B]
Wb [W0 ... W15]

Operation: Shift(Wb)(Acc) Acc

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1000 A000 0000 0000 ssss

Description: Arithmetic shift the 40-bit contents of the specified accumulator and store the result
back into the accumulator. The Least Significant 6 bits of Wb are used to specify the
shift amount. The shift range is -16:16, where a negative value indicates a left shift
and a positive value indicates a right shift. Any bits which are shifted out of the
accumulator are lost.

The ‘A’ bit selects the accumulator for the source/destination.
The ‘s’ bits select the address of the Shift Count register.

Note 1: If saturation is enabled for the target accumulator (SATA, CORCON<7>
or SATB, CORCON<6>), the value stored to the accumulator is subject
to saturation.

2: If the shift amount is greater than 16 or less than -16, no modification will
be made to the accumulator and an arithmetic trap will occur.

Words: 1

Cycles: 1

Example 1: SFTAC A, W0
; Arithmetic shift ACCA by (W0)
; Store result to ACCA
; CORCON = 0x0000 (saturation disabled)

Before
Instruction

After
Instruction

W0 FFFC W0 FFFC

ACCA 00 320F AB09 ACCA 03 20FA B090

CORCON 0000 CORCON 0000

SR 0000 SR 8800 (OA, OAB = 1)

Example 2: SFTAC B, W12
; Arithmetic shift ACCB by (W12)
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)

Before
Instruction

After
Instruction

W12 000F W12 000F

ACCB FF FFF1 8F4C ACCB FF FFFF FFE3

CORCON 0040 CORCON 0040

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 411

16-Bit MCU and DSC Programmer’s Reference Manual

SL Shift Left f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SL{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: For Byte Operation:
(f<7>)  (C)
(f<6:0>)  Dest<7:1>
0  Dest<0>

For Word Operation:
(f<15>)  (C)
(f<14:0>)  Dest<15:1>
0  Dest<0>

Status Affected: N, Z, C

Encoding: 1101 0100 0BDf ffff ffff ffff

Description: Shift the contents of the file register, one bit to the left, and place the result in the
destination register. The Most Significant bit of the file register is shifted into the
Carry bit of the STATUS Register and ‘0’ is shifted into the Least Significant bit of the
destination register.

The optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the result is stored
in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C 0
DS70000157G-page 412 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: SL.B 0x909 ; Shift left (0x909) (Byte mode)

Before
Instruction

After
Instruction

Data 0908 9439 Data 0908 0839

SR 0000 SR 0001 (C = 1)

Example 2: SL 0x1650, WREG ; Shift left (0x1650) (Word mode)
; Store result in WREG

Before
Instruction

After
Instruction

WREG (W0) 0900 WREG (W0) 80CA

Data 1650 4065 Data 1650 4065

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 413

16-Bit MCU and DSC Programmer’s Reference Manual

SL Shift Left Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SL{.B} Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
(Ws<7>)  C
(Ws<6:0>)  Wd<7:1>
0  Wd<0>

For Word Operation:
(Ws<15>)  C
(Ws<14:0>)  Wd<15:1>
0  Wd<0>

Status Affected: N, Z, C

Encoding: 1101 0000 0Bqq qddd dppp ssss

Description: Shift the contents of the source register Ws, one bit to the left, and place the result in
the destination register Wd. The Most Significant bit of Ws is shifted into the Carry
bit of the STATUS Register and ‘0’ is shifted into the Least Significant bit of Wd.
Either Register Direct or Indirect Addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

C 0
DS70000157G-page 414 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: SL.B W3, W4 ; Shift left W3 (Byte mode)
; Store result to W4

Before
Instruction

After
Instruction

W3 78A9 W3 78A9

W4 1005 W4 1052

SR 0000 SR 0001 (C = 1)

Example 2: SL [W2++], [W12] ; Shift left [W2] (Word mode)
; Store result to [W12]
; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0902

W12 1002 W12 1002

Data 0900 800F Data 0900 800F

Data 1002 6722 Data 1002 001E

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 415

16-Bit MCU and DSC Programmer’s Reference Manual

SL Shift Left by Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SL Wb, #lit4, Wnd

Operands: Wb [W0 ... W15]
lit4 [0 ... 15]
Wnd [W0 ... W15]

Operation: lit4<3:0> Shift_Val
Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val – 1:0> = 0

Status Affected: N, Z

Encoding: 1101 1101 0www wddd d100 kkkk

Description: Shift left the contents of the source register Wb by the 4-bit unsigned literal and
store the result in the destination register Wnd. Any bits shifted out of the source
register are lost. Direct Addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: This instruction operates in Word mode only.

Words: 1

Cycles: 1

Example 1: SL W2, #4, W2 ; Shift left W2 by 4
 ; Store result to W2

Before
Instruction

After
Instruction

W2 78A9 W2 8A90

SR 0000 SR 0008 (N = 1)

Example 2: SL W3, #12, W8 ; Shift left W3 by 12
 ; Store result to W8

Before
Instruction

After
Instruction

W3 0912 W3 0912

W8 1002 W8 2000

SR 0000 SR 0000
DS70000157G-page 416 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SL Shift Left by Wns

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SL Wb, Wns, Wnd

Operands: Wb [W0 ... W15]
Wns [W0 ...W15]
Wnd [W0 ... W15]

Operation: Wns<4:0> Shift_Val
Wnd<15:Shift_Val> = Wb<15 – Shift_Val:0>
Wd<Shift_Val – 1:0> = 0

Status Affected: N, Z

Encoding: 1101 1101 0www wddd d000 ssss

Description: Shift left the contents of the source register Wb by the 5 Least Significant bits of
Wns (only up to 15 positions) and store the result in the destination register Wnd.
Any bits shifted out of the source register are lost. Register Direct Addressing must
be used for Wb, Wns and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the destination register.
The ‘s’ bits select the source register.

Note 1: This instruction operates in Word mode only.

2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1

Cycles: 1

Example 1: SL W0, W1, W2 ; Shift left W0 by W1<0:4>
 ; Store result to W2

Before
Instruction

After
Instruction

W0 09A4 W0 09A4

W1 8903 W1 8903

W2 78A9 W2 4D20

SR 0000 SR 0000

Example 2: SL W4, W5, W6 ; Shift left W4 by W5<0:4>
 ; Store result to W6

Before
Instruction

After
Instruction

W4 A409 W4 A409

W5 FF01 W5 FF01

W6 0883 W6 4812

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 417

16-Bit MCU and DSC Programmer’s Reference Manual

SUB Subtract WREG from f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUB{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) – (WREG) destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0101 0BDf ffff ffff ffff

Description: Subtract the contents of the default Working register WREG from the contents of the
specified file register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is specified, the result
is stored in WREG. If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUB.B 0x1FFF ; Sub. WREG from (0x1FFF) (Byte mode)
; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 9039

SR 0000 SR 0001 (C = 1)

Example 2: SUB 0xA04, WREG ; Sub. WREG from (0xA04) (Word mode)
; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) E2EF

Data 0A04 4523 Data 0A04 4523

SR 0000 SR 0008 (N = 1)
DS70000157G-page 418 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUB Subtract Literal from Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUB{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: (Wn) – lit10 Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0001 0Bkk kkkk kkkk dddd

Description: Subtract the 10-bit unsigned literal operand from the contents of the Working
register Wn and store the result back in the Working register Wn. Register Direct
Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation.
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

Words: 1

Cycles: 1

Example 1: SUB.B #0x23, W0 ; Sub. 0x23 from W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 7804 W0 78E1

SR 0000 SR 0008 (N = 1)

Example 2: SUB #0x108, W4 ; Sub. 0x108 from W4 (Word mode)
 ; Store result to W4

Before
Instruction

After
Instruction

W4 6234 W4 612C

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 419

16-Bit MCU and DSC Programmer’s Reference Manual

SUB Subtract Short Literal from Wb

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUB{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: (Wb) – lit5 Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 0www wBqq qddd d11k kkkk

Description: Subtract the 5-bit unsigned literal operand from the contents of the base register Wb
and place the result in the destination register Wd. Register Direct Addressing must
be used for Wb. Register Direct or Indirect Addressing must be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: SUB.B W4, #0x10, W5 ; Sub. 0x10 from W4 (Byte mode)
; Store result to W5

Before
Instruction

After
Instruction

W4 1782 W4 1782

W5 7804 W5 7872

SR 0000 SR 0005 (OV, C = 1)

Example 2: SUB W0, #0x8, [W2++] ; Sub. 0x8 from W0 (Word mode)
; Store result to [W2]
; Post-increment W2

Before
Instruction

After
Instruction

W0 F230 W0 F230

W2 2004 W2 2006

Data 2004 A557 Data 2004 F228

SR 0000 SR 0009 (N, C = 1)
DS70000157G-page 420 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUB Subtract Ws from Wb

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUB{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Wb) – (Ws) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 0www wBqq qddd dppp ssss

Description: Subtract the contents of the source register Ws from the contents of the base
register Wb and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 421

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: SUB.B W0, W1, W0 ; Sub. W1 from W0 (Byte mode)
; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 17EE

W1 7844 W1 7844

SR 0000 SR 0108 (DC, N = 1)

Example 2: SUB W7, [W8++], [W9++] ; Sub. [W8] from W7 (Word mode)
; Store result to [W9]
; Post-increment W8
; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2020 W9 2022

Data 1808 92E4 Data 1808 92E4

Data 2020 A557 Data 2020 916C

SR 0000 SR 010C (DC, N, OV = 1)
DS70000157G-page 422 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUB Subtract Accumulators

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} SUB Acc

Operands: Acc [A,B]

Operation: If (Acc = A):
ACCA – ACCB  ACCA

Else:
ACCB – ACCA  ACCB

Status Affected: OA, OB, OAB, SA, SB, SAB

Encoding: 1100 1011 A011 0000 0000 0000

Description: Subtract the contents of the unspecified accumulator from the contents of Acc and
store the result back into Acc. This instruction performs a 40-bit subtraction.

The ‘A’ bit specifies the destination accumulator.

Words: 1

Cycles: 1

Example 1: SUB A ; Subtract ACCB from ACCA
 ; Store the result to ACCA
 ; CORCON = 0x0000 (no saturation)

Before
Instruction

After
Instruction

ACCA 76 120F 098A ACCA 52 1EFC 4D73

ACCB 23 F312 BC17 ACCB 23 F312 BC17

CORCON 0000 CORCON 0000

SR 0000 SR 1100 (OA, OB = 1)

Example 2: SUB B ; Subtract ACCA from ACCB
 ; Store the result to ACCB
 ; CORCON = 0x0040 (SATB = 1)

Before
Instruction

After
Instruction

ACCA FF 9022 2EE1 ACCA FF 9022 2EE1

ACCB 00 2456 8F4C ACCB 00 7FFF FFFF

CORCON 0040 CORCON 0040

SR 0000 SR 1400 (SB, SAB = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 423

16-Bit MCU and DSC Programmer’s Reference Manual

SUBB Subtract WREG and Carry Bit from f

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBB{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f) – (WREG) – (C) destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0101 1BDf ffff ffff ffff

Description: Subtract the contents of the default Working register WREG and the Borrow flag
(Carry flag inverse, C) from the contents of the specified file register, and place the
result in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If WREG is
not specified, the result is stored in the file register

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUBB.B 0x1FFF ; Sub. WREG and C from (0x1FFF) (Byte mode)
; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 8F39

SR 0000 SR 0011 (DC, C = 1)

Example 2: SUBB 0xA04, WREG ; Sub. WREG and C from (0xA04) (Word mode)
; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) 0000

Data 0A04 6235 Data 0A04 6235

SR 0000 SR 0001 (C = 1)
DS70000157G-page 424 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUBB Subtract Wn from Literal with Borrow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBB{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: (Wn) – lit10 – (C) Wn

Status Affected: DC, N, OV, Z, C

Encoding: 1011 0001 1Bkk kkkk kkkk dddd

Description: Subtract the unsigned 10-bit literal operand and the Borrow flag (Carry flag inverse,
C) from the contents of the Working register Wn, and store the result back in the
Working register Wn. Register Direct Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .w extension to denote a word
operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-Bit Literal Operands” for
information on using 10-bit literal operands in Byte mode.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1

Example 1: SUBB.B #0x23, W0 ; Sub. 0x23 and C from W0 (Byte mode)
; Store result to W0

Before
Instruction

After
Instruction

W0 7804 W0 78E0

SR 0000 SR 0108 (DC, N = 1)

Example 2: SUBB #0x108, W4 ; Sub. 0x108 and C from W4 (Word mode)
; Store result to W4

Before
Instruction

After
Instruction

W4 6234 W4 612C

SR 0001 (C = 1) SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 425

16-Bit MCU and DSC Programmer’s Reference Manual

SUBB Subtract Short Literal from Wb with Borrow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBB{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: (Wb) – lit5 – (C)Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 1www wBqq qddd d11k kkkk

Description: Subtract the 5-bit unsigned literal operand and the Borrow flag (Carry flag inverse,
C) from the contents of the base register Wb, and place the result in the destination
register Wd. Register Direct Addressing must be used for Wb. Either Register Direct
or Indirect Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

Words: 1

Cycles: 1
DS70000157G-page 426 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: SUBB.B W4, #0x10, W5 ; Sub. 0x10 and C from W4 (Byte mode)
; Store result to W5

Before
Instruction

After
Instruction

W4 1782 W4 1782

W5 7804 W5 7871

SR 0000 SR 0005 (OV, C = 1)

Example 2: SUBB W0, #0x8, [W2++] ; Sub. 0x8 and C from W0 (Word mode)
; Store result to [W2]
; Post-increment W2

Before
Instruction

After
Instruction

W0 0009 W0 0009

W2 2004 W2 2006

Data 2004 A557 Data 2004 0000

SR 0002 (Z = 1) SR 0103 (DC, Z, C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 427

16-Bit MCU and DSC Programmer’s Reference Manual

SUBB Subtract Ws from Wb with Borrow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBB{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Wb) – (Ws) – (C) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0101 1www wBqq qddd dppp ssss

Description: Subtract the contents of the source register Ws and the Borrow flag (Carry flag
inverse, C) from the contents of the base register Wb, and place the result in the
destination register Wd. Register Direct Addressing must be used for Wb. Register
Direct or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 428 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: SUBB.B W0, W1, W0 ; Sub. W1 and C from W0 (Byte mode)
; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 17ED

W1 7844 W1 7844

SR 0000 SR 0108 (DC, N = 1)

Example 2: SUBB W7,[W8++],[W9++] ; Sub. [W8] and C from W7 (Word mode)
; Store result to [W9]
; Post-increment W8
; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2022 W9 2024

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 916B

SR 0000 SR 010C (DC, N, OV = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 429

16-Bit MCU and DSC Programmer’s Reference Manual

SUBBR Subtract f from WREG with Borrow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBBR{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (WREG) – (f) – (C) destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 1101 1BDf ffff ffff ffff

Description: Subtract the contents of the specified file register f and the Borrow flag (Carry flag
inverse, C) from the contents of WREG, and place the result in the destination
register. The optional WREG operand determines the destination register. If WREG
is specified, the result is stored in WREG. If WREG is not specified, the result is
stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUBBR.B 0x803 ; Sub. (0x803) and C from WREG (Byte mode)
; Store result to 0x803

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 0802 9439 Data 0802 6F39

SR 0002 (Z = 1) SR 0000

Example 2: SUBBR 0xA04, WREG ; Sub. (0xA04) and C from WREG (Word mode)
; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) FFFE

Data 0A04 6235 Data 0A04 6235

SR 0000 SR 0008 (N = 1)
DS70000157G-page 430 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUBBR Subtract Wb from Short Literal with Borrow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBBR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: lit5 – (Wb) – (C) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 1www wBqq qddd d11k kkkk

Description: Subtract the contents of the base register Wb and the Borrow flag (Carry flag
inverse, C) from the 5-bit unsigned literal, and place the result in the destination
register Wd. Register Direct Addressing must be used for Wb. Register Direct or
Indirect Addressing must be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1
© 2005-2018 Microchip Technology Inc. DS70000157G-page 431

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: SUBBR.B W0, #0x10, W1 ; Sub. W0 and C from 0x10 (Byte mode)
; Store result to W1

Before
Instruction

After
Instruction

W0 F310 W0 F310

W1 786A W1 7800

SR 0003 (Z, C = 1) SR 0103 (DC, Z, C = 1)

Example 2: SUBBR W0, #0x8, [W2++] ; Sub. W0 and C from 0x8 (Word mode)
; Store result to [W2]
; Post-increment W2

Before
Instruction

After
Instruction

W0 0009 W0 0009

W2 2004 W2 2006

Data 2004 A557 Data 2004 FFFE

SR 0020 (Z = 1) SR 0108 (DC, N = 1)
DS70000157G-page 432 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUBBR Subtract Wb from Ws with Borrow

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBBR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) – (Wb) – (C) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 1www wBqq qddd dppp ssss

Description: Subtract the contents of the base register Wb and the Borrow flag (Carry flag
inverse, C) from the contents of the source register Ws, and place the result in the
destination register Wd. Register Direct Addressing must be used for Wb. Register
Direct or Indirect Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR. These instructions
can only clear Z.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 433

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: SUBBR.B W0, W1, W0 ; Sub. W0 and C from W1 (Byte mode)
; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 1711

W1 7844 W1 7844

SR 0000 SR 0001 (C = 1)

Example 2: SUBBR W7,[W8++],[W9++] ; Sub. W7 and C from [W8] (Word mode)
; Store result to [W9]
; Post-increment W8
; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2022 W9 2024

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 6E93

SR 0000 SR 0005 (OV, C = 1)
DS70000157G-page 434 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUBR Subtract f from WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBR{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (WREG) – (f) destination designated by D

Status Affected: DC, N, OV, Z, C

Encoding: 1011 1101 0BDf ffff ffff ffff

Description: Subtract the contents of the specified file register from the contents of the default
Working register WREG and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is specified, the result
is stored in WREG. If WREG is not specified, the result is stored in the file register

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to Working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.

Example 1: SUBR.B 0x1FFF ; Sub. (0x1FFF) from WREG (Byte mode)
; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 7039

SR 0000 SR 0000

Example 2: SUBR 0xA04, WREG ; Sub. (0xA04) from WREG (Word mode)
; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) FFFF

Data 0A04 6235 Data 0A04 6235

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 435

16-Bit MCU and DSC Programmer’s Reference Manual

SUBR Subtract Wb from Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: lit5 – (Wb) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 0www wBqq qddd d11k kkkk

Description: Subtract the contents of the base register Wb from the unsigned 5-bit literal
operand and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1

Example 1: SUBR.B W0, #0x10, W1 ; Sub. W0 from 0x10 (Byte mode)
; Store result to W1

Before
Instruction

After
Instruction

W0 F310 W0 F310

W1 786A W1 7800

SR 0000 SR 0103 (DC, Z, C = 1)

Example 2: SUBR W0, #0x8, [W2++] ; Sub. W0 from 0x8 (Word mode)
; Store result to [W2]
; Post-increment W2

Before
Instruction

After
Instruction

W0 0009 W0 0009

W2 2004 W2 2006

Data 2004 A557 Data 2004 FFFF

SR 0000 SR 0108 (DC, N = 1)
DS70000157G-page 436 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SUBR Subtract Wb from Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SUBR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Ws) – (Wb) Wd

Status Affected: DC, N, OV, Z, C

Encoding: 0001 0www wBqq qddd dppp ssss

Description: Subtract the contents of the base register Wb from the contents of the source
register Ws and place the result in the destination register Wd. Register Direct
Addressing must be used for Wb. Either Register Direct or Indirect Addressing may
be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than
a word operation. You may use a .W extension to denote a word
operation, but it is not required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 437

16-Bit MCU and DSC Programmer’s Reference Manual
Example 1: SUBR.B W0, W1, W0 ; Sub. W0 from W1 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 1732 W0 1712

W1 7844 W1 7844

SR 0000 SR 0001 (C = 1)

Example 2: SUBR W7, [W8++], [W9++] ; Sub. W7 from [W8] (Word mode)
 ; Store result to [W9]
 ; Post-increment W8
 ; Post-increment W9

Before
Instruction

After
Instruction

W7 2450 W7 2450

W8 1808 W8 180A

W9 2022 W9 2024

Data 1808 92E4 Data 1808 92E4

Data 2022 A557 Data 2022 6E94

SR 0000 SR 0005 (OV, C = 1)
DS70000157G-page 438 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

SWAP Byte or Nibble Swap Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} SWAP{.B} Wn

Operands: Wn [W0 ... W15]

Operation: For Byte Operation:
(Wn)<7:4> Wn)<3:0>

For Word Operation:
(Wn)<15:8> Wn)<7:0>

Status Affected: None

Encoding: 1111 1101 1B00 0000 0000 ssss

Description: Swap the contents of the Working register Wn. In Word mode, the two bytes of Wn
are swapped. In Byte mode, the two nibbles of the Least Significant Byte of Wn are
swapped and the Most Significant Byte of Wn is unchanged. Register Direct
Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘s’ bits select the address of the Working register.

Note: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

Words: 1

Cycles: 1

Example 1: SWAP.B W0 ; Nibble swap (W0)

Before
Instruction

After
Instruction

W0 AB87 W0 AB78

SR 0000 SR 0000

Example 2: SWAP W0 ; Byte swap (W0)

Before
Instruction

After
Instruction

W0 8095 W0 9580

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 439

16-Bit MCU and DSC Programmer’s Reference Manual
TBLRDH Table Read High

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} TBLRDH{.B} [Ws], Wd

[Ws++], [Wd]

[Ws--], [Wd++]

[++Ws], [Wd--]

[--Ws], [++Wd]

[--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
If (LSB(Ws) = 1):

0  Wd
Else:

Program Mem [(TBLPAG),(Ws)] <23:16>Wd

For Word Operation:
Program Mem [(TBLPAG),(Ws)] <23:16>  Wd <7:0>
0  Wd <15:8>

Status Affected: None

Encoding: 1011 1010 1Bqq qddd dppp ssss

Description: Read the contents of the most significant word of program memory and store it to the
destination register Wd. The target word address of program memory is formed by
concatenating the 8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address
specified by Ws. Indirect Addressing must be used for Ws and either Register Direct or
Indirect Addressing may be used for Wd.

In Word mode, zero is stored to the Most Significant Byte of the destination register (due
to non-existent program memory), and the third program memory byte (PM<23:16>) at
the specified program memory address, is stored to the Least Significant Byte of the
destination register.

In Byte mode, the source address depends on the contents of Ws. If Ws is not
word-aligned, zero is stored to the destination register (due to non-existent program
memory). If Ws is word-aligned, the third program memory byte (PM<23:16>), at the
specified program memory address, is stored to the destination register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not
required.

Words: 1

Cycles: 2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)

5 (PIC24E, dsPIC33E, dsPIC33C)
DS70000157G-page 440 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: TBLRDH.B [W0], [W1++] ; Read PM (TBLPAG:[W0]) (Byte mode)
; Store to [W1]
; Post-increment W1

Before
Instruction

After
Instruction

W0 0812 W0 0812

W1 0F71 W1 0F72

Data 0F70 0944 Data 0F70 EF44

Program 01 0812 EF 2042 Program 01 0812 EF 2042

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Example 2: TBLRDH [W6++], W8 ; Read PM (TBLPAG:[W6]) (Word mode)
; Store to W8
; Post-increment W6

Before
Instruction

After
Instruction

W6 3406 W6 3408

W8 65B1 W8 0029

Program 00 3406 29 2E40 Program 00 3406 29 2E40

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 441

16-Bit MCU and DSC Programmer’s Reference Manual

TBLRDL Table Read Low

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} TBLRDL{.B} [Ws], Wd

[Ws++], [Wd]

[Ws--], [Wd++]

[++Ws], [Wd--]

[--Ws], [++Wd]

[--Wd]

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
If (LSB(Ws) = 1):

Program Mem [(TBLPAG),(Ws)] <15:8>  Wd
Else:

Program Mem [(TBLPAG),(Ws)] <7:0>  Wd

For Word Operation:
Program Mem [(TBLPAG),(Ws)] <15:0>  Wd

Status Affected: None

Encoding: 1011 1010 0Bqq qddd dppp ssss

Description: Read the contents of the least significant word of program memory and store it to the
destination register Wd. The target word address of program memory is formed by
concatenating the 8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address
specified by Ws. Indirect Addressing must be used for Ws and either Register Direct or
Indirect Addressing may be used for Wd.

In Word mode, the lower 2 bytes of program memory are stored to the destination
register. In Byte mode, the source address depends on the contents of Ws. If Ws is not
word-aligned, the second byte of the program memory word (PM<15:7>) is stored to the
destination register. If Ws is word-aligned, the first byte of the program memory word
(PM<7:0>) is stored to the destination register.

The ‘B’ bit selects byte or word operation (‘0’ for word mode, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not
required.

Words: 1

Cycles: 2 (PIC24F, PIC24H, dsPIC30F, dsPIC33F)

5 (PIC24E, dsPIC33E, dsPIC33C)
DS70000157G-page 442 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: TBLRDL.B [W0++], W1 ; Read PM (TBLPAG:[W0]) (Byte mode)
; Store to W1
; Post-increment W0

Before
Instruction

After
Instruction

W0 0813 W0 0814

W1 0F71 W1 0F20

Data 0F70 0944 Data 0F70 EF44

Program 01 0812 EF 2042 Program 01 0812 EF 2042

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Example 2: TBLRDL [W6], [W8++] ; Read PM (TBLPAG:[W6]) (Word mode)
; Store to W8
; Post-increment W8

Before
Instruction

After
Instruction

W6 3406 W6 3406

W8 1202 W8 1204

Data 1202 658B Data 1202 2E40

Program 00 3406 29 2E40 Program 00 3406 29 2E40

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 443

16-Bit MCU and DSC Programmer’s Reference Manual

TBLWTH Table Write High

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} TBLWTH{.B} Ws, [Wd]

[Ws], [Wd++]

[Ws++], [Wd--]

[Ws--], [++Wd]

[++Ws], [--Wd]

[--Ws],

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
If (LSB(Wd) = 1):
NOP

Else:
(Ws)  Program Mem [(TBLPAG),(Wd)]<23:16>

For Word Operation:
(Ws)<7:0>  Program Mem [(TBLPAG),(Wd)] <23:16>

Status Affected: None

Encoding: 1011 1011 1Bqq qddd dppp ssss

Description: Store the contents of the working source register Ws to the most significant word of program
memory. The destination word address of program memory is formed by concatenating the
8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address specified by Wd.
Either Direct or Indirect Addressing may be used for Ws and Indirect Addressing must be
used for Wd.

Since program memory is 24 bits wide, this instruction can only write to the upper byte of
program memory (PM<23:16>). This may be performed using a Wd that is word-aligned in
Byte mode or Word mode. If Byte mode is used with a Wd that is not word-aligned, no
operation is performed.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte move rather than a word move.
You may use a .W extension to denote a word move, but it is not required.

Words: 1

Cycles: 2(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 444 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: TBLWTH.B [W0++], [W1] ; Write [W0]... (Byte mode)
 ; to PM Latch High (TBLPAG:[W1])
 ; Post-increment W0

Before
Instruction

After
Instruction

W0 0812 W0 0814

W1 0F70 W1 0F70

Data 0812 0944 Data 0812 EF44

Program 01 0F70 EF 2042 Program 01 0F70 44 2042

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Note: Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.

Example 2: TBLWTH W6, [W8++] ; Write W6... (Word mode)
 ; to PM Latch High (TBLPAG:[W8])
 ; Post-increment W8

Before
Instruction

After
Instruction

W6 0026 W6 0026

W8 0870 W8 0872

Program 00 0870 22 3551 Program 00 0870 26 3551

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000

Note: Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 445

16-Bit MCU and DSC Programmer’s Reference Manual

TBLWTL Table Write Low

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} TBLWTL{.B} Ws, [Wd]

[Ws], [Wd++]

[Ws++], [Wd--]

[Ws--], [++Wd]

[++Ws], [--Wd]

[--Ws],

Operands: Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: For Byte Operation:
If (LSB(Wd) = 1):

(Ws)  Program Mem [(TBLPAG),(Wd)] <15:8>
Else:

(Ws)  Program Mem [(TBLPAG),(Wd)] <7:0>

For Word Operation:
(Ws)  Program Mem [(TBLPAG),(Wd)] <15:0>

Status Affected: None

Encoding: 1011 1011 0Bqq qddd dppp ssss

Description: Store the contents of the working source register Ws to the least significant word of
program memory. The destination word address of program memory is formed by
concatenating the 8-bit Table Pointer register, TBLPAG<7:0>, with the Effective Address
specified by Wd. Either Direct or Indirect Addressing may be used for Ws and Indirect
Addressing must be used for Wd.

In Word mode, Ws is stored to the lower 2 bytes of program memory. In Byte mode, the
Least Significant bit of Wd determines the destination byte. If Wd is not word-aligned, Ws is
stored to the second byte of program memory (PM<15:8>). If Wd is word-aligned, Ws is
stored to the first byte of program memory (PM<7:0>).

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte move rather than a word
move. You may use a .W extension to denote a word move, but it is not required.

Words: 1

Cycles: 2(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multicycle Instructions”.
DS70000157G-page 446 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: TBLWTL.B W0, [W1++] ; Write W0... (Byte mode)
 ; to PM Latch Low (TBLPAG:[W1])
 ; Post-increment W1

Before
Instruction

After
Instruction

W0 6628 W0 6628

W1 1225 W1 1226

Program 00 1224 78 0080 Program 01 1224 78 2880

TBLPAG 0000 TBLPAG 0000

SR 0000 SR 0000

Note: Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.

Example 2: TBLWTL [W6], [W8] ; Write [W6]... (Word mode)
 ; to PM Latch Low (TBLPAG:[W8])
 ; Post-increment W8

Before
Instruction

After
Instruction

W6 1600 W6 1600

W8 7208 W8 7208

Data 1600 0130 Data 1600 0130

Program 01 7208 09 0002 Program 01 7208 09 0130

TBLPAG 0001 TBLPAG 0001

SR 0000 SR 0000

Note: Only the program latch is written to. The contents of program memory
are not updated until the Flash memory is programmed using the
procedure described in the specific device family reference manual.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 447

16-Bit MCU and DSC Programmer’s Reference Manual

ULNK Deallocate Stack Frame

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X

Syntax: {label:} ULNK

Operands: None

Operation: W14  W15
(W15) – 2  W15
(TOS)  W14

Status Affected: None

Encoding: 1111 1010 1000 0000 0000 0000

Description: This instruction deallocates a stack frame for a subroutine calling sequence. The stack
frame is deallocated by setting the Stack Pointer (W15) equal to the Frame Pointer (W14)
and then POPping the stack to reset the Frame Pointer (W14).

Words: 1

Cycles: 1

Example 1: ULNK ; Unlink the stack frame

Before
Instruction

After
Instruction

W14 2002 W14 2000

W15 20A2 W15 2000

Data 2000 2000 Data 2000 2000

SR 0000 SR 0000

Example 2: ULNK ; Unlink the stack frame

Before
Instruction

After
Instruction

W14 0802 W14 0800

W15 0812 W15 0800

Data 0800 0800 Data 0800 0800

SR 0000 SR 0000
DS70000157G-page 448 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

ULNK Deallocate Stack Frame

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X

Syntax: {label:} ULNK

Operands: None

Operation: W14  W15
(W15) – 2  W15
(TOS)  W14
0  SFA bit

Status Affected: SFA

Encoding: 1111 1010 1000 0000 0000 0000

Description: This instruction deallocates a stack frame for a subroutine calling sequence. The stack
frame is deallocated by setting the Stack Pointer (W15) equal to the Frame Pointer
(W14) and then POPping the stack to reset the Frame Pointer (W14).

Words: 1

Cycles: 1

Example 1: ULNK ; Unlink the stack frame

Before
Instruction

After
Instruction

W14 2002 W14 2000

W15 20A2 W15 2000

Data 2000 2000 Data 2000 2000

SR 0000 SR 0000

Example 2: ULNK ; Unlink the stack frame

Before
Instruction

After
Instruction

W14 0802 W14 0800

W15 0812 W15 0800

Data 0800 0800 Data 0800 0800

SR 0000 SR 0000
© 2005-2018 Microchip Technology Inc. DS70000157G-page 449

16-Bit MCU and DSC Programmer’s Reference Manual

VFSLV Verify Slave Processor Program RAM

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X

Syntax: {label:} VFSLV [Wns], [Wnd++], #lit2

[Wns++],

Operands: Wns [W0 ... W15];
Wnd [W0 ... W15];
lit2 [0 ... 3];

Operation: If Master (EAs) ! = Slave EAd
Master VERFERR (MSIxSTAT<11>) = 1

Status Affected: None

Encoding: 0000 0011 10kk 0ddd d0p1 ssss

Description: This instruction reads a single instruction word from the target Slave PRAM image (held
in the Master program space Flash) and compares it to the value in the Slave PRAM at
the destination address. The source address must be located within PSV address
space (i.e., DSRPAG  0x200). The destination address uses DSWPAG and the
destination EA to create a 24-bit Slave program space PRAM write address.

Starting with an aligned double instruction word (destination address, see Note 1), the
contents of the source Effective Address (in Master program space) are compared with
the destination Effective Address (in the Slave PRAM address space) in order to verify
the PRAM contents.

If the (single instruction word) destination address is even, the data is captured in the
Slave PRAM wrapper. If the (single instruction word) destination address is odd, the
ECC parity bits are calculated from the current and captured source data (48 bits),
and compared. If the data and ECC parity are not the same, the
VERFERR (MSIxSTAT<11>) status bit is set.

The target Slave processor is selected by the value defined by lit2.

The instruction may be regarded as a PSV operation, and therefore, may be executed
within a REPEAT loop to accelerate data processing.

The ‘s’ bits select the address of the source register.
The ‘d’ bits select the address of the destination register.
The ‘k’ bits select the target Slave processor.
The ‘p’ bit selects the destination addressing mode (see Note 1).

Note 1: This instruction supports a subset of addressing modes. The source
addressing mode bit field is constrained to 2 options and the destination
addressing mode bit field is not required.

2: An aligned double instruction word destination address is an even address
that addresses the least significant word of a double instruction word.

3: This instruction only supports Word mode.

Words: 1

Cycles: 1
DS70000157G-page 450 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

XOR Exclusive OR f and WREG

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} XOR{.B} f {,WREG}

Operands: f [0 ... 8191]

Operation: (f).XOR.(WREG) destination designated by D

Status Affected: N, Z

Encoding: 1011 0110 1BDf ffff ffff ffff

Description: Compute the logical exclusive OR operation of the contents of the default Working
register WREG and the contents of the specified file register, and place the result in the
destination register. The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not specified, the result is
stored in the file register.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘D’ bit selects the destination register (‘0’ for WREG, ‘1’ for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation,
but it is not required.

2: The WREG is set to working register W0.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.

Example 1: XOR.B 0x1FFF ; XOR (0x1FFF) and WREG (Byte mode)
 ; Store result to 0x1FFF

Before
Instruction

After
Instruction

WREG (W0) 7804 WREG (W0) 7804

Data 1FFE 9439 Data 1FFE 9039

SR 0000 SR 0008 (N = 1)

Example 2: XOR 0xA04, WREG ; XOR (0xA04) and WREG (Word mode)
 ; Store result to WREG

Before
Instruction

After
Instruction

WREG (W0) 6234 WREG (W0) C267

Data 0A04 A053 Data 0A04 A053

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 451

16-Bit MCU and DSC Programmer’s Reference Manual
XOR Exclusive OR Literal and Wn

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} XOR{.B} #lit10, Wn

Operands: lit10 [0 ... 255] for byte operation
lit10 [0 ... 1023] for word operation
Wn [W0 ... W15]

Operation: lit10.XOR.(Wn) Wn

Status Affected: N, Z

Encoding: 1011 0010 1Bkk kkkk kkkk dddd

Description: Compute the logical exclusive OR operation of the unsigned 10-bit literal operand and
the contents of the Working register Wn, and store the result back in the Working register
Wn. Register Direct Addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘k’ bits specify the literal operand.
The ‘d’ bits select the address of the Working register.

Note 1: The extension .B in the instruction denotes a byte operation rather than a
word operation. You may use a .W extension to denote a word operation, but it
is not required.

2: For byte operations, the literal must be specified as an unsigned value [0:255].
See Section 4.6 “Using 10-bit Literal Operands” for information on using
10-bit literal operands in Byte mode.

Words: 1

Cycles: 1

Example 1: XOR.B #0x23, W0 ; XOR 0x23 and W0 (Byte mode)
 ; Store result to W0

Before
Instruction

After
Instruction

W0 7804 W0 7827

SR 0000 SR 0000

Example 2: XOR #0x108, W4 ; XOR 0x108 and W4 (Word mode)
 ; Store result to W4

Before
Instruction

After
Instruction

W4 6134 W4 603C

SR 0000 SR 0000
DS70000157G-page 452 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

XOR Exclusive OR Wb and Short Literal

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} XOR{.B} Wb, #lit5, Wd

[Wd]

[Wd++]

[Wd--]

[++Wd]

[--Wd]

Operands: Wb [W0 ... W15]
lit5 [0 ... 31]
Wd [W0 ... W15]

Operation: (Wb).XOR.lit5 Wd

Status Affected: N, Z

Encoding: 0110 1www wBqq qddd d11k kkkk

Description: Compute the logical exclusive OR operation of the contents of the base register Wb and
the unsigned 5-bit literal operand, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘k’ bits provide the literal operand, a 5-bit integer number.

Note: The extension .B in the instruction denotes a byte operation rather than a word
operation. You may use a .W extension to denote a word operation, but it is not
required.

Words: 1

Cycles: 1

Example 1: XOR.B W4, #0x14, W5 ; XOR W4 and 0x14 (Byte mode)
 ; Store result to W5

Before
Instruction

After
Instruction

W4 C822 W4 C822

W5 1200 W5 1234

SR 0000 SR 0000

Example 2: XOR W2, #0x1F, [W8++] ; XOR W2 by 0x1F (Word mode)
 ; Store result to [W8]
 ; Post-increment W8

 Before
Instruction

After
Instruction

W2 8505 W2 8505

W8 1004 W8 1006

Data 1004 6628 Data 1004 851A

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 453

16-Bit MCU and DSC Programmer’s Reference Manual

XOR Exclusive OR Wb and Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} XOR{.B} Wb, Ws, Wd

[Ws], [Wd]

[Ws++], [Wd++]

[Ws--], [Wd--]

[++Ws], [++Wd]

[--Ws], [--Wd]

Operands: Wb [W0 ... W15]
Ws [W0 ... W15]
Wd [W0 ... W15]

Operation: (Wb).XOR.(Ws) Wd

Status Affected: N, Z

Encoding: 0110 1www wBqq qddd dppp ssss

Description: Compute the logical exclusive OR operation of the contents of the source register Ws and
the contents of the base register Wb, and place the result in the destination register Wd.
Register Direct Addressing must be used for Wb. Either Register Direct or Indirect
Addressing may be used for Ws and Wd.

The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (‘0’ for word, ‘1’ for byte).
The ‘q’ bits select the destination addressing mode.
The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note: The extension .B in the instruction denotes a byte operation rather than a word
operation. You may use a .W extension to denote a word operation, but it is not
required.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
DS70000157G-page 454 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: XOR.B W1, [W5++], [W9++] ; XOR W1 and [W5] (Byte mode)
; Store result to [W9]
; Post-increment W5 and W9

Before
Instruction

After
Instruction

W1 AAAA W1 AAAA

W5 2000 W5 2001

W9 2600 W9 2601

Data 2000 115A Data 2000 115A

Data 2600 0000 Data 2600 00F0

SR 0000 SR 0008 (N = 1)

Example 2: XOR W1, W5, W9 ; XOR W1 and W5 (Word mode)
; Store the result to W9

 Before
 Instruction

 After
 Instruction

W1 FEDC W1 FEDC

W5 1234 W5 1234

W9 A34D W9 ECE8

SR 0000 SR 0008 (N = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 455

16-Bit MCU and DSC Programmer’s Reference Manual

ZE Zero-Extend Ws

Implemented in: PIC24F PIC24H PIC24E dsPIC30F dsPIC33F dsPIC33E dsPIC33C

X X X X X X X

Syntax: {label:} ZE Ws, Wnd

[Ws],

[Ws++],

[Ws--],

[++Ws],

[--Ws],

Operands: Ws [W0 ... W15]
Wnd [W0 ... W15]

Operation: Ws<7:0>  Wnd<7:0>
0  Wnd<15:8>

Status Affected: N, Z, C

Encoding: 1111 1011 1000 0ddd dppp ssss

Description: Zero-extend the Least Significant Byte in source Working register Ws to a 16-bit value
and store the result in the destination Working register Wnd. Either Register Direct or
Indirect Addressing may be used for Ws and Register Direct Addressing must be used for
Wnd. The N flag is cleared and the C flag is set because the zero-extended word is
always positive.

The ‘d’ bits select the destination register.
The ‘p’ bits select the source addressing mode.
The ‘s’ bits select the source register.

Note 1: This operation converts a byte to a word and it uses no .B or .W extension.

2: The source Ws is addressed as a byte operand, so any address modification is
by one.

Words: 1

Cycles: 1(1)

Note 1: In dsPIC33E, dsPIC33C and PIC24E devices, the listed cycle count does not apply to read and
Read-Modify-Write operations on non-CPU Special Function Registers. For more details, see Note 3 in
Section 3.2.1 “Multi-Cycle Instructions”.
DS70000157G-page 456 © 2005-2018 Microchip Technology Inc.

Section 5. Instruction Descriptions
In

stru
ctio

n

D
esc

rip
tio

n
s

5

Example 1: ZE W3, W4 ; zero-extend W3
; Store result to W4

Before
Instruction

After
Instruction

W3 7839 W3 7839

W4 1005 W4 0039

SR 0000 SR 0001 (C = 1)

Example 2: ZE [W2++], W12 ; Zero-extend [W2]
; Store to W12
; Post-increment W2

Before
Instruction

After
Instruction

W2 0900 W2 0901

W12 1002 W12 008F

Data 0900 268F Data 0900 268F

SR 0000 SR 0001 (C = 1)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 457

16-Bit MCU and DSC Programmer’s Reference Manual
NOTES:
DS70000157G-page 458 © 2005-2018 Microchip Technology Inc.

B
u

ilt-in
 F

u
n

ctio

6

Section 6. Built-in Functions
n
s

HIGHLIGHTS

This section of the manual contains the following major topics:

6.1 Introduction ... 460

6.2 Built-in Function List.. 461
© 2005-2018 Microchip Technology Inc. DS70000157G-page 459

16-Bit MCU and DSC Programmer’s Reference Manual
6.1 INTRODUCTION

This section describes the built-in functions that are specific to the MPLAB® C Compiler for
PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30).

Built-in functions give the C programmer access to assembler operators or machine instructions
that are currently only accessible using in-line assembly, but are sufficiently useful that they are
applicable to a broad range of applications. Built-in functions are coded in C source files
syntactically like function calls, but they are compiled to assembly code that directly implements
the function and does not involve function calls or library routines.

There are a number of reasons why providing built-in functions is preferable to requiring
programmers to use in-line assembly. They include the following:

1. Providing built-in functions for specific purposes simplifies coding.

2. Certain optimizations are disabled when in-line assembly is used. This is not the case for
built-in functions.

3. For machine instructions that use dedicated registers, coding in-line assembly while
avoiding register allocation errors can require considerable care. The built-in functions
make this process simpler as you do not need to be concerned with the particular register
requirements for each individual machine instruction.

The built-in functions are listed below followed by their individual detailed descriptions.

This section describes only the built-in functions related to the CPU operations. The compiler
provides additional built-in functions for operations, such as writing to Flash program memory
and changing the oscillator settings. Refer to the “MPLAB® C Compiler for PIC24 MCUs and
dsPIC® DSCs User’s Guide” (DS51284) for a complete list of compiler built-in functions.

• __builtin_addab

• __builtin_add

• __builtin_btg

• __builtin_clr

• __builtin_clr_prefetch

• __builtin_divf

• __builtin_divmodsd

• __builtin_divmodud

• __builtin_divsd

• __builtin_divud

• __builtin_dmaoffset

• __builtin_ed

• __builtin_edac

• __builtin_edsoffset

• __builtin_edspage

• __builtin_fbcl

• __builtin_lac

• __builtin_mac

• __builtin_modsd

• __builtin_modud

• __builtin_movsac

• __builtin_mpy

• __builtin_mpyn

• __builtin_msc

• __builtin_mulss

• __builtin_mulsu

• __builtin_mulus

• __builtin_muluu

• __builtin_nop

• __builtin_psvpage

• __builtin_psvoffset

• __builtin_readsfr

• __builtin_return_address

• __builtin_sac

• __builtin_sacr

• __builtin_sftac

• __builtin_subab

• __builtin_tbladdress

• __builtin_tblpage

• __builtin_tbloffset

• __builtin_tblrdh

• __builtin_tblrdl

• __builtin_tblwth

• __builtin_tblwtl
DS70000157G-page 460 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

6.2 BUILT-IN FUNCTION LIST

This section describes the programmer interface to the compiler built-in functions. Since the
functions are “built-in”, there are no header files associated with them. Similarly, there are no
command-line switches associated with the built-in functions – they are always available. The
built-in function names are chosen such that they belong to the compiler’s namespace (they all
have the prefix: __builtin_), so they will not conflict with function or variable names in the
programmer’s namespace.

__builtin_addab

Description:

Adds Accumulators A and B with the result written back to the specified accumulator. For
example:

register int result asm("A");
register int B asm("A");

result = __builtin_addab(result,B);

will generate:

add A

Prototype:

int __builtin_addab(int Accum_a, int Accum_b);

Argument:

Accum_a First accumulator to add.
Accum_b Second accumulator to add.

Return Value:

Returns the addition result to an accumulator.

Assembler Operator/Machine Instruction:

add

Error Messages:

An error message appears if the result is not an Accumulator register.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 461

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_add

Description:

Adds value to the accumulator specified by result with a shift specified by literal shift. For
example:

register int result asm("A");
int value;
result = __builtin_add(result,value,0);

If value is held in w0, the following will be generated:

add w0, #0, A

Prototype:

int __builtin_add(int Accum,int value,
const int shift);

Argument:

Accum Accumulator to add.
value Integer number to add to accumulator value.
shift Amount to shift resultant accumulator value.

Return Value:

Returns the shifted addition result to an accumulator.

Assembler Operator/Machine Instruction:

add

Error Messages:

An error message appears if:

• The result is not an Accumulator register

• Argument 0 is not an accumulator

• The shift value is not a literal within range
DS70000157G-page 462 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_btg

Description:

This function will generate a btg machine instruction. Some examples include:

int i; /* near by default */
int l __attribute__((far));

struct foo {
int bit1:1;

} barbits;

int bar;

void some_bittoggles() {
register int j asm("w9");
int k;

k = i;

__builtin_btg(&i,1);
__builtin_btg(&j,3);
__builtin_btg(&k,4);
__builtin_btg(&l,11);

return j+k;
}

Note that taking the address of a variable in a register will produce a warning by the compiler
and cause the register to be saved onto the stack (so that its address may be taken); this form
is not recommended. This caution only applies to variables explicitly placed in registers by the
programmer.

Prototype:

void __builtin_btg(unsigned int *, unsigned int 0xn);

Argument:

* A pointer to the data item for which a bit should be toggled.
0xn A literal value in the range of 0 to 15.

Return Value:

Returns a btg machine instruction.

Assembler Operator/Machine Instruction:

btg

Error Messages:

An error message appears if the parameter values are not within range.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 463

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_clr

Description:

Clears the specified accumulator. For example:

register int result asm("A");
result = __builtin_clr();

will generate:

clr A

Prototype:

int __builtin_clr(void);

Argument:

None.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:

clr

Error Messages:

An error message appears if the result is not an Accumulator register.
DS70000157G-page 464 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_clr_prefetch

Description:

Clears an accumulator and prefetch data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed; in which case, the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed; in which case, the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non-null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
register int B asm("B");
int x_memory_buffer[256]
__attribute__((space(xmemory)));
int y_memory_buffer[256]
__attribute__((space(ymemory)));
int *xmemory;
int *ymemory;
int awb;
int xVal, yVal;

xmemory = x_memory_buffer;
ymemory = y_memory_buffer;
result = __builtin_clr(&xmemory, &xVal, 2,

&ymemory, &yVal, 2, &awb, B);

May generate:

clr A, [w8]+=2, w4, [w10]+=2, w5, w13

The compiler may need to spill w13 to ensure that it is available for the Write-Back. It may be
recommended to users that the register be claimed for this purpose.

After this instruction:

• Result will be cleared
• xVal will contain x_memory_buffer[0]
• yVal will contain y_memory_buffer[0]
• xmemory and ymemory will be incremented by 2, ready for the next MAC operation

Prototype:

int __builtin_clr_prefetch(
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB,
int AWB_accum);
© 2005-2018 Microchip Technology Inc. DS70000157G-page 465

16-Bit MCU and DSC Programmer’s Reference Manual
Argument:

xptr Integer Pointer to X prefetch.
xval Integer value of X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to Y prefetch.
yval Integer value of Y prefetch.
yincr Integer increment value of Y prefetch.
AWB Accumulator Write-Back location.
AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:

clr

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null

• AWB_accum is not an accumulator and AWB is not null

__builtin_clr_prefetch (Continued)
DS70000157G-page 466 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_divf

Description:

Computes the quotient: num / den. A math error exception occurs if den is zero. Function
arguments are unsigned, as is the function result.

Prototype:

unsigned int __builtin_divf(unsigned int num,
unsigned int den);

Argument:

num Numerator.
den Denominator.

Return Value:

Returns the unsigned integer value of the quotient: num / den.

Assembler Operator/Machine Instruction:

div.f

__builtin_divmodsd

Description:

Issues the 16-bit architecture’s native signed divide support. Notably, if the quotient does not fit
into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture both the quotient and remainder.

Prototype:

signed int __builtin_divmodsd(
signed long dividend, signed int divisor,
signed int *remainder);

Argument:

dividend Number to be divided.
divisor Number to divide by.
remainder Pointer to remainder.

Return Value:

Quotient and remainder.

Assembler Operator/Machine Instruction:

divmodsd

Error Messages:

None.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 467

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_divmodud

Description:

Issues the 16-bit architecture’s native unsigned divide support. Notably, if the quotient does not
fit into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture both the quotient and remainder.

Prototype:
unsigned int __builtin_divmodud(
unsigned long dividend, unsigned int divisor,
unsigned int *remainder);

Argument:

dividend Number to be divided.
divisor Number to divide by.
remainder Pointer to remainder.

Return Value:

Quotient and remainder.

Assembler Operator/Machine Instruction:

divmodud

Error Messages:

None.

__builtin_divsd

Description:

Computes the quotient: num / den. A math error exception occurs if den is zero. Function
arguments are signed, as is the function result. The command-line option, -Wconversions,
can be used to detect unexpected sign conversions.

Prototype:

int __builtin_divsd(const long num, const int den);

Argument:

num Numerator.
den Denominator.

Return Value:

Returns the signed integer value of the quotient: num / den.

Assembler Operator/Machine Instruction:

div.sd
DS70000157G-page 468 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_divud

Description:

Computes the quotient: num / den. A math error exception occurs if den is zero. Function
arguments are unsigned, as is the function result. The command-line option, -Wconversions,
can be used to detect unexpected sign conversions.

Prototype:

unsigned int __builtin_divud(const unsigned
long num, const unsigned int den);

Argument:

num Numerator.
den Denominator.

Return Value:

Returns the unsigned integer value of the quotient: num / den.

Assembler Operator/Machine Instruction:

div.ud

__builtin_dmaoffset

Description:

Obtains the offset of a symbol within DMA memory.

For example:

unsigned int result;
char buffer[256] __attribute__((space(dma)));

result = __builtin_dmaoffset(&buffer);

May generate:

mov #dmaoffset(buffer), w0

Prototype:

unsigned int __builtin_dmaoffset(const void *p);

Argument:

*p Pointer to DMA address value.

Return Value:

Returns the offset to a variable located in DMA memory.

Assembler Operator/Machine Instruction:

dmaoffset

Error Messages:

An error message appears if the parameter is not the address of a global symbol.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 469

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_ed

Description:

Squares sqr, returning it as the result. Also prefetches data for future square operation by
computing **xptr - **yptr and storing the result in *distance.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asm("A");
int *xmemory, *ymemory;
int distance;

result = __builtin_ed(distance,
&xmemory, 2,
&ymemory, 2,
&distance);

May generate:

ed w4*w4, A, [w8]+=2, [W10]+=2, w4

Prototype:

int __builtin_ed(int sqr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

Argument:

sqr Integer squared value.
xptr Integer Pointer to pointer to X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yincr Integer increment value of Y prefetch.
distance Integer Pointer to distance.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the squared result to an accumulator.

Assembler Operator/Machine Instruction:

ed

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• xptr is null
• yptr is null
• distance is null
DS70000157G-page 470 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_edac

Description:

Squares sqr and sums with the nominated Accumulator register, returning it as the result. Also
prefetches data for future square operation by computing **xptr - **yptr and storing the
result in *distance.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asm("A");
int *xmemory, *ymemory;
int distance;

result = __builtin_ed(result, distance,
&xmemory, 2,
&ymemory, 2,
&distance);

May generate:

edac w4*w4, A, [w8]+=2, [W10]+=2, w4

Prototype:

int __builtin_edac(int Accum, int sqr,
int **xptr, int xincr, int **yptr, int yincr,
int *distance);

Argument:

Accum Accumulator to sum.
sqr Integer squared value.
xptr Integer Pointer to pointer to X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yincr Integer increment value of Y prefetch.
distance Integer Pointer to distance.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the squared result to specified accumulator.

Assembler Operator/Machine Instruction:

edac

Error Messages:

An error message appears if:

• The result is not an Accumulator register

• Accum is not an Accumulator register

• xptr is null
• yptr is null
• distance is null
© 2005-2018 Microchip Technology Inc. DS70000157G-page 471

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_edsoffset

Description:

Returns the EDS page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in Extended Data Space; otherwise, an error
message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_edsoffset(int *p);

Argument:

p Object address.

Return Value:

Returns the EDS page number of the object whose address is given as a parameter

Assembler Operator/Machine Instruction:

edsoffset

__builtin_edspage

Description:

Returns the EDS page number of the object whose address is given as a parameter. The
argument p must be the address of an object in Extended Data Space; otherwise, an error
message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_edspage(int *p);

Argument:

p Object address.

Return Value:

Returns the EDS page number of the object whose address is given as a parameter.

Assembler Operator/Machine Instruction:

edspage
DS70000157G-page 472 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_fbcl

Description:

Finds the first bit change from left in value. This is useful for dynamic scaling of fixed-point data.
For example:

int result, value;
result = __builtin_fbcl(value);

May generate:

fbcl w4, w5

Prototype:

int __builtin_fbcl(int value);

Argument:

value Integer number of first bit change.

Return Value:

Returns the shifted addition result to an accumulator.

Assembler Operator/Machine Instruction:

fbcl

Error Messages:

An error message appears if the result is not an Accumulator register.

__builtin_lac

Description:

Shifts value by shift (a literal between -8 and 7) and returns the value to be stored into the
Accumulator register. For example:

register int result asm("A");
int value;
result = __builtin_lac(value,3);

May generate:

lac w4, #3, A

Prototype:

int __builtin_lac(int value, int shift);

Argument:

value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted addition result to an accumulator.

Assembler Operator/Machine Instruction:

lac

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• The shift value is not a literal within range
© 2005-2018 Microchip Technology Inc. DS70000157G-page 473

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_mac

Description:

Computes a x b and sums with accumulator; also, prefetches data ready for a future MAC
operation.

xptr may be null to signify no X prefetch to be performed; in which case, the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed; in which case, the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non-null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
register int B asm("B");
int *xmemory;
int *ymemory;
int xVal, yVal;

result = __builtin_mac(result, xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yVal, 2, 0, B);

May generate:

mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype:

int __builtin_mac(int Accum, int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB,
int AWB_accum);

Argument:

Accum Accumulator to sum.
a Integer multiplicand.
b Integer multiplier.
xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yincr Integer increment value of Y prefetch.
AWB Accumulator Write-Back location.
AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:

mac
DS70000157G-page 474 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

Error Messages:

An error message appears if:

• The result is not an Accumulator register

• Accum is not an Accumulator register

• xval is a null value but xptr is not null
• yval is a null value but yptr is not null

• AWB_accum is not an Accumulator register and AWB is not null

__builtin_mac (Continued)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 475

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_modsd

Description:

Issues the 16-bit architecture’s native signed divide support. Notably, if the quotient does not fit
into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture only the remainder.

Prototype:

signed int __builtin_modsd(signed long dividend,
signed int divisor);

Argument:

dividend Number to be divided.
divisor Number to divide by.

Return Value:

Remainder.

Assembler Operator/Machine Instruction:

modsd

Error Messages:

None.

__builtin_modud

Description:

Issues the 16-bit architecture’s native unsigned divide support. Notably, if the quotient does not
fit into a 16-bit result, the results (including remainder) are unexpected. This form of the built-in
function will capture only the remainder.

Prototype:

unsigned int __builtin_modud(unsigned long dividend,
unsigned int divisor);

Argument:

dividend Number to be divided.
divisor Number to divide by.

Return Value:

Remainder.

Assembler Operator/Machine Instruction:

modud

Error Messages:

None.
DS70000157G-page 476 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_movsac

Description:

Computes nothing, but prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed; in which case, the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed; in which case, the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is not null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
int *xmemory;
int *ymemory;
int xVal, yVal;

result = __builtin_movsac(&xmemory, &xVal, 2,
&ymemory, &yVal, 2, 0, 0);

May generate:

movsac A, [w8]+=2, w4, [w10]+=2, w5

Prototype:

int __builtin_movsac(
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB
int AWB_accum);

Argument:

xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yincr Integer increment value of Y prefetch.
AWB Accumulator Write-Back location.
AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns prefetch data.

Assembler Operator/Machine Instruction:

movsac

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null

• AWB_accum is not an Accumulator register and AWB is not null
© 2005-2018 Microchip Technology Inc. DS70000157G-page 477

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_mpy

Description:

Computes a x b; also, prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed; in which case, the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed; in which case, the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asm("A");
int *xmemory;
int *ymemory;
int xVal, yVal;

result = __builtin_mpy(xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yVal, 2);

May generate:

mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype:

int __builtin_mpy(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

Argument:

a Integer multiplicand.
b Integer multiplier.
xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yincr Integer increment value of Y prefetch.
AWB Integer Pointer to accumulator selection.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:

mpy

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
DS70000157G-page 478 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_mpyn

Description:

Computes -a x b; also, prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed; in which case, the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed; in which case, the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

register int result asm("A");
int *xmemory;
int *ymemory;
int xVal, yVal;

result = __builtin_mpy(xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yVal, 2);

May generate:

mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype:

int __builtin_mpyn(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

Argument:

a Integer multiplicand.
b Integer multiplier.
xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yincr Integer increment value of Y prefetch.
AWB Integer Pointer to accumulator selection.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:

mpyn

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
© 2005-2018 Microchip Technology Inc. DS70000157G-page 479

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_msc

Description:

Computes a x b and subtracts from accumulator; also, prefetches data ready for a future MAC
operation.

xptr may be null to signify no X prefetch to be performed; in which case, the values of xincr
and xval are ignored, but required.

yptr may be null to signify no Y prefetch to be performed; in which case, the values of yincr
and yval are ignored, but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non-null, the other accumulator will be written back into the referenced variable.

For example:

register int result asm("A");
int *xmemory;
int *ymemory;
int xVal, yVal;

result = __builtin_msc(result, xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yVal, 2, 0, 0);

May generate:

msc w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype:
int __builtin_msc(int Accum, int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB,
int AWB_accum);

Argument:

Accum Accumulator to sum.
a Integer multiplicand.
b Integer multiplier.
xptr Integer Pointer to pointer to X prefetch.
xval Integer Pointer to value of X prefetch.
xincr Integer increment value of X prefetch.
yptr Integer Pointer to pointer to Y prefetch.
yval Integer Pointer to value of Y prefetch.
yincr Integer increment value of Y prefetch.
AWB Accumulator Write-Back location.
AWB_accum Accumulator to Write-Back.

Note: The arguments, xptr and yptr, must point to the arrays located in the X data
memory and Y data memory, respectively.

Return Value:

Returns the cleared value result to an accumulator.

Assembler Operator/Machine Instruction:

msc
DS70000157G-page 480 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• Accum is not an Accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null

• AWB_accum is not an Accumulator register and AWB is not null

__builtin_msc (Continued)
© 2005-2018 Microchip Technology Inc. DS70000157G-page 481

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_mulss

Description:

Computes the product p0 x p1. Function arguments are signed integers and the function result
is a signed long integer. The command-line option, -Wconversions, can be used to detect
unexpected sign conversions.

Prototype:

signed long __builtin_mulss(const signed int p0, const signed int p1);

Argument:

p0 Multiplicand.
p1 Multiplier.

Return Value:

Returns the signed long integer value of the product p0 x p1.

Assembler Operator/Machine Instruction:

mul.ss

__builtin_mulsu

Description:

Computes the product p0 x p1. Function arguments are integers with mixed signs and the
function result is a signed long integer. The command-line option, -Wconversions, can be
used to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction, including Immediate mode for operand p1.

Prototype:

signed long __builtin_mulsu(const signed int p0, const unsigned int p1);

Argument:

p0 Multiplicand.
p1 Multiplier.

Return Value:

Returns the signed long integer value of the product p0 x p1.

Assembler Operator/Machine Instruction:

mul.su
DS70000157G-page 482 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_mulus

Description:

Computes the product p0 x p1. Function arguments are integers with mixed signs and the
function result is a signed long integer. The command-line option, -Wconversions, can be
used to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction.

Prototype:

signed long __builtin_mulus(const unsigned int p0, const signed int p1);

Argument:

p0 Multiplicand.
p1 Multiplier.

Return Value:

Returns the signed long integer value of the product p0 x p1.

Assembler Operator/Machine Instruction:

mul.us

__builtin_muluu

Description:

Computes the product p0 x p1. Function arguments are unsigned integers and the function
result is an unsigned long integer. The command-line option, -Wconversions, can be used to
detect unexpected sign conversions. This function supports the full range of addressing modes
of the instruction, including Immediate mode for operand p1.

Prototype:

unsigned long __builtin_muluu(const unsigned int p0, const unsigned int p1);

Argument:

p0 Multiplicand.
p1 Multiplier.

Return Value:

Returns the signed long integer value of the product p0 x p1.

Assembler Operator/Machine Instruction:

mul.uu
© 2005-2018 Microchip Technology Inc. DS70000157G-page 483

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_nop

Description:

Generates a NOP instruction.

Prototype:

void __builtin_nop(void);

Argument:

None.

Return Value:

Returns a no operation (NOP).

Assembler Operator/Machine Instruction:

NOP

__builtin_psvoffset

Description:

Returns the PSV page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_psvoffset(const void *p);

Argument:

p Object address.

Return Value:

Returns the PSV page number offset of the object whose address is given as a parameter.

Assembler Operator/Machine Instruction:

psvoffset

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_psvoffset() is not the address of an object in code, PSV or
EE data section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsigned page = __builtin_psvoffset(&obj);
DS70000157G-page 484 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_psvpage

Description:

Returns the PSV page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_psvpage(const void *p);

Argument:

p Object address.

Return Value:

Returns the PSV page number of the object whose address is given as a parameter.

Assembler Operator/Machine Instruction:

psvpage

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_psvpage() is not the address of an object in code, PSV or EE data
section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsigned page = __builtin_psvpage(&obj);

__builtin_readsfr

Description:

Reads the SFR.

Prototype:

unsigned int __builtin_readsfr(const void *p);

Argument:

p Object address.

Return Value:

Returns the SFR.

Assembler Operator/Machine Instruction:

readsfr
© 2005-2018 Microchip Technology Inc. DS70000157G-page 485

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_return_address

Description:

Returns the return address of the current function or of one of its callers. For the level
argument, a value of 0 yields the return address of the current function, a value of 1 yields the
return address of the caller of the current function, and so forth. When level exceeds the
current stack depth, 0 will be returned. This function should only be used with a non-zero
argument for debugging purposes.

Prototype:

int __builtin_return_address (const int level);

Argument:

level Number of frames to scan up the call stack.

Return Value:

Returns the return address of the current function or of one of its callers.

Assembler Operator/Machine Instruction:

return_address

__builtin_sac

Description:

Shifts value by shift (a literal between -8 and 7) and returns the value.

For example:

register int value asm("A");
int result;

result = __builtin_sac(value,3);

May generate:

sac A, #3, w0

Prototype:

int __builtin_sac(int value, int shift);

Argument:

value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted result to an accumulator.

Assembler Operator/Machine Instruction:

sac

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• The shift value is not a literal within range
DS70000157G-page 486 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_sacr

Description:

Shifts value by shift (a literal between -8 and 7) and returns the value, which is rounded using
the Rounding mode determined by the RND (CORCON<1>) control bit.

For example:

register int value asm("A");
int result;

result = __builtin_sac(value,3);

May generate:

sac.r A, #3, w0

Prototype:

int __builtin_sacr(int value, int shift);

Argument:

value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Returns the shifted result to the CORCON register.

Assembler Operator/Machine Instruction:

sacr

Error Messages:

An error message appears if:

• The result is not an Accumulator register
• The shift value is not a literal within range
© 2005-2018 Microchip Technology Inc. DS70000157G-page 487

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_sftac

Description:

Shifts accumulator by shift. The valid shift range is -16 to 16.

For example:

register int result asm("A");
int i;

result = __builtin_sftac(result,i);

May generate:

sftac A, w0

Prototype:

int __builtin_sftac(int Accum, int shift);

Argument:

Accum Accumulator to shift.
shift Amount to shift.

Return Value:

Returns the shifted result to an accumulator.

Assembler Operator/Machine Instruction:

sftac

Error Messages:

An error message appears if:

• The result is not an Accumulator register

• Accum is not an Accumulator register

• The shift value is not a literal within range
DS70000157G-page 488 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_subab

Description:

Subtracts Accumulators A and B with the result written back to the specified accumulator. For
example:

register int result asm("A");
register int B asm("B");
result = __builtin_subab(result,B);

Will generate:

sub A

Prototype:

int ____builtin_subab(int Accum_a, int Accum_b);

Argument:

Accum_a Accumulator from which to subtract.
Accum_b Accumulator to subtract.

Return Value:

Returns the subtraction result to an accumulator.

Assembler Operator/Machine Instruction:

sub

Error Messages:

An error message appears if the result is not an Accumulator register.

__builtin_tbladdress

Description:

Returns a value that represents the address of an object in program memory. The argument p
must be the address of an object in an EE data, PSV or executable memory space; otherwise,
an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned long __builtin_tblpage(const void *p);

Argument:

p Object address.

Return Value:

Returns an unsigned long value that represents the address of an object in program memory.

Assembler Operator/Machine Instruction:

tbladdress

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tbladdress() is not the address of an object in code, PSV or
EE data section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is valid:

unsigned long page = __builtin_tbladdress(&obj);
© 2005-2018 Microchip Technology Inc. DS70000157G-page 489

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_tbloffset

Description:

Returns the table page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_tbloffset(const void *p);

Argument:

p Object address.

Return Value:

Returns the table page number offset of the object whose address is given as a parameter.

Assembler Operator/Machine Instruction:

tbloffset

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tbloffset() is not the address of an object in code, PSV or
EE data section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsigned page = __builtin_tbloffset(&obj);
DS70000157G-page 490 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_tblpage

Description:

Returns the table page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory space;
otherwise, an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables” of the “MPLAB® C Compiler for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51284).

Prototype:

unsigned int __builtin_tblpage(const void *p);

Argument:

p Object address.

Return Value:

Returns the table page number of the object whose address is given as a parameter.

Assembler Operator/Machine Instruction:

tblpage

Error Messages:

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tblpage() is not the address of an object in code, PSV or EE data
section”.

The argument must be an explicit object address.

For example, if obj is an object in an executable or read-only section, the following syntax is
valid:

unsigned page = __builtin_tblpage(&obj);

__builtin_tblrdh

Description:

Issues the TBLRDH.W instruction to read a word from Flash or EE data memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and __builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

unsigned int __builtin_tblrdh(unsigned int offset);

Argument:

offset Desired memory offset.

Return Value:

None.

Assembler Operator/Machine Instruction:

tblrdh

Error Messages:

None.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 491

16-Bit MCU and DSC Programmer’s Reference Manual
__builtin_tblrdl

Description:

Issues the TBLRDL.W instruction to read a word from Flash or EE data memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and__builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

unsigned int __builtin_tblrdl(unsigned int offset);

Argument:

offset Desired memory offset.

Return Value:

None.

Assembler Operator/Machine Instruction:

tblrdl

Error Messages:

None.

__builtin_tblwth

Description:

Issues the TBLWTH.W instruction to write a word to Flash or EE data memory. You must set up
the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and __builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

void __builtin_tblwth(unsigned int offset
unsigned int data);

Argument:

offset Desired memory offset.
data Data to be written.

Return Value:

None.

Assembler Operator/Machine Instruction:

tblwth

Error Messages:

None.
DS70000157G-page 492 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

__builtin_tblwtl

Description:

Issues the TBLRDL.W instruction to write a word to Flash or EE data memory. You must set up
the TBLPAG to point to the appropriate page. To do this, you may make use of:
__builtin_tbloffset() and __builtin_tblpage().

Please refer to the specific device data sheet or the appropriate family reference manual for
complete details regarding reading and writing program Flash.

Prototype:

void __builtin_tblwtl(unsigned int offset
unsigned int data);

Argument:

offset Desired memory offset.
data Data to be written.

Return Value:

None.

Assembler Operator/Machine Instruction:

tblwtl

Error Messages:

None.
© 2005-2018 Microchip Technology Inc. DS70000157G-page 493

16-Bit MCU and DSC Programmer’s Reference Manual
Example 6-1: Additional In-Line Functions
#include "p33fxxxx.h"

volatile long Result_mpy1616;
volatile long Result_addab;
volatile long Result_subab;
volatile long Result_mpy3216;
volatile long Result_div3216;

register int Accu_A asm("A");
register int Accu_B asm("B");

inline static long mpy_32_16 (long, int);

inline static long mpy_32_16 (long x, int y)
{

long result;
int temp1, temp2;
temp1 = (x>>1)&0x7FFF;
temp2 = x>>16;
Accu_A = __builtin_mpy (temp1, y, 0,0,0,0,0,0);
Accu_A = __builtin_sftac (15);
Accu_A = __builtin_mac (temp2, y, 0,0,0,0,0,0,0);

 asm("mov _ACCAL,%0\n\t"
 "mov _ACCAH,%d0" : "=r"(result) : "w"(Accu_A));

return result;
}

int main (void)
{

// Variable declarations
int Input1;
int Input2;
int Input3;
int Input4;
long Input5;
int Input6;
long Input7;
int Input8;

// Enable 32-bit saturation, signed and fractional modes for both ACCA
and ACCB

 CORCON = 0x00C0;

// Example of 16*16-bit fractional multiplication using ACCA
Input1 = 32767;
Input2 = 32767;
Accu_A = __builtin_mpy (Input1, Input2, 0,0,0,0,0,0);
asm("mov _ACCAL,%0\n\t"
"mov _ACCAH,%d0" : "=r"(Result_mpy1616) : "w"(Accu_A));

// Example of 16*16-bit fractional multiplication using ACCB
Input3 = 16384;
Input4 = 16384;
Accu_B = __builtin_mpy (Input3, Input4, 0,0,0,0,0,0);
asm("mov _ACCBL,%0\n\t"
"mov _ACCBH,%d0" : "=r"(Result_mpy1616) : "w"(Accu_B));

// Example of 32-bit addition using ACCA (ACCA = ACCA + ACCB)
Accu_A = __builtin_addab();
asm("mov _ACCAL,%0\n\t"
"mov _ACCAH,%d0" : "=r"(Result_addab) : "w"(Accu_A));

// Example of 32-bit subtraction using ACCB (ACCB = ACCB - ACCA)
Accu_B = __builtin_subab();
asm("mov _ACCBL,%0\n\t"
"mov _ACCBH,%d0" : "=r"(Result_subab) : "w"(Accu_B));

// Example of 32*16-bit fractional multiplication using ACCA
Input5 = 0x7FFFFFFF;
Input6 = 32767;
Result_mpy3216 = mpy_32_16 (Input5, Input6);

while(1);
}

DS70000157G-page 494 © 2005-2018 Microchip Technology Inc.

Section 6. Built-in Functions
B

u
ilt-in

 F
u

n
ctio

n
s

6

Example 6-2: Divide_32_by_16
#include <p33Fxxxx.h>
#include "divide.h"

_FOSCSEL(FNOSC_FRC);
_FOSC(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMD_NONE);
_FWDT(FWDTEN_OFF);

unsigned int divide_(long a, int b) {
union convert {
unsigned long l;
unsigned int i[2];

} c;

int sign;
unsigned int result;

c.l = a;
sign = c.i[1] ^ b;

if (a < 0) a = (-a);
if (b < 0) b = -b;
result = __builtin_divud(a,b);
result >>= 1;
if (sign < 0) result = -result;
return result;

}

int main(void)
{

unsigned long dividend;
unsigned int divisor;
unsigned int quotient;

dividend = 0x3FFFFFFF;
divisor = 0x7FFF;

quotient = divide_((long)dividend, (int)divisor);
while(1);

}

© 2005-2018 Microchip Technology Inc. DS70000157G-page 495

16-Bit MCU and DSC Programmer’s Reference Manual
NOTES:
DS70000157G-page 496 © 2005-2018 Microchip Technology Inc.

Section 7. Reference
R
e

fere
n

c
e

7

HIGHLIGHTS

This section of the manual contains the following major topics:

7.1 Instruction Bit Map .. 498

7.2 Instruction Set Summary Table ... 501

7.3 Revision History .. 511
© 2005-2018 Microchip Technology Inc. DS70000157G-page 497

16-Bit MCU and DSC Programmer’s Reference Manual
7.1 INSTRUCTION BIT MAP

Instruction encoding for the 16-bit MCU and DSC family devices is summarized in Table 7-1. This
table contains the encoding for the MSB of each instruction. The first column in the table
represents bits<23:20> of the opcode and the first row of the table represents bits 19:16 of the
opcode. The first byte of the opcode is formed by taking the first column bit value and appending
the first row bit value. For instance, the MSB of the PUSH instruction (last row, ninth column) is
encoded with ‘11111000b’ (0xF8).

Note: The complete opcode for each instruction may be determined by the instruction
descriptions in Section 5. “Instruction Descriptions”, using Table 5-1 through
Table 5-15.
DS70000157G-page 498 © 2005-2018 Microchip Technology Inc.

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 4

9
9

S
ectio

n
 7. R

efe
ren

ce
R

7

Ta

11 1100 1101 1110 1111

— BRA(1)

(OA)
BRA(1)

(OB)
BRA(1)

(SA)
BRA(1)

(SB)

UBBR

RA
N)

BRA
(GT)

BRA
(GE)

BRA
(GTU)

—

ADDC

SUBB

XOR

MOV

ST BTSTS BSW BTSS BTSC

WTH
WTL

MUL SUB
SUBB

MOV.D MOV

D(1)

G(1)

B(1)

SAC(1)

SAC.D(4)
SAC.R(1) MAX(4)

MAX.V(4)

MIN(4)

MIN.V(4)

MINZ(4)

MINZ.V(4)

NORM(4)

FF1L
FF1R

— — SL ASR
LSR

FBCL

No
eference

ble 7-1: Instruction Encoding

Opcode<19:16>

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 10

O
p

c
o

d
e<

2
3:

2
0>

0000 NOP BRA
CALL
GOTO
RCALL

CALL LDSLV(4)

VFSLV(4)
GOTO RETLW RETFIE

RETURN
RCALL DO(1) REPEAT BFEXT(4)

BFINS(4)

0001 SUBR S

0010 MOV

0011 BRA
(OV)

BRA
(C)

BRA
(Z)

BRA
(N)

BRA
(LE)

BRA
(LT)

BRA
(LEU)

BRA BRA
(NOV)

BRA
(NC)

BRA
(NZ)

B
(N

0100 ADD

0101 SUB

0110 AND

0111 IOR

1000 MOV

1001 MOV

1010 BSET BCLR BTG BTST BTSTS BTST BTSS BTSC BSET BCLR BTG BT

1011 ADD
ADDC

SUB
SUBB

AND
XOR

IOR
MOV

ADD
ADDC

SUB
SUBB

AND
XOR

IOR
MOV

MUL.US
MUL.UU

MUL.SS
MUL.SU

TBLRDH
TBLRDL

TBL
TBL

1100 MAC(1)

MPY(1)

MPY.N(1)

MSC(1)

CLRAC(1) MAC(1)

MPY(1)

MPY.N(1)

MSC(1)

MOVSAC(1) SFTAC(1) ADD(1) LAC(1)

LAC.D(4)
AD
NE
SU

1101 SL ASR
LSR

RLC
RLNC

RRC
RRNC

SL ASR
LSR

RLC
RLNC

RRC
RRNC

DIV.S
DIV.U

DIV2.S(4)

DIV2.U(4)

DIVF(1)

DIVF2(4)
—

te 1: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C family devices.
2: This instruction is only available in PIC24E and dsPIC33E family devices.
3: This instruction is only available in dsPIC33C and some dsPIC33E family devices.
4: This instruction is only available in dsPIC33C family devices.
5: This instruction is only available in some dsPIC33C, dsPIC33E and PIC24F family devices.

16-B
it M

C
U

 an
d

 D
S

C
 P

ro
g

ra
m

m
e

r’s
 R

eferen
ce M

an
u

al

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
0

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

CLR
SETM

INC
INC2

DEC
DEC2

COM
NEG

CLR
SETM

SE
ZE

DISI DAW
EXCH
SWAP

BOOTSWP(5)

CLRWDT
CTXTSWP(3)

MOVPAG(2)

PWRSAV
POP.S

PUSH.S
RESET

NOPR

1011 1100 1101 1110 1111
O
p

co
d

e
<

23
:2

0
>

1110 CP0 CP
CPB

CP0 CP
CPB

FLIM(4)

FLIM.V(4)
CPBGT(2)

CPBLT(2)

CPSGT
CPSLT

CPBEQ(2)

CPBNE(2)

CPSEQ
CPSNE

INC
INC2

DEC
DEC2

COM
NEG

1111 ED(1)

EDAC(1)

MAC(1)

MPY(1)

— — — — PUSH POP LNK
ULNK

Table 7-1: Instruction Encoding (Continued)

Opcode<19:16>

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

Note 1: This instruction is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C family devices.
2: This instruction is only available in PIC24E and dsPIC33E family devices.
3: This instruction is only available in dsPIC33C and some dsPIC33E family devices.
4: This instruction is only available in dsPIC33C family devices.
5: This instruction is only available in some dsPIC33C, dsPIC33E and PIC24F family devices.

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
1

S
ectio

n
 7. R

efe
ren

ce
R

7

7.

able contains an alphabetized listing of the
cution time (in instruction cycles), affected

identifies the symbols that are used in the

PIC33F devices. Some instructions require
Instruction Set Summary Tables” and

Ta

SAB(1,2) DC N OV Z C
Page

Number

AD —      102

AD —      103

AD —      105

AD —      105

AD  — — — — — 107

AD  — — — — — 108

AD —      110

AD —      111

AD —      112

AD —      114

AN — —  —  — 116

AN — —  —  — 117

AN — —  —  — 118

AN — —  —  — 119

AS — —  —   121

AS — —  —   123

AS — —  —  — 125

AS — —  —  — 126

BC — — — — — — 127

Le
No
eference

2 INSTRUCTION SET SUMMARY TABLE

The complete 16-bit MCU and DSC device instruction set is summarized in Table 7-2. This t
instruction set. It includes instruction assembly syntax, description, size (in 24-bit words), exe
Status bits and the page number in which the detailed description can be found. Table 1-2
Instruction Set Summary Table.

Note: The instruction cycle counts listed here are for PIC24F, PIC24H, dsPIC30F and ds
additional cycles in PIC24E and dsPIC33E devices. Refer to Section 3.3 “
Section 5.4 “Instruction Descriptions” for details.

ble 7-2: Instruction Set Summary Table

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OAB(2)

D f {,WREG} Destination = f + WREG 1 1 — — — — —

D #lit10,Wn Wn = lit10 + Wn 1 1 — — — — —

D Wb,#lit5,Wd Wd = Wb + lit5 1 1 — — — — —

D Wb,Ws,Wd Wd = Wb + Ws 1 1 — — — — —

D Acc(2) Add Accumulators 1 1     

D Ws,#Slit4,Acc 16-Bit Signed Add to Accumulator 1 1     

DC f {,WREG} Destination = f + WREG + (C) 1 1 — — — — —

DC #lit10,Wn Wn = lit10 + Wn + (C) 1 1 — — — — —

DC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 — — — — —

DC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 — — — — —

D f {,WREG} Destination = f .AND. WREG 1 1 — — — — —

D #lit10,Wn Wn = lit10 .AND. Wn 1 1 — — — — —

D Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 — — — — —

D Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 — — — — —

R f {,WREG} Destination = Arithmetic Right Shift f, LSb  C 1 1 — — — — —

R Ws,Wd Wd = Arithmetic Right Shift Ws, LSb  C 1 1 — — — — —

R Wb,#lit4,Wnd Wnd = Arithmetic Right Shift Wb by lit4, LSb  C 1 1 — — — — —

R Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns, LSb  C 1 1 — — — — —

LR f,#bit4 Bit Clear f 1 1 — — — — —

gend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
te 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

16-B
it M

C
U

 an
d

 D
S

C
 P

ro
g

ra
m

m
e

r’s
 R

eferen
ce M

an
u

al

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
2

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

— — — — — — 128

— — — — — — 130

— — — — — — 131

— — — — — — 132

— — — — — — 133

— — — — — — 134

— — — — — — 135

— — — — — — 136

— — — — — — 137

— — — — — — 138

— — — — — — 139

— — — — — — 141

— — — — — — 142

— — — — — — 143

— — — — — — 144

— — — — — — 145

— — — — — — 146

— — — — — — 147

— — — — — — 148

— — — — — — 149

— — — — — — 150

— — — — — — 151

— — — — — — 152

— — — — — — 153

— — — — — — 154

— — — — — — 155

— — — — — — 156

— — — — — — 157

— — — — — — 158

— — — — — — 159

— — — — — — 160

B(2) SAB(1,2) DC N OV Z C
Page

Number
BCLR Ws,#bit4 Bit Clear Ws 1 1 — — — — —

BFEXT #bit4,#wid5,Ws,Wb(7) Bit Field Extract from Ws to Wb 2 2 — — — — —

BFEXT #bit4,#wid5,f,Wb(7) Bit Field Extract from f to Wb 2 2 — — — — —

BFINS #bit4,#wid5,Wb,Ws(7) Bit Field Insert from Wb into Ws 2 2 — — — — —

BFINS #bit4,#wid5,Wb,f(7) Bit Field Insert from Wb into f 2 2 — — — — —

BFINS #bit4,#wid5,#lit8,Ws(7) Bit Field Insert from #lit8 into Ws 2 2 — — — — —

BOOTSWP(9) Swap Active and Inactive Program Flash Spaces 1 2 — — — — —

BRA Expr Branch Unconditionally 1 2 — — — — —

BRA Wn(5) Computed Branch 1 2 — — — — —

BRA Wn(3) Computed Branch 1 2 — — — — —

BRA C Expr Branch if Carry 1 1 (2) — — — — —

BRA GE Expr Branch if Signed Greater Than or Equal 1 1 (2) — — — — —

BRA GEU Expr Branch if Unsigned Greater Than or Equal 1 1 (2) — — — — —

BRA GT Expr Branch if Signed Greater Than 1 1 (2) — — — — —

BRA GTU Expr Branch if Unsigned Greater Than 1 1 (2) — — — — —

BRA LE Expr Branch if Signed Less Than or Equal 1 1 (2) — — — — —

BRA LEU Expr Branch if Unsigned Less Than or Equal 1 1 (2) — — — — —

BRA LT Expr Branch if Signed Less Than 1 1 (2) — — — — —

BRA LTU Expr Branch if Unsigned Less Than 1 1 (2) — — — — —

BRA N Expr Branch if Negative 1 1 (2) — — — — —

BRA NC Expr Branch if Not Carry 1 1 (2) — — — — —

BRA NN Expr Branch if Not Negative 1 1 (2) — — — — —

BRA NOV Expr Branch if Not Overflow 1 1 (2) — — — — —

BRA NZ Expr Branch if Not Zero 1 1 (2) — — — — —

BRA OA Expr(2) Branch if Accumulator A Overflow 1 1 (2) — — — — —

BRA OB Expr(2) Branch if Accumulator B Overflow 1 1 (2) — — — — —

BRA OV Expr Branch if Overflow 1 1 (2) — — — — —

BRA SA Expr(2) Branch if Accumulator A Saturation 1 1 (2) — — — — —

BRA SB Expr(2) Branch if Accumulator B Saturation 1 1 (2) — — — — —

BRA Z Expr Branch if Zero 1 1 (2) — — — — —

BSET f,#bit4 Bit Set in f 1 1 — — — — —

Table 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OA

Legend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
3

S
ectio

n
 7. R

efe
ren

ce
R

7

BS — — — — — — 161

BS — — — — — — 163

BT — — — — — — 165

BT — — — — — — 166

BT — — — — — — 168

BT — — — — — — 170

BT — — — — — — 172

BT — — — — — — 173

BT — — — —  — 175

BT — — — — —  176

BT — — — —  — 178

BT — — — —  — 180

BT — — — — —  181

CA — — — — — — 183

CA — — — — — — 185

CA — — — — — — 187

CA — — — — — — 189

CA — — — — — — 191

CL — — — — — — 192

CL — — — — — — 193

CL 0 — — — — — 194

CL — — — — — — 196

CO — —  —  — 197

CO — —  —  — 198

CP —      200

CP —      201

CP —      202

Ta

SAB(1,2) DC N OV Z C
Page

Number

Le
No
eference

ET Ws,#bit4 Bit Set in Ws 1 1 — — — — —

W Ws,Wb Bit Write in Ws<Wb> 1 1 — — — — —

G f,#bit4 Bit Toggle in f 1 1 — — — — —

G Ws,#bit4 Bit Toggle in Ws 1 1 — — — — —

SC f,#bit4 Bit Test f, Skip if Clear 1 1
(2 or 3)

— — — — —

SC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1
(2 or 3)

— — — — —

SS f,#bit4 Bit Test f, Skip if Set 1 1
(2 or 3)

— — — — —

SS Ws,#bit4 Bit Test Ws, Skip if Set 1 1
(2 or 3)

— — — — —

ST f,#bit4 Bit Test in f 1 1 — — — — —

ST Ws,#bit4 Bit Test in Ws 1 1 — — — — —

ST Ws,Wb Bit Test in Ws 1 1 — — — — —

STS f,#bit4 Bit Test/Set in f 1 1 — — — — —

STS Ws,#bit4 Bit Test/Set in Ws 1 1 — — — — —

LL Expr(5) Call Subroutine 2 2 — — — — —

LL Expr(3) Call Subroutine 2 2 — — — — —

LL Wn(5) Call Indirect Subroutine 1 2 — — — — —

LL Wn(3) Call Indirect Subroutine 1 2 — — — — —

LL.L Wn(3) Call Indirect Subroutine Long (long address) 1 4 — — — — —

R f,WREG Clear f or WREG 1 1 — — — — —

R Wd Clear Wd 1 1 — — — — —

R Acc,[Wx],Wxd,[Wy],Wyd,AWB(2) Clear Accumulator 1 1 0 0 0 0 0

RWDT Clear Watchdog Timer 1 1 — — — — —

M f {,WREG} Destination = f 1 1 — — — — —

M Ws,Wd Wd = Ws 1 1 — — — — —

f Compare (f – WREG) 1 1 — — — — —

Wb,#lit5(5) Compare (Wb – lit5) 1 1 — — — — —

Wb,#lit8(3) Compare (Wb – lit8) 1 1 — — — — —

ble 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OAB(2)

gend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
te 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

16-B
it M

C
U

 an
d

 D
S

C
 P

ro
g

ra
m

m
e

r’s
 R

eferen
ce M

an
u

al

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
4

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

—      203

— 1    1 204

— 1    1 205

—      206

—      207

—      208

—      209

— — — — — — 211

— — — — — — 212

— — — — — — 213

— — — — — — 214

— — — — — — 215

— — — — — — 216

— — — — — — 217

— — — — — — 218

— — — — — — 219

— — — — — — 220

— — — — — — 221

— — — — — — 222

— — — — — — 223

— — — — — — 224

— — — — —  225

—      226

—      227

B(2) SAB(1,2) DC N OV Z C
Page

Number
CP Wb,Ws Compare (Wb – Ws) 1 1 — — — — —

CP0 f Compare (f – 0x0) 1 1 — — — — —

CP0 Ws Compare (Ws – 0x0) 1 1 — — — — —

CPB f Compare with Borrow (f – WREG – C) 1 1 — — — — —

CPB Wb,#lit5(5) Compare with Borrow (Wb – lit5 – C) 1 1 — — — — —

CPB Wb,#lit8(3) Compare with Borrow (Wb – lit8 – C) 1 1 — — — — —

CPB Wb,Ws Compare with Borrow (Wb – Ws – C) 1 1 — — — — —

CPBEQ Wb,Wn,Expr(3) Compare Wb with Wn, Branch if = 1 1 (5) — — — — —

CPBGT Wb,Wn,Expr(3) Signed Compare Wb with Wn, Branch if > 1 1 (5) — — — — —

CPBLT Wb,Wn,Expr(3) Signed Compare Wb with Wn, Branch if < 1 1 (5) — — — — —

CPBNE Wb,Wn,Expr(3) Compare Wb with Wn, Branch if  1 1 (5) — — — — —

CPSEQ Wb,Wn(5) Compare (Wb with Wn), Skip if = 1 1
(2 or 3)

— — — — —

CPSEQ Wb,Wn(3) Compare (Wb with Wn), Skip if = 1 1
(2 or 3)

— — — — —

CPSGT Wb,Wn(5) Signed Compare (Wb with Wn), Skip if > 1 1
(2 or 3)

— — — — —

CPSGT Wb,Wn(3) Signed Compare (Wb with Wn), Skip if > 1 1
(2 or 3)

— — — — —

CPSLT Wb,Wn(5) Signed Compare (Wb with Wn), Skip if < 1 1
(2 or 3)

— — — — —

CPSLT Wb,Wn(3) Signed Compare (Wb with Wn), Skip if < 1 1
(2 or 3)

— — — — —

CPSNE Wb,Wn(5) Signed Compare (Wb with Wn), Skip if  1 1
(2 or 3)

— — — — —

CPSNE Wb,Wn(3) Signed Compare (Wb with Wn), Skip if  1 1
(2 or 3)

— — — — —

CTXTSWP #lit3(8) CPU Register Context Swap Literal 1 2 — — — — —

CTXTSWP Wn(8) CPU Register Context Swap Wn 1 2 — — — — —

DAW.B Wn Wn = Decimal Adjust Wn 1 1 — — — — —

DEC f {,WREG} Destination = f – 1 1 1 — — — — —

DEC Ws,Wd Wd = Ws – 1 1 1 — — — — —

Table 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OA

Legend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
5

S
ectio

n
 7. R

efe
ren

ce
R

7

DE —      229

DE —      230

DI — — — — — — 232

DI — —     233

DI — — 0 0   235

DI — —     236

DI — —     238

DI — —     240

DI — — 0 0   241

DO — — — — — — 242

DO — — — — — — 244

DO — — — — — — 246

DO — — — — — — 248

ED  — — — — — 250

ED  — — — — — 252

EX — — — — — — 254

FB — — — — —  255

FF — — — — —  257

FF — — — — —  259

FL — —    — 261

FL — —    — 262

GO — — — — — — 263

GO — — — — — — 264

GO — — — — — — 265

GO — — — — — — 266

IN —      267

IN —      268

IN —      269

IN —      270

IO — —  —  — 271

Ta

SAB(1,2) DC N OV Z C
Page

Number

Le
No
eference

C2 f {,WREG} Destination = f – 2 1 1 — — — — —

C2 Ws,Wd Wd = Ws – 2 1 1 — — — — —

SI #lit14 Disable Interrupts for lit14 Instruction Cycles 1 1 — — — — —

V.S Wm,Wn Signed 16/16-Bit Integer Divide 1 18 — — — — —

V.U Wm,Wn Unsigned 16/16-Bit Integer Divide 1 18 — — — — —

VF Wm,Wn(2) Signed 16/16-Bit Fractional Divide 1 18 — — — — —

VF2 Wm,Wn(7) Signed 16/16-Bit Fractional Divide (W1:W0 preserved) 1 6 — — — — —

V2.S Wm, Wn(7) Signed 16/16-Bit Integer Divide (W1:W0 preserved) 1 6 — — — — —

V2.U Wm,Wn(7) Unsigned 16/16-Bit Integer Divide (W1:W0 preserved) 1 6 — — — — —

#lit14,Expr(6) Do Code to PC + Expr, (lit14 + 1) Times 2 2 — — — — —

#lit15,Expr(4) Do Code to PC + Expr, (lit15 + 1) Times 2 2 — — — — —

Wn,Expr(6) Do Code to PC + Expr, (Wn + 1) Times 2 2 — — — — —

Wn,Expr(4) Do Code to PC + Expr, (Wn + 1) Times 2 2 — — — — —

Wm*Wm,Acc,[Wx],[Wy],Wxd(2) Euclidean Distance (no accumulate) 1 1     

AC Wm*Wm,Acc,[Wx],[Wy],Wxd(2) Euclidean Distance 1 1     

CH Wns,Wnd Swap Wns and Wnd 1 1 — — — — —

CL Ws,Wnd Find First Bit Change from Left (MSb) Side 1 1 — — — — —

1L Ws,Wnd Find First One from Left (MSb) Side 1 1 — — — — —

1R Ws,Wnd Find First One from Right (LSb) Side 1 1 — — — — —

IM Wb,Ws(7) Force (signed) Data Range Limit 1 1 — — — — —

IM.V Wb,Ws,Wnd(7) Force (signed) Data Range Limit with Limit Excess
Result

1 1 — — — — —

TO Expr Unconditional Jump 2 2 — — — — —

TO Wn(5) Unconditional Indirect Jump 1 2 — — — — —

TO Wn(3) Unconditional Indirect Jump 1 2 — — — — —

TO.L Wn(3) Unconditional Indirect Jump Long 1 4 — — — — —

C f {,WREG} Destination = f + 1 1 1 — — — — —

C Ws,Wd Wd = Ws + 1 1 1 — — — — —

C2 f {,WREG} Destination = f + 2 1 1 — — — — —

C2 Ws,Wd Wd = Ws + 2 1 1 — — — — —

R f {,WREG} Destination = f .IOR. WREG 1 1 — — — — —

ble 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OAB(2)

gend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
te 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

16-B
it M

C
U

 an
d

 D
S

C
 P

ro
g

ra
m

m
e

r’s
 R

eferen
ce M

an
u

al

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
6

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

— —  —  — 272

— —  —  — 273

— —  —  — 274

 — — — — — 276

 — — — — — 278

— — — — — — 279

— — — — — — 280

— — — — — — 281

— — 0 —   282

— — 0 —   284

— —  —  — 286

— —  —  — 287

 — — — — — 288

 — — — — — 290

—      292

—      293

—      294

—      295

—      296

—      297

— —  —  — 299

— — — — — — 300

— — — — — — 301

— — — — — — 302

— — — — — — 303

— — — — — — 304

B(2) SAB(1,2) DC N OV Z C
Page

Number
IOR #lit10,Wn Wn = lit10 .IOR. Wn 1 1 — — — — —

IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 — — — — —

IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 — — — — —

LAC Ws,{#Slit4,},Acc(2) Load Accumulator 1 1     

LAC.D Ws,[,#Slit4],Acc(7) Load Accumulator Double Word 1 2     

LDSLV [Wns],[Wnd++],#lit2(7) Move Single Instruction Word from Master to Slave
PRAM

1 2 — — — — —

LNK #lit14(5) Link Frame Pointer 1 1 — — — — —

LNK #lit14(3) Link Frame Pointer 1 1 — — — — —

LSR f {,WREG} Destination = Logical Right Shift f, MSb C 1 1 — — — — —

LSR Ws,Wd Wd = Logical Right Shift Ws, MSb C 1 1 — — — — —

LSR Wb,#lit4,Wnd Wnd = Logical Right Shift Wb by lit4, MSb C 1 1 — — — — —

LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns, MSb C 1 1 — — — — —

MAC Wm*Wn,Acc,[Wx],Wxd,[Wy],
Wyd,AWB(2)

Multiply and Accumulate 1 1     

MAC Wm*Wm,Acc,[Wx],Wxd,[Wy],Wyd(2) Square and Accumulate 1 1     

MAX Acc(7) Force Accumulator Maximum Data Range Limit 1 1 — — — — —

MAX.V Acc,Wd(7) Force Accumulator Maximum Data Range Limit and
Store Limit Excess Result

1 1 — — — — —

MIN Acc(7) Force Accumulator Minimum Data Range Limit 1 1 — — — — —

MIN.V Acc,Wd(7) Force Accumulator Minimum Data Range Limit and
Store Limit Excess Result

1 1 — — — — —

MINZ Acc(7) Conditionally Force Accumulator Minimum Data
Range Limit if Z Flag is Set

1 1 — — — — —

MINZ.V Acc,Wd(7) Conditionally Force Accumulator Minimum Data Range
Limit and Store Limit Excess Result if Z Flag is Set

1 1 — — — — —

MOV f {,WREG} Move f to Destination 1 1 — — — — —

MOV WREG,f Move WREG to f 1 1 — — — — —

MOV f,Wnd Move f to Wnd 1 1 — — — — —

MOV Wns,f Move Wns to f 1 1 — — — — —

MOV.B #lit8,Wnd Move 8-Bit Unsigned Literal to Wnd 1 1 — — — — —

MOV #lit16,Wnd Move 16-Bit Literal to Wnd 1 1 — — — — —

Table 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OA

Legend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
7

S
ectio

n
 7. R

efe
ren

ce
R

7

MO — — — — — — 305

MO — — — — — — 306

MO — — — — — — 307

MO — — — — — — 309

MO — — — — — — 311

MO — — — — — — 312

MO — — — — — — 313

MP  — — — — — 315

MP  — — — — — 317

MP — — — — — — 319

MS  — — — — — 321

MU — — — — — — 323

MU — — — — — — 325

MU — — — — — — 327

MU — — — — — — 328

MU — — — — — — 329

MU — — — — — — 331

MU — — — — — — 332

MU — — — — — — 333

MU — — — — — — 335

MU — — — — — — 336

MU — — — — — — 337

MU — — — — — — 339

MU — — — — — — 340

MU — — — — — — 341

MU — — — — — — 343

MU — — — — — — 345

MU — — — — — — 346

MU — — — — — — 348

MU — — — — — — 349

Ta

SAB(1,2) DC N OV Z C
Page

Number

Le
No
eference

V [Ws+Slit10],Wnd Move [Ws + Slit10] to Wnd 1 1 — — — — —

V Wns,[Wd+Slit10] Move Wns to [Wd + Slit10] 1 1 — — — — —

V Ws,Wd Move Ws to Wd 1 1 — — — — —

V.D Wns,Wnd Move Double Wns:Wns + 1 to Wnd 1 2 — — — — —

VPAG #lit10,DSRPAG(3) Move 10-Bit Literal to DSRPAG 1 1 — — — — —

VPAG Wn,DSRPAG(3) Move Wn to DSRPAG 1 1 — — — — —

VSAC Acc,[Wx],Wxd,[Wy],Wyd,AWB(2) Move [Wx] to Wxd and [Wy] to Wyd 1 1 — — — — —

Y Wm*Wn,Acc,[Wx],Wxd,[Wy],Wyd(2) Multiply Wm by Wn to Accumulator 1 1     

Y Wm*Wm,Acc,[Wx],Wxd,[Wy],Wyd(2) Square to Accumulator 1 1     

Y.N Wm*Wn,Acc,[Wx],Wxd,[Wy],Wyd(2) -(Multiply Wn by Wm) to Accumulator 1 1 0 0 — — 0

C Wm*Wn,Acc,[Wx],Wxd,[Wy],
Wyd,AWB(2)

Multiply and Subtract from Accumulator 1 1     

L f W3:W2 = f * WREG 1 1 — — — — —

L.SS Wb,Ws,Wnd {Wnd + 1,Wnd} = Signed(Wb) * Signed(Ws) 1 1 — — — — —

L.SS Wb,Ws,Acc(4) Accumulator = Signed(Wb) * Signed(Ws) 1 1 — — — — —

L.SU Wb,#lit5,Wnd {Wnd + 1,Wnd} = Signed(Wb) * Unsigned(lit5) 1 1 — — — — —

L.SU Wb,Ws,Wnd {Wnd + 1,Wnd} = Signed(Wb) * Unsigned(Ws) 1 1 — — — — —

L.SU Wb,Ws,Acc(4) Accumulator = Signed(Wb) * Unsigned(Ws) 1 1 — — — — —

L.SU Wb,#lit5,Acc(4) Accumulator = Signed(Wb) * Unsigned(lit5) 1 1 — — — — —

L.US Wb,Ws,Wnd {Wnd + 1,Wnd} = Unsigned(Wb) * Signed(Ws) 1 1 — — — — —

L.US Wb,Ws,Acc(4) Accumulator = Unsigned(Wb) * Signed(Ws) 1 1 — — — — —

L.UU Wb,#lit5,Wnd {Wnd + 1,Wnd} = Unsigned(Wb) * Unsigned(lit5) 1 1 — — — — —

L.UU Wb,Ws,Wnd {Wnd + 1,Wnd} = Unsigned(Wb) * Unsigned(Ws) 1 1 — — — — —

L.UU Wb,Ws,Acc(4) Accumulator = Unsigned(Wb) * Unsigned(Ws) 1 1 — — — — —

L.UU Wb,#lit5,Acc(4) Accumulator = Unsigned(Wb) * Unsigned(lit5) 1 1 — — — — —

LW.SS Wb,Ws,Wnd(3) Wnd = Signed(Wb) * Signed(Ws) 1 1 — — — — —

LW.SU Wb,Ws,Wnd(3) Wnd = Signed(Wb) * Unsigned(Ws) 1 1 — — — — —

LW.SU Wb,#lit5,Wnd(3) Wnd = Signed(Wb) * Unsigned(lit5) 1 1 — — — — —

LW.US Wb,Ws,Wnd(3) Wnd = Unsigned(Wb) * Signed(Ws) 1 1 — — — — —

LW.UU Wb,Ws,Wnd(3) Wnd = Unsigned(Wb) * Unsigned(Ws) 1 1 — — — — —

LW.UU Wb,#lit5,Wnd(3) Wnd = Unsigned(Wb) * Unsigned(lit5) 1 1 — — — — —

ble 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OAB(2)

gend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
te 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

16-B
it M

C
U

 an
d

 D
S

C
 P

ro
g

ra
m

m
e

r’s
 R

eferen
ce M

an
u

al

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
8

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

—      350

—      351

 — — — — — 353

— — — — — — 354

— — — — — — 355

— — — — — — 356

— — — — — — 357

— — — — — — 358

— — — — — — 359

—      360

— — — — — — 361

— — — — — — 362

— — — — — — 364

— — — — — — 365

— — — — — — 366

— — — — — — 367

— — — — — — 369

— — — — — — 371

— — — — — — 373

— — — — — — 375

— — — — — — 376

— — — — — — 377

— — — — — — 378

— — — — — — 379

— —     380

— —     381

— — — — — — 382

— — — — — — 384

— — — — — — 386

— — — — — — 387

B(2) SAB(1,2) DC N OV Z C
Page

Number
NEG f {,WREG} Destination = f + 1 1 1 — — — — —

NEG Ws,Wd Wd = Ws + 1 1 1 — — — — —

NEG Acc(2) Negate Accumulator 1 1     

NOP No Operation 1 1 — — — — —

NOPR No Operation 1 1 — — — — —

NORM Acc,Wd(7) Normalize Accumulator 1 1 0 0   

POP f POP TOS to f 1 1 — — — — —

POP Wd POP TOS to Wd 1 1 — — — — —

POP.D Wnd POP Double from TOS to Wnd:Wnd + 1 1 2 — — — — —

POP.S POP Shadow Registers 1 1 — — — — —

PUSH f PUSH f to TOS 1 1 — — — — —

PUSH Ws PUSH Ws to TOS 1 1 — — — — —

PUSH.D Wns PUSH Double Wns:Wns + 1 to TOS 1 2 — — — — —

PUSH.S PUSH Shadow Registers 1 1 — — — — —

PWRSAV #lit1 Enter Power-Saving Mode 1 1 — — — — —

RCALL Expr(5) Relative Call 1 2 — — — — —

RCALL Expr(3) Relative Call 1 2 — — — — —

RCALL Wn(5) Computed Relative Call 1 2 — — — — —

RCALL Wn(3) Computed Relative Call 1 2 — — — — —

REPEAT #lit14(5) Repeat Next Instruction (lit14 + 1) Times 1 1 — — — — —

REPEAT #lit15(3) Repeat Next Instruction (lit15 + 1) Times 1 1 — — — — —

REPEAT Wn(5) Repeat Next Instruction (Wn + 1) Times 1 1 — — — — —

REPEAT Wn(3) Repeat Next Instruction (Wn + 1) Times 1 1 — — — — —

RESET Software Device Reset 1 1 — — — — —

RETFIE(5) Return from Interrupt Enable 1 3 (2) — — — — —

RETFIE(3) Return from Interrupt Enable 1 3 (2) — — — — —

RETLW #lit10,Wn(5) Return with lit10 in Wn 1 3 (2) — — — — —

RETLW #lit10,Wn(3) Return with lit10 in Wn 1 3 (2) — — — — —

RETURN(5) Return from Subroutine 1 3 (2) — — — — —

RETURN(3) Return from Subroutine 1 3 (2) — — — — —

Table 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OA

Legend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

0
9

S
ectio

n
 7. R

efe
ren

ce
R

7

RL — —  —   388

RL — —  —   389

RL — —  —  — 391

RL — —  —  — 392

RR — —  —   394

RR — —  —   396

RR — —  —  — 398

RR — —  —  — 399

SA — — — — — — 401

SA — — — — — — 403

SA — — — — — — 404

SE — —  —   406

SE — — — — — — 408

SE — — — — — — 409

SF  — — — — — 410

SF  — — — — — 411

SL — —  —   412

SL — —  —   414

SL — —  —  — 416

SL — —  —  — 417

SU —      418

SU —      419

SU —      420

SU —      421

SU  — — — — — 423

SU —      424

SU —      425

SU —      426

SU —      428

SU —      430

Ta

SAB(1,2) DC N OV Z C
Page

Number

Le
No
eference

C f {,WREG} Destination = Rotate Left through Carry f 1 1 — — — — —

C Ws,Wd Wd = Rotate Left through Carry Ws 1 1 — — — — —

NC f {,WREG} Destination = Rotate Left (no Carry) f 1 1 — — — — —

NC Ws,Wd Wd = Rotate Left (no Carry) Ws 1 1 — — — — —

C f {,WREG} Destination = Rotate Right through Carry f 1 1 — — — — —

C Ws,Wd Wd = Rotate Right through Carry Ws 1 1 — — — — —

NC f {,WREG} Destination = Rotate Right (no Carry) f 1 1 — — — — —

NC Ws,Wd Wd = Rotate Right (no Carry) Ws 1 1 — — — — —

C Acc,#Slit4,Wd(2) Store Accumulator 1 1 — — — — —

C.D Acc,#Slit4,Wnd(7) Store Accumulator Double Word 1 1 — — — — —

C.R Acc,#Slit4,Wd(2) Store Rounded Accumulator 1 1 — — — — —

Ws,Wnd Wd = Sign-Extended Ws 1 1 — — — — —

TM f f = 0xFFFF 1 1 — — — — —

TM Wd Wd = 0xFFFF 1 1 — — — — —

TAC Acc,#Slit6(2) Arithmetic Shift Accumulator by Slit6 1 1     

TAC Acc,Wb(2) Arithmetic Shift Accumulator by (Wb) 1 1     

f {,WREG} Destination = Arithmetic Left Shift f 1 1 — — — — —

Ws,Wd Wd = Arithmetic Left Shift Ws 1 1 — — — — —

Wb,#lit4,Wnd Wnd = Left Shift Wb by lit4 1 1 — — — — —

Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 — — — — —

B f {,WREG} Destination = f – WREG 1 1 — — — — —

B #lit10,Wn Wn = Wn – lit10 1 1 — — — — —

B Wb,#lit5,Wd Wd = Wb – lit5 1 1 — — — — —

B Wb,Ws,Wd Wd = Wb – Ws 1 1 — — — — —

B Acc(2) Subtract Accumulators 1 1     

BB f {,WREG} Destination = f – WREG – (C) 1 1 — — — — —

BB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 — — — — —

BB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 — — — — —

BB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 — — — — —

BBR f {,WREG} Destination = WREG – f – (C) 1 1 — — — — —

ble 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OAB(2)

gend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
te 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

16-B
it M

C
U

 an
d

 D
S

C
 P

ro
g

ra
m

m
e

r’s
 R

eferen
ce M

an
u

al

D
S

7
0

0
0

0
1

5
7

G
-p

a
g

e
 5

1
0

©
 2

0
0

5
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

—      431

—      433

—      435

—      436

—      437

— — — — — — 439

— — — — — — 440

— — — — — — 442

— — — — — — 444

— — — — — — 446

— — — — — — 448

— — — — — — 449

— — — — — — 450

— —  —  — 451

— —  —  — 452

— —  —  — 453

— —  —  — 454

— — 0 —  1 456

B(2) SAB(1,2) DC N OV Z C
Page

Number
SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 — — — — —

SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 — — — — —

SUBR f {,WREG} Destination = WREG – f 1 1 — — — — —

SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 — — — — —

SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 — — — — —

SWAP Wn Wn = Byte or Nibble Swap Wn 1 1 — — — — —

TBLRDH [Ws],Wd Read High Program Word to Wd 1 2 — — — — —

TBLRDL [Ws],Wd Read Low Program Word to Wd 1 2 — — — — —

TBLWTH Ws,[Wd] Write Ws to High Program Word 1 2 — — — — —

TBLWTL Ws,[Wd] Write Ws to Low Program Word 1 2 — — — — —

ULNK(5) Deallocate Stack Frame 1 1 — — — — —

ULNK(3) Deallocate Stack Frame 1 1 — — — — —

VFSLV Wns,Wnd,#lit2(7) Verify Slave Processor Program RAM 1 1 — — — — —

XOR f {,WREG} Destination = f .XOR. WREG 1 1 — — — — —

XOR #lit10,Wn Wn = lit10 .XOR. Wn 1 1 — — — — —

XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 — — — — —

XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 — — — — —

ZE Ws,Wnd Wnd = Zero-Extended Ws 1 1 — — — — —

Table 7-2: Instruction Set Summary Table (Continued)

Assembly Syntax
Mnemonic, Operands

Description Words Cycles OA(2) OB(2) SA(1,2) SB(1,2) OA

Legend:  set or cleared;  may be cleared, but never set;  may be set, but never cleared; ‘1’ always set; ‘0’ always cleared; — unchanged
Note 1: SA, SB and SAB are only modified if the corresponding saturation is enabled, otherwise unchanged.

2: This instruction/operand is only available in dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C devices.
3: This instruction/operand is only available in PIC24E, dsPIC33E and dsPIC33C devices.
4: This instruction/operand is only available in dsPIC33E and dsPIC33C devices.
5: This instruction/operand is only available in PIC24F, PIC24H, dsPIC30F and dsPIC33F devices.
6: This instruction/operand is only available in dsPIC30F and dsPIC33F devices.
7: These instructions are only available in dsPIC33C devices.
8: These instructions are only available in all dsPIC33C devices and some dsPIC33E devices (see device data sheet for details).
9: These instructions are only available in all dsPIC33C devices, and some PIC24F and dsPIC33E devices (see device data sheet for details).

Section 7. Reference
R

efere
n

ce

7

7.3 REVISION HISTORY

Revision A (May 2005)

This is the initial release of this document.

Revision B (September 2005)

This revision incorporates all known errata at the time of this document update.

Revision C (February 2008)

This revision includes the following corrections and updates:

• Instruction Updates:

- Updated BRA Instruction (see “BRA”)

- Updated DIVF Instruction (see “DIVF”)

- Updated DO Instruction (see “DO”)

- Updated SUB instruction (see “SUB”)

Revision D (November 2009)

This revision includes the following corrections and updates:

• Document renamed from dsPIC30F/33F Programmer’s Reference Manual to 16-bit MCU
and DSC Programmer’s Reference Manual

• Document has been completely redesigned to accommodate all current 16-bit families:
dsPIC30F, dsPIC33F, PIC24F and PIC24H

Revision E (June 2010)

This revision includes the following corrections and updates:

• Information specific to dsPIC33E and PIC24E devices has been added throughout the
document

Revision F (July 2011)

This revision includes the following corrections and updates:

• Added a new section “Built-in Functions”

• Added and updated the cross-references throughout the document

• Updated the bit characteristics from U to U-0 in Register 2-4 and Register 2-6

• Added a note throughout the document specifying the requirement of an additional cycle for
read and read-modify-write operations on non-CPU special function registers in dsPIC33E
and PIC24E devices

• Updates to formatting and minor text changes were incorporated throughout the document

Revision G (April 2018)

This revision includes the following corrections and updates:

• Information specific to dsPIC33C devices has been added throughout the document

• Updates to formatting and minor text changes were incorporated throughout the document
© 2005-2018 Microchip Technology Inc. DS70000157G-page 511

16-Bit MCU and DSC Programmer’s Reference Manual
NOTES:
DS70000157G-page 512 © 2005-2018 Microchip Technology Inc.

In
d

ex
Index
INDEX

Symbols

__builtin_add... 462
__builtin_addab... 461
__builtin_btg.. 463
__builtin_clr ... 464
__builtin_clr_prefetch .. 465
__builtin_divf ... 467
__builtin_divmodsd ... 467
__builtin_divmodud ... 468
__builtin_divsd .. 468
__builtin_divud .. 469
__builtin_dmaoffset ... 469
__builtin_ed... 470
__builtin_edac ... 471
__builtin_edsoffset .. 472
__builtin_edspage... 472
__builtin_fbcl ... 473
__builtin_lac .. 473
__builtin_mac .. 474
__builtin_modsd .. 476
__builtin_modud.. 476
__builtin_movsac .. 477
__builtin_mpy .. 478
__builtin_mpyn .. 479
__builtin_msc .. 480
__builtin_mulss ... 482
__builtin_mulsu ... 482
__builtin_mulus ... 483
__builtin_muluu ... 483
__builtin_nop... 484
__builtin_psvoffset .. 484
__builtin_psvpage ... 485
__builtin_readsfr.. 485
__builtin_return_address... 486
__builtin_sac ... 486
__builtin_sacr .. 487
__builtin_sftac ... 488
__builtin_subab ... 489
__builtin_tbladdress .. 489
__builtin_tbloffset .. 490
__builtin_tblpage ... 491
__builtin_tblrdh.. 491
__builtin_tblrdl ... 492
__builtin_tblwth ... 492
__builtin_tblwtl... 493

A

Accumulator A, Accumulator B ... 20
Accumulator Access.. 86
Accumulator Selection .. 100
Accumulator Usage... 85
Addressing Modes for Wd Destination Register 97
Addressing Modes for Ws Source Register 97
Architecture Overview ... 10
Assigned Working Register Usage 80

B

Bit Field Insert/Extract Instructions 71
Block Diagrams

DO Stack Conceptual ... 26
dsPIC30F/dsPIC33F Programmer’s Model 16
dsPIC33C Programmer’s Model 18
dsPIC33E Programmer’s Model 17
PIC24E Programmer’s Model 15
PIC24F/PIC24H Programmer’s Model........................ 14

Built-In Functions
__builtin_add .. 462
__builtin_addab .. 461
__builtin_btg ... 463
__builtin_clr .. 464
__builtin_clr_prefetch.. 465
__builtin_divf... 467
__builtin_divmodsd ... 467
__builtin_divmodud... 468
__builtin_divsd.. 468
__builtin_divud.. 469
__builtin_dmaoffset .. 469
__builtin_ed .. 470
__builtin_edac .. 471
__builtin_edsoffset.. 472
__builtin_edspage .. 472
__builtin_fbcl... 473
__builtin_lac.. 473
__builtin_mac ... 474
__builtin_modsd ... 476
__builtin_modud ... 476
__builtin_movsac .. 477
__builtin_mpy ... 478
__builtin_mpyn ... 479
__builtin_msc.. 480
__builtin_mulss ... 482
__builtin_mulsu... 482
__builtin_mulus... 483
__builtin_muluu .. 483
__builtin_nop .. 484
__builtin_psvoffset .. 484
__builtin_psvpage... 485
__builtin_readsfr ... 485
__builtin_return_address .. 486
__builtin_sac... 486
__builtin_sacr ... 487
__builtin_sftac... 488
__builtin_subab .. 489
__builtin_tbladdress.. 489
__builtin_tbloffset.. 490
__builtin_tblpage .. 491
__builtin_tblrdh ... 491
__builtin_tblrdl .. 492
__builtin_tblwth ... 492
__builtin_tblwtl .. 493

Byte Operations .. 66
 2005-2018 Microchip Technology Inc. DS70000157G-page 513

16-Bit MCU and DSC Programmer’s Reference Manual
C

Code Examples
’Z’ Status Bit Operation for 32-Bit Addition 79
32-Bit Signed Multiplication Using Implicit

Mixed-Sign Mode .. 94
Additional In-Line Functions...................................... 494
Base MAC Syntax... 88
Divide_32_by_16 .. 495
File Register Addressing ... 55
File Register Addressing and WREG.......................... 55
Frame Pointer Usage.. 75
Illegal Word Move Operations..................................... 70
Immediate Addressing .. 61
Indirect Addressing with Effective Address

Update .. 57
Indirect Addressing with Register Offset 58
Legal Word Move Operations 69
MAC Accumulator WB Syntax 89
MAC Prefetch Syntax.. 88
Move with Literal Offset Instructions 58
Moving Data with WREG .. 82
MSC Instruction with Two Prefetches and

Accumulator Write-Back 89
Normalizing with FBCL ... 93
Register Direct Addressing ... 56
Sample Byte Math Operations 67
Sample Byte Move Operations 66
Scaling with FBCL... 91
Stack Pointer Usage ... 73
Unsigned f and WREG Multiply (Legacy MULWF

Instruction) .. 82
Using 10-Bit Literals for Byte Operands...................... 71
Using the Default Working Register, WREG............... 81

Conditional Branch Instructions .. 78
Core Control Register ... 25

D

Data Addressing Mode Tree ... 61
Data Addressing Modes.. 54
Data Range Limit Instructions ... 92

FLIM/FLIM.V ... 92
MAX/MAX.V .. 92
MIN/MIN.V/MINZ... 92

DCOUNT Register .. 21
Default Working Register (WREG)................................ 20, 81
Destination Addressing Modes for

MCU Multiplications .. 97
Development Support ... 6
DO Stack... 26
DOEND Register... 22
DOSTART Register... 22
DSP Accumulator Instructions .. 90
DSP Data Formats .. 83
DSP MAC Indirect Addressing Modes 59
DSP MAC Instructions .. 86

E

Extended Precision Arithmetic using Mixed-Sign
Multiplications ... 94

F

File Register Addressing ... 54

I

Immediate Addressing .. 60
Operands in the Instruction Set 60

Implied DSP Operands ... 80
Implied Frame and Stack Pointer 81
Instruction Bit Map .. 498
Instruction Description Example 101
Instruction Descriptions .. 102

ADD (16-Bit Signed Add to Accumulator)................. 108
ADD (Add Accumulators).. 107
ADD (Add f to WREG) .. 102
ADD (Add Literal to Wn) ... 103
ADD (Add Wb to Short Literal).................................. 104
ADD (Add Wb to Ws).. 105
ADDC (Add f to WREG with Carry) 110
ADDC (Add Literal to Wn with Carry) 111
ADDC (Add Wb to Short Literal with Carry).............. 112
ADDC (Add Wb to Ws with Carry) 114
AND (AND f and WREG).. 116
AND (AND Literal and Wn) 117
AND (AND Wb and Short Literal) 118
AND (AND Wb and Ws).. 119
ASR (Arithmetic Shift Right by Short Literal) 125
ASR (Arithmetic Shift Right by Wns) 126
ASR (Arithmetic Shift Right f) 121
ASR (Arithmetic Shift Right Ws) 123
BCLR (Bit Clear in f) ... 127
BCLR (Bit Clear in Ws) ... 128
BFEXT (Bit Field Extract from f into Wnd) 131
BFEXT (Bit Field Extract from Ws into Wnd) 130
BFINS (Bit Field Insert from Wb into Wd) 132
BFINS (Bit Field Insert from Wns into f).................... 133
BFINS (Bit Field Insert Literal into Ws) 134
BOOTSWP (Swap Active and Inactive

Flash Address Panel) 135
BRA (Branch Unconditionally) 136
BRA (Computed Branch).................................. 137, 138
BRA C (Branch if Carry) ... 139
BRA GE (Branch if Signed Greater Than

or Equal) ... 141
BRA GEU (Branch if Unsigned Greater Than

or Equal) ... 142
BRA GT (Branch if Signed Greater Than) 143
BRA GTU (Branch if Unsigned Greater Than).......... 144
BRA LE (Branch if Signed Less Than or Equal) 145
BRA LEU (Branch if Unsigned Less Than

or Equal) ... 146
BRA LT (Branch if Signed Less Than)...................... 147
BRA LTU (Branch if Unsigned Less Than) 148
BRA N (Branch if Negative) 149
BRA NC (Branch if Not Carry) 150
BRA NN (Branch if Not Negative)............................. 151
BRA NOV (Branch if Not Overflow) 152
BRA NZ (Branch if Not Zero) 153
BRA OA (Branch if Overflow Accumulator A) 154
BRA OB (Branch if Overflow Accumulator B) 155
BRA OV (Branch if Overflow) 156
BRA SA (Branch if Saturation Accumulator A) 157
BRA SB (Branch if Saturation Accumulator B) 158
BRA Z (Branch if Zero) ... 159
BSET (Bit Set in f)... 160
BSET (Bit Set in Ws) .. 161
BSW (Bit Write in Ws)... 163
DS70000157G-page 514  2005-2018 Microchip Technology Inc.

In
d

ex
Index
BTG (Bit Toggle in f) ... 165
BTG (Bit Toggle in Ws) ... 166
BTSC (Bit Test f, Skip if Clear) 168
BTSC (Bit Test Ws, Skip if Clear) 170
BTSS (Bit Test f, Skip if Set)..................................... 172
BTSS (Bit Test Ws, Skip if Set)................................. 173
BTST (Bit Test in f) ... 175
BTST (Bit Test in Ws) 176, 178
BTSTS (Bit Test/Set in f)... 180
BTSTS (Bit Test/Set in Ws) 181
CALL (Call Indirect Subroutine) 187, 189
CALL (Call Subroutine) 183, 185
CALL.L (Call Indirect Subroutine Long) 191
CLR (Clear Accumulator, Prefetch Operands).......... 194
CLR (Clear f or WREG) .. 192
CLR (Clear Wd) .. 193
CLRWDT (Clear Watchdog Timer) 196
COM (Complement f).. 197
COM (Complement Ws).. 198
CP (Compare f with WREG, Set Status Flags)......... 200
CP (Compare Wb with lit5, Set Status Flags) 201
CP (Compare Wb with lit8, Set Status Flags) 202
CP (Compare Wb with Ws, Set Status Flags) 203
CP0 (Compare f with 0x0, Set Status Flags) 204
CP0 (Compare Ws with 0x0, Set Status Flags) 205
CPB (Compare f with WREG Using Borrow,

Set Status Flags) .. 206
CPB (Compare Wb with lit5 Using Borrow,

Set Status Flags) .. 207
CPB (Compare Wb with lit8 Using Borrow,

Set Status Flags) .. 208
CPB (Compare Ws with Wb Using Borrow,

Set Status Flags) .. 209
CPBEQ (Compare Wb with Wn,

Branch if Equal) .. 211
CPBGT (Signed Compare Wb with Wn, Branch if

Greater Than) ... 212
CPBLT (Signed Compare Wb with Wn, Branch if

Less Than).. 213
CPBNE (Compare Wb with Wn,

Branch if Not Equal).. 214
CPSEQ (Compare Wb with Wn,

Skip if Equal)... 215, 216
CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than) .. 217
CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than) .. 218
CPSLT (Signed Compare Wb with Wn,

Skip if Less Than) 219, 220
CPSNE (Signed Compare Wb with Wn,

Skip if Not Equal) 221, 222
CTXTSWP (CPU Register Context

Swap Literal) ... 223
CTXTSWP (CPU Register Context Swap Wn) 224
DAW.B (Decimal Adjust Wn) 225
DEC (Decrement f) ... 226
DEC (Decrement Ws) ... 227
DEC2 (Decrement f by 2).. 229
DEC2 (Decrement Ws by 2) 230
DISI (Disable Interrupts Temporarily) 232
DIV.S (Signed Integer Divide)................................... 233
DIV.U (Unsigned Integer Divide)............................... 235
DIV2.S (Signed Integer Divide)................................. 240
DIV2.U (Unsigned Integer Divide)............................. 241
DIVF (Fractional Divide).. 236
DIVF2 (Signed Fractional Divide, 16/16) 238
DO (Initialize Hardware Loop Literal)................ 242, 244

DO (Initialize Hardware Loop Wn).................... 246, 248
ED (Euclidean Distance.. 250
ED (Euclidean Distance, No Accumulate) 250
EDAC (Euclidean Distance) 252
EXCH (Exchange Wns and Wnd)............................. 254
FBCL (Find First Bit Change from Left) 255
FF1L (Find First One from Left)................................ 257
FF1R (Find First One from Right)............................. 259
FLIM (Force (Signed) Data Range Limit) 261
FLIM.V (Force (Signed) Data Range Limit with

Limit Excess Result) ... 262
GOTO (Unconditional Indirect Jump) 264, 265
GOTO (Unconditional Jump) 263
GOTO.L (Unconditional Indirect Jump Long) 266
INC (Increment f) .. 267
INC (Increment Ws).. 268
INC2 (Increment f by 2) .. 269
INC2 (Increment Ws by 2) .. 270
IOR (Inclusive OR f and WREG) 271
IOR (Inclusive OR Literal and Wn) 272
IOR (Inclusive OR Wb and Short Literal).................. 273
IOR (Inclusive OR Wb and Ws)................................ 274
LAC (Load Accumulator) .. 276
LAC.D (Load Accumulator Double) 278
LDSLV (Load Slave Processor Program RAM)........ 279
LNK (Allocate Stack Frame) 280, 281
LSR (Logical Shift Right by Short Literal) 286
LSR (Logical Shift Right by Wns) 287
LSR (Logical Shift Right f) .. 282
LSR (Logical Shift Right Ws) 284
MAC (Multiply and Accumulate) 288
MAC (Square and Accumulate)................................ 290
MAX (Accumulator Force Maximum

Data Range Limit)... 292
MAX.V (Accumulator Force Maximum Data Range

Limit with Limit Excess Result) 293
MIN (Accumulator Force Minimum

Data Range Limit)... 294
MIN.V (Accumulator Force Minimum Data Range

Limit with Limit Excess Result) 295
MINZ (Accumulator Force Minimum

Data Range Limit)... 296
MINZ.V (Accumulator Force Minimum Data Range

Limit with Limit Excess Result) 297
MOV (Move 16-Bit Literal to Wnd)............................ 304
MOV (Move f to Destination) 299
MOV (Move f to Wnd)... 301
MOV (Move Wns to f) ... 302
MOV (Move WREG to f) ... 300
MOV (Move Ws to Wd)... 307
MOV.B (Move 8-Bit Literal to Wnd) 303
MOV.D (Double-Word Move from

Source to Wnd)... 309
MOVPAG (Move Literal to Page Register) 311
MOVPAG (Move Wn to Page Register) 312
MOVSAC (Prefetch Operands and

Store Accumulator)... 313
MPY (Multiply Wm by Wn to Accumulator)............... 315
MPY (Square to Accumulator).................................. 317
MPY.N (Multiply -Wm by Wn to Accumulator).......... 319
MSC (Multiply and Subtract from Accumulator) 321
MUL (Integer Unsigned Multiply f and WREG)......... 323
MUL.SS (Integer 16x16-Bit Signed Multiply with

Accumulator Destination) 327
MUL.SS (Integer 16x16-Bit Signed Multiply) 325
MUL.SU (Integer 16x16-Bit Signed-Unsigned Multiply

with Accumulator Destination) 331
 2005-2018 Microchip Technology Inc. DS70000157G-page 515

16-Bit MCU and DSC Programmer’s Reference Manual
MUL.SU (Integer 16x16-Bit
Signed-Unsigned Multiply) 329

MUL.SU (Integer 16x16-Bit Signed-Unsigned Short
Literal Multiply with Accumulator Destination)...... 332

MUL.SU (Integer 16x16-Bit
Signed-Unsigned Short Literal Multiply)............ 328

MUL.US (Integer 16x16-Bit Unsigned-Signed Multiply
with Accumulator Destination) 335

MUL.US (Integer 16x16-Bit
Unsigned-Signed Multiply) 333

MUL.UU (Integer 16x16-Bit Unsigned Multiply
with Accumulator Destination) 339

MUL.UU (Integer 16x16-Bit Unsigned Multiply) 337
MUL.UU (Integer 16x16-Bit Unsigned Short Literal

Multiply with Accumulator Destination) 340
MUL.UU (Integer 16x16-Bit Unsigned

Short Literal Multiply) .. 336
MULW.SS (Integer 16x16-Bit Signed Multiply

with 16-Bit Result)... 341
MULW.SU (Integer 16x16-Bit Signed-Unsigned

Multiply with 16-Bit Result)................................ 343
MULW.SU (Integer 16x16-Bit Signed-Unsigned Short

Literal Multiply with 16-Bit Result)..................... 345
MULW.US (Integer 16x16-Bit Unsigned-Signed

Multiply with 16-Bit Result)................................ 346
MULW.UU (Integer 16x16-Bit Unsigned

Multiply with 16-Bit Result)................................ 348
MULW.UU (Integer 16x16-Bit Unsigned Short Literal

Multiply with 16-Bit Result)................................ 349
NEG (Negate Accumulator) 353
NEG (Negate f) ... 350
NEG (Negate Ws) ... 351
NOP (No Operation) ... 354
NOPR (No Operation) ... 355
NORM (Normalize Accumulator) 356
POP (Pop TOS to f) .. 357
POP (Pop TOS to Wd).. 358
POP.D (Double Pop TOS to Wnd/Wnd+1) 359
POP.S (Pop Shadow Registers) 360
PUSH (Push f to TOS) .. 361
PUSH (Push Ws to TOS).. 362
PUSH.D (Double Push Wns/Wns+1 to TOS)............ 364
PUSH.S (Push Shadow Registers) 365
PWRSAV (Enter Power-Saving Mode) 366
RCALL (Computed Relative Call) 371, 373
RCALL (Relative Call) 367, 369
REPEAT (Repeat Next Instruction

‘lit14+1’ Times).. 375
REPEAT (Repeat Next Instruction

‘lit15+1’ Times).. 376
REPEAT (Repeat Next Instruction

Wn+1 Times) .. 377, 378
RESET (Reset) ... 379
RETFIE (Return from Interrupt) 380, 381
RETLW (Return with Literal in Wn) 382, 384
RETURN (Return) ... 386, 387
RLC (Rotate Left f through Carry) 388
RLC (Rotate Left Ws through Carry)......................... 389
RLNC (Rotate Left f without Carry) 391
RLNC (Rotate Left Ws without Carry) 392
RRC (Rotate Right f through Carry) 394
RRC (Rotate Right Ws through Carry)...................... 396
RRNC (Rotate Right f without Carry) 398
RRNC (Rotate Right Ws without Carry) 399
SAC (Store Accumulator).. 401
SAC.D (Store Accumulator Double).......................... 403
SAC.R (Store Rounded Accumulator) 404

SE (Sign-Extend Ws).. 406
SETM (Set f or WREG)... 408
SETM (Set Ws)... 409
SFTAC (Arithmetic Shift Accumulator by Slit6)......... 410
SFTAC (Arithmetic Shift Accumulator by Wb) 411
SL (Shift Left by Short Literal)................................... 416
SL (Shift Left by Wns)... 417
SL (Shift Left f).. 412
SL (Shift Left Ws).. 414
SUB (Subtract Accumulators)................................... 423
SUB (Subtract Literal from Wn) 419
SUB (Subtract Short Literal from Wb)....................... 420
SUB (Subtract WREG from f) 418
SUB (Subtract Ws from Wb)..................................... 421
SUBB (Subtract Short Literal from Wb

with Borrow).. 426
SUBB (Subtract Wn from Literal with Borrow) 425
SUBB (Subtract WREG and Carry Bit from f)........... 424
SUBB (Subtract Ws from Wb with Borrow)............... 428
SUBBR (Subtract f from WREG with Borrow) 430
SUBBR (Subtract Wb from Short Literal

with Borrow).. 431
SUBBR (Subtract Wb from Ws with Borrow) 433
SUBR (Subtract f from WREG)................................. 435
SUBR (Subtract Wb from Short Literal) 436
SUBR (Subtract Wb from Ws) 437
SWAP (Byte or Nibble Swap Wn)............................. 439
TBLRDH (Table Read High) 440
TBLRDL (Table Read Low) 442
TBLWTH (Table Write High)..................................... 444
TBLWTL (Table Write Low) 446
ULNK (Deallocate Stack Frame) 448, 449
VFSLV (Verify Slave Processor Program RAM)....... 450
XOR (Exclusive OR f and WREG)............................ 451
XOR (Exclusive OR Literal and Wn)......................... 452
XOR (Exclusive OR Wb and Short Literal) 453
XOR (Exclusive OR Wb and Ws) 454
ZE (Zero-Extend Ws).. 456

Instruction Encoding ... 499
Instruction Encoding Field Descriptors Introduction 96
Instruction Set Overview... 40

Bit Instructions .. 47
Compare/Skip and Compare/Branch Instructions 48
Control Instructions... 51
DSP Instructions ... 52
Instruction Groups .. 40
Logic Instructions.. 45
Math Instructions .. 43
Move Instructions.. 42
Program Flow Instructions .. 49
Rotate/Shift Instructions.. 46
Shadow/Stack/Context Instructions 51

Instruction Set Summary Table .. 501
Instruction Set Symbols .. 8

(text) ... 8
[text] .. 8
{ } .. 8
{label:}... 8
#text .. 8
<n:m> ... 8
Acc.. 8
AWB ... 8
bit4 .. 8
Expr .. 8
f... 8
lit1 ... 8
lit10 ... 8
DS70000157G-page 516  2005-2018 Microchip Technology Inc.

In
d

ex
Index
lit14 ... 8
lit16 ... 8
lit23 ... 8
lit4 ... 8
lit5 ... 8
lit8 ... 8
Slit10 ... 8
Slit16 ... 8
Slit4 ... 8
Slit6 ... 8
TOS... 8
Wb... 8
Wd... 8
Wdb... 8
Wm * Wm.. 8
Wm * Wn... 8
Wm, Wn .. 8
Wn... 8
Wnd... 8
Wns... 8
WREG... 8
Ws... 8
Wsb... 8
Wx... 8
Wxd... 8
Wy... 8
Wyd... 8

Instruction Stalls.. 64
DO/REPEAT Loops .. 65
Exceptions .. 65
Instructions that Change Program Flow...................... 65
PSV... 65
RAW Dependency Detection 64

Instruction Symbols... 96
Integer and Fractional Data .. 83

Representation.. 84

M

MAC
Operations .. 87
Prefetch Register Updates.. 87
Prefetches... 87
Syntax ... 88
Write-Back .. 87

MAC Accumulator Write-Back Selection........................... 100
MAC or MPY Source Operands

(Different Working Register) 99
MAC or MPY Source Operands

(Same Working Register).. 99
Manual Objective .. 6
Modulo and Bit-Reversed Addressing Modes..................... 59
MOVPAG Destination Selection 100
Multicycle Instructions ... 41
Multiword Instructions ... 41

N

Normalizing the Accumulator with the
FBCL Instruction ... 93

Normalizing the Accumulator with the
NORM Instruction ... 93

O

Offset Addressing Modes for Wd Destination Register
(with Register Offset) .. 98

Offset Addressing Modes for Ws Source Register
(with Register Offset) .. 98

P

PIC Microcontroller Compatibility.. 81
PRODH

PRODL Register Pair ... 81
Program Addressing Modes ... 63

Methods of Modifying Flow... 63
Program Counter (PC).. 21
Programmer’s Model .. 14

Register Descriptions ... 19
PSVPAG Register... 21

R

RCOUNT Register .. 21
Register Direct Addressing ... 55
Register Indirect Addressing... 56

and the Instruction Set.. 59
Modes... 56

Registers
CORCON (Core Control - dsPIC30F, dsPIC33F)....... 34
CORCON (Core Control - dsPIC33E, dsPIC33C) 36
CORCON (Core Control - PIC24E) 33
CORCON (Core Control - PIC24F, PIC24H).............. 32
SR (CPU STATUS - dsPIC30F, dsPIC33F) 28
SR (CPU STATUS - dsPIC33E, dsPIC33C)............... 30
SR (CPU STATUS - PIC24H, PIC24F, PIC24E) 27

Revision History.. 511

S

Scaling Data with the FBCL Instruction 90
Scaling Examples ... 91

Shadow Registers... 25
Automatic Usage .. 25

Software Stack Frame Pointer...................................... 20, 74
Example.. 75
Overflow ... 76
Underflow ... 77

Software Stack Pointer ... 72
Example.. 73

Software Stack Pointer (SSP)... 20
Stack Frame Active (SFA) Control...................................... 77
Stack Pointer Limit Register (SPLIM) 20
STATUS Register ... 22

DO Loop Active (DA) Status Bit.................................. 23
DSP ALU Status Bits .. 23
Interrupt Priority Level Bits ... 24
MCU ALU Status Bits ... 22
REPEAT Loop Active (RA) Status Bit......................... 23

Style and Symbol Conventions... 7
Document Conventions .. 7

T

TBLPAG Register ... 21
to Wnd) ... 305

U

Using 10-Bit Literal Operands... 71
10-Bit Literal Coding ... 71
 2005-2018 Microchip Technology Inc. DS70000157G-page 517

16-Bit MCU and DSC Programmer’s Reference Manual
W

Instruction Descriptions
MOV (Move Wns to... 306

Word Move Operations ... 68
Data Alignment in Memory.. 68

Working Register Array ... 19
Instruction Descriptions

MOV (Move... 305

X

X Data Space Prefetch Operation 98

Y

Y Data Space Prefetch Destination 99
Y Data Space Prefetch Operation 99

Z

Z Status Bit ... 79
DS70000157G-page 518  2005-2018 Microchip Technology Inc.

In
d

ex
Index
NOTES:
 2005-2018 Microchip Technology Inc. DS70000157G-page 519

DS70000157G-page 520  2005-2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://www.microchip.com

	Table of Contents
	Section 1. Introduction
	Highlights
	1.1 Introduction
	1.2 Manual Objective
	1.3 Development Support
	1.4 Style and Symbol Conventions
	Table 1-1: Document Conventions

	1.5 Instruction Set Symbols
	Table 1-2: Symbols Used in Instruction Summary Tables and Descriptions

	Section 2. Programmer’s Model
	Highlights
	2.1 16-Bit MCU and DSC Core Architecture Overview
	2.1.1 Features Specific to 16-Bit MCU and DSC Core
	2.1.1.1 Registers
	2.1.1.2 Instruction Set
	2.1.1.3 Data Space Addressing
	2.1.1.4 Addressing Modes
	2.1.1.5 Arithmetic and Logic Unit
	2.1.1.6 Exception Processing

	2.1.2 PIC24E, dsPIC33E and dsPIC33C Features
	2.1.2.1 Data Space Addressing
	2.1.2.2 Automatic Mixed-Sign Multiplication Mode (dsPIC33E and dsPIC33c Only)
	2.1.2.3 MCU Multiplications with 16-Bit Result
	2.1.2.4 Hardware Stack for DO Loops (dsPIC33E and dsPIC33C Only)
	2.1.2.5 DSP Context Switch Support (dsPIC33E and dsPIC33C Only)
	2.1.2.6 Extended CALL and GOTO Instructions (PIC24E, dsPIC33E and dsPIC33C Only)
	2.1.2.7 Compare/Branch Instructions (PIC24E, dsPIC33E and dsPIC33C Only)

	2.1.3 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Features
	2.1.3.1 Programming Loop Constructs
	2.1.3.2 DSP Instruction Class
	2.1.3.3 Data Space Addressing
	2.1.3.4 Modulo and Bit-Reversed Addressing
	2.1.3.5 DSP Engine
	2.1.3.6 Exception Processing

	2.2 Programmer’s Model
	Figure 2-1: PIC24F and PIC24H Programmer’s Model Diagram
	Figure 2-2: PIC24E Programmer’s Model Diagram
	Figure 2-3: dsPIC30F and dsPIC33F Programmer’s Model Diagram
	Figure 2-4: dsPIC33E Programmer’s Model Diagram
	Figure 2-5: dsPIC33C Programmer’s Model
	Table 2-1: Programmer’s Model Register Descriptions

	2.3 Working Register Array
	2.4 Default Working Register (WREG)
	2.5 Software Stack Frame Pointer
	2.6 Software Stack Pointer
	2.7 Stack Pointer Limit Register (SPLIM)
	2.8 Accumulator A and Accumulator B (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.9 Program Counter
	2.10 TBLPAG Register
	2.11 PSVPAG Register (PIC24F, PIC24H, dsPIC30F and dsPIC33F)
	2.12 RCOUNT Register
	2.13 DCOUNT Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.14 DOSTART Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.15 DOEND Register (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.16 STATUS Register
	2.16.1 MCU ALU Status Bits
	2.16.2 REPEAT Loop Active (RA) Status Bit
	2.16.3 DO Loop Active (DA) Status Bit (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.16.4 DSP ALU Status Bits (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	2.16.5 Interrupt Priority Level Status Bits

	2.17 Core Control Register
	2.17.1 dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Specific Bits
	2.17.1.1 PIC24E, dsPIC33E and dsPIC33C Specific Bits

	2.18 Shadow Registers
	Table 2-2: Automatic Shadow Register Usage

	2.19 DO Stack (dsPIC33E and dsPIC33C Devices)
	Figure 2-6: DO Stack Conceptual Diagram
	Register 2-1: SR: CPU STATUS Register (PIC24H, PIC24F and PIC24E Devices)
	Register 2-2: SR: CPU STATUS Register (dsPIC30F and dsPIC33F Devices)
	Register 2-3: SR: CPU STATUS Register (dsPIC33E and dsPIC33C Devices)
	Register 2-4: CORCON: Core Control Register (PIC24F and PIC24H Devices)
	Register 2-5: CORCON: Core Control Register (PIC24E Devices)
	Register 2-6: CORCON: Core Control Register (dsPIC30F and dsPIC33F Devices)
	Register 2-7: CORCON: Core Control Register (dsPIC33E and dsPIC33C Devices)

	Section 3. Instruction Set Overview
	Highlights
	3.1 Introduction
	3.2 Instruction Set Overview
	Table 3-1: Instruction Groups
	3.2.1 Multicycle Instructions
	3.2.2 Multiword Instructions

	3.3 Instruction Set Summary Tables
	Table 3-2: Move Instructions
	Table 3-3: Math Instructions
	Table 3-4: Logic Instructions
	Table 3-5: Rotate/Shift Instructions
	Table 3-6: Bit Instructions
	Table 3-7: Compare/Skip and Compare/Branch Instructions
	Table 3-8: Program Flow Instructions
	Table 3-9: Shadow/Stack/Context Instructions
	Table 3-10: Control Instructions
	Table 3-11: DSP Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)

	Section 4. Instruction Set Details
	Highlights
	4.1 Data Addressing Modes
	Table 4-1: 16-Bit MCU and DSC Addressing Modes
	4.1.1 File Register Addressing
	Example 4-1: File Register Addressing
	Example 4-2: File Register Addressing and WREG

	4.1.2 Register Direct Addressing
	Example 4-3: Register Direct Addressing

	4.1.3 Register Indirect Addressing
	Table 4-2: Indirect Addressing Modes
	Example 4-4: Indirect Addressing with Effective Address Update
	Example 4-5: Indirect Addressing with Register Offset
	Example 4-6: Move with Literal Offset Instructions
	4.1.3.1 Register Indirect Addressing and the Instruction Set
	4.1.3.2 DSP MAC Indirect Addressing Modes (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-3: DSP MAC Indirect Addressing Modes

	4.1.3.3 Modulo and Bit-Reversed Addressing Modes (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)

	4.1.4 Immediate Addressing
	Table 4-4: Immediate Operands in the Instruction Set
	Example 4-7: Immediate Addressing

	4.1.5 Data Addressing Mode Tree
	Figure 4-1: Data Addressing Mode Tree (PIC24F, PIC24H, PIC24E)
	Figure 4-2: Data Addressing Mode Tree (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)

	4.2 Program Addressing Modes
	Table 4-5: Methods of Modifying Program Flow

	4.3 Instruction Stalls
	4.3.1 RAW Dependency Detection
	Table 4-6: Raw Dependency Rules (Detection By Hardware)

	4.3.2 Instruction Stalls and Exceptions
	4.3.3 Instruction Stalls and Instructions that Change Program Flow
	4.3.4 Instruction Stalls and DO/REPEAT Loops
	4.3.5 Instruction Stalls and PSV

	4.4 Byte Operations
	Example 4-8: Sample Byte Move Operations
	Example 4-9: Sample Byte Math Operations

	4.5 Word Move Operations
	Figure 4-3: Data Alignment in Memory
	Example 4-10: Legal Word Move Operations
	Example 4-11: Illegal Word Move Operations

	4.6 Using 10-Bit Literal Operands
	Table 4-7: 10-Bit Literal Coding
	Example 4-12: Using 10-Bit Literals for Byte Operands

	4.7 Bit Field Insert/Extract Instructions (dsPIC33C Devices Only)
	4.7.1 BFEXT
	4.7.2 BFINS

	4.8 Software Stack Pointer and Frame Pointer
	4.8.1 Software Stack Pointer
	Figure 4-4: Stack Operation for CALL Instruction
	4.8.1.1 Stack Pointer Example
	Example 4-13: Stack Pointer Usage
	Figure 4-5: Stack Pointer Before the First PUSH
	Figure 4-6: Stack Pointer After “PUSH W0” Instruction
	Figure 4-7: Stack Pointer After “PUSH W1” Instruction
	Figure 4-8: Stack Pointer After “POP W3” Instruction

	4.8.2 Software Stack Frame Pointer
	4.8.2.1 Stack Frame Pointer Example
	Example 4-14: Frame Pointer Usage
	Figure 4-9: Stack at the Beginning of Example 4-14
	Figure 4-10: Stack After “CALL COMPUTE” Executes
	Figure 4-11: Stack After “LNK #4” Executes

	4.8.3 Stack Pointer Overflow
	4.8.4 Stack Pointer Underflow
	4.8.5 Stack Frame Active (SFA) Control (dsPIC33E, dsPIC33C and PIC24E Devices)

	4.9 Conditional Branch Instructions
	Table 4-8: Conditional Branch Instructions

	4.10 Z Status Bit
	Example 4-15: ‘Z’ Status Bit Operation for 32-Bit Addition

	4.11 Assigned Working Register Usage
	Table 4-9: Special Working Register Assignments
	4.11.1 Implied DSP Operands (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	4.11.2 Implied Frame and Stack Pointer
	4.11.3 PIC® Microcontroller Compatibility
	4.11.3.1 Default Working Register (WREG)
	Example 4-16: Using the Default Working Register, WREG

	4.11.3.2 PRODH:PRODL Register Pair
	Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

	4.11.3.3 Moving Data with WREG
	Example 4-18: Moving Data with WREG

	4.12 DSP Data Formats (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	4.12.1 Integer and Fractional Data
	Table 4-10: dsPIC30F/33F/33E/33CData Ranges

	4.12.2 Integer and Fractional Data Representation
	Figure 4-12: Different Representations of 0x4001
	Figure 4-13: Different Representations of 0xC002

	4.13 Accumulator Usage (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Figure 4-14: Accumulator Alignment and Usage

	4.14 Accumulator Access (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	4.15 DSP MAC Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-11: DSP MAC Instructions
	4.15.1 MAC Prefetches
	4.15.2 MAC Prefetch Register Updates
	4.15.3 MAC Operations
	4.15.4 MAC Write-Back
	4.15.5 MAC Syntax
	Example 4-19: Base MAC Syntax
	Example 4-20: MAC Prefetch Syntax
	Example 4-21: MAC Accumulator WB Syntax
	Example 4-22: MSC Instruction with Two Prefetches and Accumulator Write-Back

	4.16 DSP Accumulator Instructions (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-12: DSP Accumulator Instructions

	4.17 Scaling Data with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Table 4-13: Scaling Examples
	Example 4-23: Scaling with FBCL

	4.18 Data Range Limit Instructions (dsPIC33C Devices Only)
	4.18.1 FLIM/FLIM.V
	4.18.2 MAX/MAX.V
	4.18.3 MIN/MIN.V/MINZ

	4.19 Normalizing the Accumulator with the FBCL Instruction (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C Devices)
	Example 4-24: Normalizing with FBCL

	4.20 Normalizing the Accumulator with the NORM Instruction (dsPIC33C Devices Only)
	4.21 Extended Precision Arithmetic Using Mixed-Sign Multiplications (dsPIC33E and dsPIC33C Only)
	Example 4-25: 32-Bit Signed Multiplication Using Implicit Mixed-Sign Mode

	Section 5. Instruction Descriptions
	Highlights
	5.1 Instruction Symbols
	5.2 Instruction Encoding Field Descriptors Introduction
	Table 5-1: Instruction Encoding Field Descriptors
	Table 5-2: Addressing Modes for Ws Source Register
	Table 5-3: Addressing Modes for Wd Destination Register
	Table 5-4: Destination Addressing Modes for MCU Multiplications
	Table 5-5: Offset Addressing Modes for Ws Source Register (with Register Offset)
	Table 5-6: Offset Addressing Modes for Wd Destination Register (with Register Offset)
	Table 5-7: X Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-8: X Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-9: Y Data Space Prefetch Operation (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-10: Y Data Space Prefetch Destination (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-11: MAC or MPY Source Operands – Same Working Register (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-12: MAC or MPY Source Operands – Different Working Register (dsPIC30F, dsPIC33F, dsPIC33E, dsPIC33C)
	Table 5-13: MAC Accumulator Write-Back Selection (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C)
	Table 5-14: MOVPAG Destination Selection (dsPIC33E, dsPIC33C and PIC24E)
	Table 5-15: Accumulator Selection (dsPIC30F, dsPIC33F, dsPIC33E and dsPIC33C)

	5.3 Instruction Description Example
	5.4 Instruction Descriptions

	Section 6. Built-in Functions
	Highlights
	6.1 Introduction
	6.2 Built-in Function List
	Example 6-1: Additional In-Line Functions
	Example 6-2: Divide_32_by_16

	Section 7. Reference
	Highlights
	7.1 Instruction Bit Map
	Table 7-1: Instruction Encoding

	7.2 Instruction Set Summary Table
	Table 7-2: Instruction Set Summary Table

	7.3 Revision History
	Revision A (May 2005)
	Revision B (September 2005)
	Revision C (February 2008)
	Revision D (November 2009)
	Revision E (June 2010)
	Revision F (July 2011)
	Revision G (April 2018)

	INDEX
	Worldwide Sales and Service

