

Yet Another Firmware Based Soft USB Device

Zach Lee

wiki.geniekits.com & github.com/GenieKits

1 Yet Another Firmware Based Soft USB Device

Background

It was about 2006. I found a wondrous project on the Internet. It was called “PowerSwitch”, which provides 8 channels

of parallel output that intends to be switches. Now it is hosted at https://www.obdev.at/products/vusb/powerswitch.html.

These switches could be controlled through an USB host but the MCU (ATMEL 90S2313) doesn't have any USB peripheral.

Two GPIO pins are used to capture the signals of USB D+/D- and all signals are decoded by the firmware in realtime. Of

course, it is a low speed USB device.

The high speed of AT90S2313 is the key point of this project. The MCU runs at 12MIPS when it is driven by a 12MHz

crystal. Every eight instructions corresponds to one bit in the USB low speed (1.5Mbps) bit stream. The level of D+/D-

could be sampled accurately and decoded before the next bit coming. The firmware just does NRZI decoding and BIT

UNSTUFF because 12MIPS is not fast enough to do the CRC verification. When the bit stream is sent to the host, the

CRC16 code will be calculated and attached to the bit stream. A handshake NAK is sent to the host repeatedly until the

CRC16 code was ready.

It is a really smart design. There is an application note (AVR309) published by ATMEL Co. in which the technique

details are written down. The kernel of this project is coded with assembly language. Unfortunately, I couldn't analyze the

complete code of PowerSwitch because I wasn't an expert to AT90xx chips at that time. So far PowerSwitch has been

evolved into an independent project which is called "V-USB" and hosted at https://www.obdev.at/products/vusb/index.html.

It has been ported to "ATMEGA" chips and there are some practical product derived from this project, for example,

USBAsp. However, it has not been implemented on other chips except ATMEL's.
①

Years ago I designed a few USB devices. Because the chips I used have USB port, I have never concerned about the

low level protocol of USB. In this project I am planning to implement a new firmware based SOFT USB device which is

similar as "V-USB". It will bring me better comprehension to the low level protocol of USB. I chose PIC24F/dsPIC33 series

chip which is produced by Microchip and coded with C and Assembly language. If you are not an expert to Microchip's

MCU, this project might bring great confusion to you. In another words, this project will bring you a great chance to study

Microchip’s MCU in depth.

①

 Recently I found a similar project which is based on STM32F030. It is hosted at https://github.com/ads830e/stm32f030-vusb.

2 Yet Another Firmware Based Soft USB Device

The Circuit

The major controller IC1 is dsPIC33FJ12MC201. This chip provides

maximum running speed. I use an 8MHz crystal and generate

running at 15MIPS. Every 10 machine cycles corresponds to one bit in the USB low speed (1.5Mbps) bit

pins (RA0/RA1) of GPIO-A to capture the level of USB

triggered by RA0 or RA1 directly, we don't have to use the INT0 pin. We MUST connect USB D+/D

one GPIO group. It's not allowed to connect D+ to RAx and D

connected to 3.3v directly. I use RB4 to control this pull

data through USB port to control this LED. MCLR/PGC1/PGD1 are used as an IC

PICKit3, to program the chip through it. RB7 is connected to the PIN6 of IC

debugging messages when we need to. The PIN6 of IC

as the LVP signal of PICKit3. Because I

know if this connection (RB7 to PIN6 of IC

There is a NPN transistor T1 which is used

experimental board it is replaced by an AMS1117

you try to connect a red LED at VBUS in serie

reducing the +5V to 3.2V. The resistor R4 could be replaced by a solder

bridge. If you want to use PIC24F16KA101 to instead dsPIC33FJ12MC201,

you can just omit R4 and C3 and replace X1 with a 30MH

Fuse definitions are not included in the source code. You have to set

"FCKSM1/POSCMD1/FWDTEN/JTAGEN" into "Programmed (0)". All

other fuses are "Unprogrammed (1)". If you use PIC24F16KA101 to instead of

dsPIC33, another four bits "FNOSC2/FNOSC0/

be set to "Programmed (0)".

Yet Another Firmware Based Soft USB Device

is dsPIC33FJ12MC201. This chip provides small SSOP package

MHz crystal and generate 30MHz (Fpllout = 30MHz) clock

. Every 10 machine cycles corresponds to one bit in the USB low speed (1.5Mbps) bit

A to capture the level of USB D+/D-. Because the "Change Notification" interrupt can be

, we don't have to use the INT0 pin. We MUST connect USB D+/D

one GPIO group. It's not allowed to connect D+ to RAx and D- to RBx. The pull-up res

connected to 3.3v directly. I use RB4 to control this pull-up resistor. There is a LED connected to RB15.

data through USB port to control this LED. MCLR/PGC1/PGD1 are used as an ICSP port. We can use some burner,

. RB7 is connected to the PIN6 of ICSP connector

debugging messages when we need to. The PIN6 of ICSP port has been used

as the LVP signal of PICKit3. Because I have never used PICKit3, I don't

know if this connection (RB7 to PIN6 of ICSP) will make PICKit3 fail or not.

which is used as a 3.3V power regulator. On my

AMS1117-33. I think it will work if

nnect a red LED at VBUS in series instead of transistor T1,

R4 could be replaced by a solder

bridge. If you want to use PIC24F16KA101 to instead dsPIC33FJ12MC201,

omit R4 and C3 and replace X1 with a 30MHz crystal.

Fuse definitions are not included in the source code. You have to set

"FCKSM1/POSCMD1/FWDTEN/JTAGEN" into "Programmed (0)". All

If you use PIC24F16KA101 to instead of

"FNOSC2/FNOSC0/POSCMD0/FWDTEN" need to

SSOP package with 20 pins and 40MIPS

clock via PLL, driving the CPU

. Every 10 machine cycles corresponds to one bit in the USB low speed (1.5Mbps) bit stream. I use two

. Because the "Change Notification" interrupt can be

, we don't have to use the INT0 pin. We MUST connect USB D+/D- to two pins within

up resistor R7 on USB D- is NOT

up resistor. There is a LED connected to RB15. I will send some

P port. We can use some burner, such as

P connector J2. It is used to send some

3 Yet Another Firmware Based Soft USB Device

Coding Environment

This project is implemented and tested on WINDOWS platform. I use the XC16 compiler suit version 1.25 which is

developed by Microchip. Unless the compiler I don't use any integrated development environment (MPLAB IDE) and

debug probe (ICD4 or PICKit). I haven’t bought any commercial license as well. Without commercial license the GCC

compiler only supports -O1 level optimization. It's enough for this project. You can check out this hyperlink listed below to

download XC16 compiler suit. It will work if you want to try another version higher than 1.25.

https://www.microchip.com/development-tools/pic-and-dspic-downloads-archive

I use a BAT file (usb.bat) to compile the source codes:

As you can see I pass a parameter to the linker, -Wl,--defsym,__has_user_init=1, then the function named

"__user_init" in the source file "sie.s" will be invoked by the C startup code. In the installation directory of XC16 you can

find a source-code cab which is named "libpic30.zip". In this cab there is a source file named "crt0_standard.s" to be

controlled by the symbol "__has_user_init".

The program running on the host for testing are coded and compiled with Microsoft Visual Studio 2008. I use a

self-made firmware burner to instead of PICKit3 or other debug probe. I'll create some documents for it in the future.

xc16-gcc -mcpu=33FJ12MC201 -O1 main.c hid.c usb.c sie.s dbg.s -o main.elf -T p33FJ12MC201.gld

-Wl,--defsym,__has_user_init=1,-Map=main.map

xc16-bin2hex main.elf

xc16-objdump -D main.elf >main.txt

pause

4 Yet Another Firmware Based Soft USB Device

Structure of the source

There are five source files in this project.

debugging, sending some messages through the UART port or showing states through the LED. It

module in this project. Others are C source files. "usb.c" is used to h

such as "GET DESCRIPTOR", etc. "hid.c" is used to handle requests (SET/GET REPORT) of HID specification.

Initialization code and main task loop are included in "main.c". The "main entry" of C language is d

only are two functions in "main.c", setup() and loop(), just like

"sie.s" is the kernel code of this project. The "Change Notification" interrupt service routine and USB low level

protocol processing code are inside this file. There are

functions are defined in this module for "usb.c". It

accessing the global variables.

Yet Another Firmware Based Soft USB Device

Structure of the source files

There are five source files in this project. Two of them are assembly source codes (sie.s/dbg.s). "dbg.s" is used for

through the UART port or showing states through the LED. It

module in this project. Others are C source files. "usb.c" is used to handle some standard requests of USB specification,

such as "GET DESCRIPTOR", etc. "hid.c" is used to handle requests (SET/GET REPORT) of HID specification.

Initialization code and main task loop are included in "main.c". The "main entry" of C language is d

only are two functions in "main.c", setup() and loop(), just like the source code style of "arduino".

"sie.s" is the kernel code of this project. The "Change Notification" interrupt service routine and USB low level

sing code are inside this file. There are also some global variables and buffers in this file. A group of API

for "usb.c". It is recommended and easy to invoke these API functions instead of

Two of them are assembly source codes (sie.s/dbg.s). "dbg.s" is used for

through the UART port or showing states through the LED. It is NOT a necessary

andle some standard requests of USB specification,

such as "GET DESCRIPTOR", etc. "hid.c" is used to handle requests (SET/GET REPORT) of HID specification.

Initialization code and main task loop are included in "main.c". The "main entry" of C language is defined in "sie.s". There

source code style of "arduino".

"sie.s" is the kernel code of this project. The "Change Notification" interrupt service routine and USB low level

some global variables and buffers in this file. A group of API

easy to invoke these API functions instead of

5 Yet Another Firmware Based Soft USB Device

Details of source codes

References and online resource

DS52106A : MPLAB_XC16_Asm_Link_Users_Guide.pdf

DS50002071E : MPLAB_XC16_C_Compiler_Users_Guide.pdf

These two docs are included in XC16 compiler suit. You can find them in the installation directory.

DS70265E : dsPIC33FJ12MC201/202 Data Sheet

http://ww1.microchip.com/downloads/en/devicedoc/70265e.pdf

DS39927C : PIC24F16KA101/102 Data Sheet

http://ww1.microchip.com/downloads/en/DeviceDoc/39927c.pdf

DS70193C : dsPIC33F/PIC24H Family Reference Manual Section 10 – I/O Ports

http://ww1.microchip.com/downloads/en/devicedoc/70193c.pdf

DS70000157G : 16-bit MCU and DSC Programmer’s Reference Manual

http://ww1.microchip.com/downloads/en/DeviceDoc/70000157g.pdf

USB2.0 Specification : usb_20_20190524.zip

https://usb.org/document-library/usb-20-specification

Device Class Definition for HID1.11 : hid1_11.pdf

https://usb.org/document-library/device-class-definition-hid-111

HID Usage Tables 1.12 : hut1_12v2.pdf

https://usb.org/document-library/hid-usage-tables-112

A Fast Compact CRC5 Checker for Microcontrollers : crc5check.pdf

https://www.michael-joost.de/crc5check.pdf

Cyclic Redundancy Checks in USB : crcdes.pdf

https://usb.org/document-library/cyclic-redundancy-checks-usb

https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/hidsdi/

You can download all these files from my website if you can not find them on the official website of Microchip and

USB organization. Some files in the package have been translated into Chinese.

http://wiki.geniekits.com/lib/exe/fetch.php?media=downloads:ya-vusb-refs.zip

The USB Vendor ID I used belongs to my former employer, FEITIAN Technologies Co., Ltd., https://www.ftsafe.com,

and I picked a random PID for this project. If you need a dedicated Vendor ID, you can check out the official website of

USB organization, https://usb.org/developers, for more information about specific VID applying.

All source codes written by me are distributed under the MIT license. Any other references included in the package are

published on the Internet and copyright by the original authors. The only purpose I put these references on my website for

download is for convenience.

6 Yet Another Firmware Based Soft USB Device

Details of the source codes

- Power supply of USB: VBUS=4.75V - 5.25V

- High level output of D+/D-: VOH=2.8V - 3.6V

- High level input of D+/D-: VIH=2.0V (minimum)

- Low level output of D+/D-: VOL=0.0V - 0.3V

- Low level input of D+/D-: VIL=0.8V (maximum)

All above is listed on page 178, section 7.3.2 of USB2.0 Specification. Comparing with TABLE24-9 and TABLE24-10

on page 229 and page 232 of DS70265E, we know that we can connect USB D+/D- to GPIO pins of dsPIC33 chip directly

and read or generate signals of USB.

- Single End 1 (SE1) of D+/D-: D+ and D- > 0.8V (RA1-RA0 = 11b)

- Single End 0 (SE0) of D+/D-: D+ and D- < 0.3V (RA1-RA0 = 00b)

- Differential 1 (DF1) of D+/D-: D+ > 2.8V and D- < 0.3V (RA1-RA0 = 01b)

- Differential 0 (DF0) of D+/D-: D+ < 0.3V and D- > 2.8V (RA1-RA0 = 10b)

All above is listed on page 144, section 7.1.7 of USB2.0 Specification. I use RA0 to connect D+ and RA1 to connect

D-. The binary value in the parentheses is the signal read or output through GPIO A. For a low speed device, differential 0

(DF0) corresponds the J-state as well as the IDLE of D+/D-, and differential 1 (DF1) corresponds the K-state.

According to the section 7.1.5.1 on page 141 of USB2.0 Specification, we can see the detailed circuit of the connection

between the HOST and USB device. The D+/D- of HOST or HUB port is pulled down by two 15K resistors. On the D- pin

of a low speed device, there is a 1.5K pull-up resistor called Rpu, which is connected to 3.3V power. Device insertion and

its speed could be detected by the HOST or HUB through this pull-up resistor.

When the device is plugged into the HOST port, the HOST or HUB will send a "BUS RESET" signal to the device. It

is a "SE0" lasted for 10mS at least. It is important to distinguish the signal "BUS RESET" from "Keep-alive". Please refer

to the section 7.1.7.5 on page 153 and section 11.8.4.1 on page 332 of USB2.0 Specification. Then the HOST will send a

"SETUP" request to the "ENDPOINT 0" of the device through the initial device address (0000000b). A new device address

will be assigned by the HOST after a couple of interactions between the HOST and DEVICE.

A completed data transmission is always split into three steps. First step, the HOST or HUB sends a "TOKEN" packet

to the device. The direction is from HOST to DEVICE. Second step, transmits the "DATA" packet from HOST to DEVICE

or reversely. Third step, the data receiver has to send a "HANDSHAKE" packet after the "DATA" packet. Each step is led

by a "PID" byte. For the "TOKEN" packet, the PIDs include "SETUP/OUT/IN". In these three PIDs, "SETUP" and "OUT"

indicates that the next "DATA" packet will be sent to the device. PID "IN" indicates that the device must send back a

"DATA" packet. The PIDs for "DATA" packet include "DATA0" and "DATA1". The PIDs for "HANDSHAKE" packet

include "ACK/NAK/STALL". The definition of PIDs is listed in Table8-1 on page 196 of USB2.0 Specification.

A "TOKEN" packet consists of three bytes, including one "PID" byte and two bytes of "device address/endpoint

number/CRC5 code". The initial device address is zero and will be replaced by a new address assigned by the host.

Endpoints are used to organize different transmission type. For now we only use the "ENDPOINT 0" to transmit data.

Please read the section 8.3.2 on page 197 of USB2.0 Specification to get more information about device address and

<1> Digests of Reference docs

7 Yet Another Firmware Based Soft USB Device

endpoint and I will write more about it. The definitions of "TOKEN" packet is listed in section 8.4.1 on page 199 of USB2.0

Specification.

A "DATA" packet has up to 11 bytes because we use 8 bytes valid data length at most. In these 11 bytes, a PID byte

and two bytes CRC16 verify code are combined with 8 bytes DATA. If the valid DATA length is shorter than 8 bytes, the

CRC16 code must follow the DATA bytes in rapid sequence, making a shorter bytes stream which is called "short packet".

The valid data length is allowed to be zero and the DATA packet just consists of a PID byte and two bytes of CRC16. This

type of packet is called "empty packet" or "zero length packet". Please read the section 8.4.4 on page 206 of USB2.0

Specification to get more information. The two PIDs, DATA0 and DATA1, are used alternatively. If the previous DATA

packet which is led by "DATA0" is received successfully, the next DATA packet will be led by "DATA1" and a new DATA

packet will be led by "DATA0" again.

There is only one PID byte in a "HANDSHAKE" packet. In my code only "ACK" and "NAK" are processed. The

device sends an "ACK" HANDSHAKE when it receives a "SETUP" or "OUT" TOKEN and the DATA packet attached to

the TOKEN, that means the TOKEN and DATA were received properly and the next transmission is allowed to continue. If

the device sends a "NAK" HANDSHAKE to the host, that means the TOKEN and DATA are not received successfully. The

host MUST resend TOKEN and DATA when it gets a "NAK". Please refer the section 8.4.5 on page 206 of USB2.0

Specification. There is an exception we have to notice that if the host sends a "SETUP" TOKEN and the "DATA" packet to

the device, the device MUST accept the TOKEN and DATA then responds an "ACK". It is NOT allowed to respond "NAK"

or "STALL" to a "SETUP" TOKEN. Please refer the section 8.4.6.4 on page 209 of USB2.0 Specification. When the host

sends an "IN" TOKEN to the device and the "DATA" packet of device is NOT ready, the device has to send "NAK" to the

host and the "IN" TOKEN will be sent repeatedly. When the "DATA" packet of device is ready, the device sends this

"DATA" then waits for an "ACK" or "NAK" response from the host. "ACK" response means the "DATA" packet has been

received successfully and next transmission is allowed. "NAK" response requests the device to resend the "DATA" packet.

The "PID" byte is NOT counted in the byte-stream that needs to be verified with CRC5 or CRC16 algorithm. Low

nibble of "PID" is defined in Table8-1 on page 196 of USB2.0 Specification and the high nibble is the "ones' complement"

of low nibble. For example, the PID "SETUP" is defined as "1011b" and the "ones' complement" is "0100b", then the

completed "PID" byte is "01001011b" (0x2D).

Every transmission of USB is generated by the host and responded by the device. Each step of transmission

(TOKEN/DATA/HANDSHAKE) is led by a "SYNC" byte and ended by an "EOP" (End Of Packet). The value of "SYNC"

byte is "10000000b" (0x80). The real bit-stream is "00000001b" because of "right justified". The coding format of USB

bit-stream is "NRZI". That means if the bit is 0, the state of D+/D- will be switched from J-state to K-state or vice versa. If

the bit is 1, the state of D+/D- MUST keep stable. Because the initial state of D+/D- is J-state, the bit-stream "00000001b"

will be coded as "KJKJKJKK". Please refer the section 7.1.8 on page 157 and section 7.1.10 on page 159 of USB2.0

Specification. The "EOP" consists of two "SE0" plus a "J-state". Please refer the Table7-2 on page 145 and Table7-10 on

page 183 of USB2.0 Specification.

If there are six continuous "1" in a "NRZI" bit-stream, a.k.a "KKKKKKK" or "JJJJJJJ", then a bit "0" MUST be

inserted into the bit-stream. That means the state of D+/D- MUST be switched. This rule is called "BIT-STUFF". This zero

bit which is inserted into the bit-stream is NOT a valid data bit and MUST be omitted by the receiver. Please refer the

section 7.1.9 on page 157 of USB2.0 Specification.

All data transmissions are organized into frames at 1mS interval. In my option, a completed transmission is NOT

allowed to span the boundary between frames. The "TOKEN" and "DATA" are never split into two frames. If the remaining

time in previous frame isn't enough for a completed transmission, it will be ignored and transmission will start in next frame.

Please refer to the section 7.1.12 on page 159 and section 5.3.3 on page 36 of USB2.0 Specification. We MUST notice that

8 Yet Another Firmware Based Soft USB Device

the "keep-alive" signal is always generated at the beginning of each frame. This signal consists of 2bit "SE0" and 1bit

"J-state". It's same as "EOP" signal. Please refer to the section 11.8.4.1 on page 144 and section 11.8.4.1 on page 332 of

USB2.0 Specification.

To the PIC24F/dsPIC33 chip, most of instructions executes within one machine cycle. Unconditional branch

instructions needs two machine cycles. Conditional branch instructions executes within two machine cycles when the

branch condition is fulfilled and one cycle when the condition is not fulfilled. In addition, the built-in interrupt controller

has five cycles latency and the instruction "RETFIE" needs three cycles. Please refer to the section 3.2.1 on page 39 and

section 4.3 on page 62 of DS70157F and the description of "Interrupt Controller" on page 3 of DS70265E.

The unit of time we use in this document is not only "S/mS/uS", but also "bit". For a low speed USB device, 1bit

transaction needs 1/1.5 microsecond (0.667 uS). That corresponds ten machine cycles of the CPU running at 15 MIPS.

In the schematic diagram we can see the pull-up resistor on D- is controlled by RB4 pin. The device insertion will be

detected by the host or hub when the firmware generates a high level through RB4. That means we can do some

complicated initialization in the firmware before it enable the pull-up resistor. In my source code file "sie.s", I output a high

level through RB4 in function "__user_init()". It can be moved into function "setup()" in source file "main.c". At any time

the firmware generates a low level or high-z through RB4, the host or hub will detected a "device removal" event. We don't

have to unplug the device physically. Please refer to the section 7.1.7.3 on page 149 of USB2.0 Specification.

If we connect the pull-up resistor to 3.3V directly, the source file "sie.s" doesn't need to be modified unless the RB4 pin

needs to be used for other purposes. I haven't tried to use "RAx" pin to control the pull-up resistor. Please check the source

code to confirm that all "RAx" pins except "RA0/RA1" are not modified accidentally by the firmware.

The first chip with USB function which I used is CY7C63001 produced by CYPRESS Co. This chip uses 5V power

supply and the pull-up resistor on D- pin is 7.5K connected to 5V directly. This 7.5K resistor and 15K pull-down resistor of

the host port bias D- pin at 3.3V. It meets the standard of USB specification.

In addition, in the function "__user_init()" I disabled analog input and open drain output on all pins. It is not necessary

so you can enable them if you need to.

When the device is inserted into the USB port of host or hub and detected, the host or hub will send a "BUS RESET"

signal to the device. Because the level of D- pin is pulled up to high by the 1.5K pull-up resistor when the device is in IDLE

state and driven to low during the "BUS RESET" period, I enable the "Change Notification (CN3)" interrupt at D- (RA1)

pin. Please refer to the section 10.4 on page 10-7 of DS70193C. If you need to enable other interrupts, you MUST set the

priority of CN interrupt to the highest.

It MUST be noticed that when a low speed device is detected, the host or hub will send "Keep-alive" signal

automatically to the device at the beginning of each data frame. The firmware MUST distinguish the "BUS RESET" from

"Keep-alive" in the CN interrupt service routine. If you enable CN2 interrupt at D+ (RA0) pin, the "BUS RESET" and

"Keep-alive" will be ignored automatically. The code complexity and interrupt frequency will be reduced.

The bit-stream generated by the host or hub after device insertion is demonstrated in figure01. After the "BUS RESET"

<2> Pull-up Resistor on D-

<3> Device Insertion

9 Yet Another Firmware Based Soft USB Device

signal, the first byte sent by the host or hub is "SYNC". Each level switching of D+/D

will trigger the CN interrupt. The firmware tries to capture the last three bit (JKK) of "SYNC" in the CN in

routine. When the bit "JKK" is captured successfully, the interrupt service routine will be continued to capture the whole bi

stream until the "EOP".

When the CN interrupt service routine is entered, the register W0

first instruction "push.s" then a "mov _PORTU, w0" instruction is executed to read the level of D+/D

been defined as "PORTA". Because the interrupt controller has 5 machine cycles

executed at the 6
th

 cycle and the level of D+/D

means it's a little bit late to read the level of D+/D

D+ and D- simultaneously is to identify that whether the state of D+/D

branch to the label "__SE0:" and distinguish the current "SE0" is a "BUS RESET" signal or

In order to capture the last three bits "JKK", the firmware uses a loop to make it sure that the current state is a

In figure02 we can see that if the CN interrupt is triggered at the rising edge of the

instruction "btss _PORTU, #DM" will be executed at the last cycle of this bit. That means it is difficult to capture this

"J-state" reliably. It is reasonable to consider that the CN interrupt should be triggered at the rising edge of previous

"K-state" (marked by a red x), then waiting for the

The codes for capturing the next "K-state

figure04 we can see the relation between the executing time of "btsc _PORTU, #DP" and the lat

four machine cycles.

<4> Capture the SYNC Byte

Yet Another Firmware Based Soft USB Device

signal, the first byte sent by the host or hub is "SYNC". Each level switching of D+/D- (the edges rendered with red color)

will trigger the CN interrupt. The firmware tries to capture the last three bit (JKK) of "SYNC" in the CN in

routine. When the bit "JKK" is captured successfully, the interrupt service routine will be continued to capture the whole bi

When the CN interrupt service routine is entered, the register W0-W3 will be pushed into the shadows register by the

first instruction "push.s" then a "mov _PORTU, w0" instruction is executed to read the level of D+/D

RTA". Because the interrupt controller has 5 machine cycles latency, the first instruction "push.s" is

cycle and the level of D+/D- is read at the 7
th

 cycle. One bit corresponds 10 machine cycles of CPU. That

e to read the level of D+/D- at the 7
th

 cycle but it's still reliable. The purpose of reading the level of

simultaneously is to identify that whether the state of D+/D- is a "SE0" or not. If it is a "SE0", the firmware will

_SE0:" and distinguish the current "SE0" is a "BUS RESET" signal or a

In order to capture the last three bits "JKK", the firmware uses a loop to make it sure that the current state is a

In figure02 we can see that if the CN interrupt is triggered at the rising edge of the "J-state" (marked by a black o), then the

instruction "btss _PORTU, #DM" will be executed at the last cycle of this bit. That means it is difficult to capture this

. It is reasonable to consider that the CN interrupt should be triggered at the rising edge of previous

(marked by a red x), then waiting for the "J-state" in a loop labeled with "__waitJ:".

state" are little bit odd. It is helpful to get a determinate lat

figure04 we can see the relation between the executing time of "btsc _PORTU, #DP" and the lat

(the edges rendered with red color)

will trigger the CN interrupt. The firmware tries to capture the last three bit (JKK) of "SYNC" in the CN interrupt service

routine. When the bit "JKK" is captured successfully, the interrupt service routine will be continued to capture the whole bit

W3 will be pushed into the shadows register by the

first instruction "push.s" then a "mov _PORTU, w0" instruction is executed to read the level of D+/D- pin. "_PORTU" has

, the first instruction "push.s" is

cycle. One bit corresponds 10 machine cycles of CPU. That

cycle but it's still reliable. The purpose of reading the level of

is a "SE0" or not. If it is a "SE0", the firmware will

a "Keep-alive".

In order to capture the last three bits "JKK", the firmware uses a loop to make it sure that the current state is a "J-state".

(marked by a black o), then the

instruction "btss _PORTU, #DM" will be executed at the last cycle of this bit. That means it is difficult to capture this

. It is reasonable to consider that the CN interrupt should be triggered at the rising edge of previous

are little bit odd. It is helpful to get a determinate latency. In figure03 and

figure04 we can see the relation between the executing time of "btsc _PORTU, #DP" and the latency. The latency is three or

10 Yet Another Firmware Based Soft USB Device

Figure03 shows that the instruction "btsc _PORTU, #DP" is executed at the

three cycles latency. Figure04 shows that the instruct

four cycles latency is generated.

When the last three bits "JKK" is captured successfully, the firmware

"SYNC" byte. Because the "SYNC" is a constant byte and the first five bits "KJKJK" has been missed,

into memory buffer directly. What I did is a little bit

then I wrote a piece of code with ten instructions to calculate the last bit of "SYNC", which

last two samples "KK" of "SYNC". The real value of

That means the "SYNC" byte in memory buffer is "0x7F"

the USB bus will be gathered into memory buffer as

work before calculating the last bit of "SYNC"

The figure06 shows the ten instructions which

determine whether the two samples of D+/D

Because it is opposite to the rules of "NRZI" coding, all bytes we received are

bit C of SR register then shifted into register w5 and memory buffer pointed by [w2]. Because I want to sample the current

bit at the 5
th

 cycle (the central point of each bit), the instruction "mov _PORTU, w1"

"rrc.b [w2], [w2++]".This piece of code calculates the last bit of current byte and sample the first bit of next byte. That's

why the second operand of instruction "rrc.b" is "[w2++]".

Yet Another Firmware Based Soft USB Device

he instruction "btsc _PORTU, #DP" is executed at the 1
st
 cycle of the first K

igure04 shows that the instruction "btsc _PORTU, #DP" is executed at the

When the last three bits "JKK" is captured successfully, the firmware will receive a complete

"SYNC" byte. Because the "SYNC" is a constant byte and the first five bits "KJKJK" has been missed,

buffer directly. What I did is a little bit different. The first byte in the memory buffer is initialized to "0xFF"

then I wrote a piece of code with ten instructions to calculate the last bit of "SYNC", which

real value of last bit of "SYNC" is "0" and right shifted into the first byte of buffer.

That means the "SYNC" byte in memory buffer is "0x7F". It is "ones' complement" code of "0x80". All bytes transmitted on

red into memory buffer as "ones' complement" code. The diagram figure05 shows the preparation

work before calculating the last bit of "SYNC" -- Writing a "K-state" into register w0 and w1 directly.

The figure06 shows the ten instructions which are used to calculate the last bit. A "XOR" operation is used to

determine whether the two samples of D+/D- are identical or not. If they are identical, the result of "XOR" will be zero.

Because it is opposite to the rules of "NRZI" coding, all bytes we received are "ones' complement

bit C of SR register then shifted into register w5 and memory buffer pointed by [w2]. Because I want to sample the current

cycle (the central point of each bit), the instruction "mov _PORTU, w1" is inserted between "btst.c w5

This piece of code calculates the last bit of current byte and sample the first bit of next byte. That's

of instruction "rrc.b" is "[w2++]".

cycle of the first K-state. It generates

on "btsc _PORTU, #DP" is executed at the 2
nd

 cycle of the K-state and

receive a completed bit stream including the

"SYNC" byte. Because the "SYNC" is a constant byte and the first five bits "KJKJK" has been missed, it should be written

. The first byte in the memory buffer is initialized to "0xFF"

then I wrote a piece of code with ten instructions to calculate the last bit of "SYNC", which equals "1" represented by the

and right shifted into the first byte of buffer.

code of "0x80". All bytes transmitted on

code. The diagram figure05 shows the preparation

state" into register w0 and w1 directly.

o calculate the last bit. A "XOR" operation is used to

are identical, the result of "XOR" will be zero.

ones' complement" code. This bit is sent to

bit C of SR register then shifted into register w5 and memory buffer pointed by [w2]. Because I want to sample the current

is inserted between "btst.c w5, #0" and

This piece of code calculates the last bit of current byte and sample the first bit of next byte. That's

11 Yet Another Firmware Based Soft USB Device

If a "stuff-bit" is detected at the ninth or tenth cycle (the low six bits of register w5 is 000000b), then the firmware will

branch to the label "__unstuff0:" and continue. The sample of the previous bit in register w0 will be discarded. The sample

of the current bit in register w1 will be moved into w0 and the firmware samples the next bit into register w1. We know the

first K-state of PID byte which is showed in figure07 is not a "stuff

whole bit stream so it will branch to "__unstuff0:" when a "stuff

Figure07 shows the details of bit-unstuff.

least bit of register w5. It could be simpli

"mov _PORTU, w1" could be executed at the

needs two cycles to be executed.

 In figure07 we can see that the first K

instruction "mov w1, w0" is executed. The current J

bar in figure07 has not been calculated.

The firmware tests the sample if it is a "SE0" or not after sampling the bit0 AND bit1 because the "USB HUB" has a

special feature which is called "EOP dribble". Please refer to the section 7.1.9.1 on page 157 of USB2.0 Specification. This

is a simple way to identify the ending of the bit stream but seems to be not reliable. The data transmission fails occasional

when the device is connected to a HUB. Please refer to the sec

procedure is a little bit different when the bit7 (last bit of a byte) is sampled. The instruction "bra z, __unstuff7" is executed

at the 8
th

 but not the 10
th

 cycle because I MUST put the instruction "bra __bit7" at the

<5> bit stuff processing

<6> The Last bit of a Byte and the EOP

Yet Another Firmware Based Soft USB Device

bit" is detected at the ninth or tenth cycle (the low six bits of register w5 is 000000b), then the firmware will

branch to the label "__unstuff0:" and continue. The sample of the previous bit in register w0 will be discarded. The sample

he current bit in register w1 will be moved into w0 and the firmware samples the next bit into register w1. We know the

state of PID byte which is showed in figure07 is not a "stuff-bit". However, this piece of code is used to receive the

stream so it will branch to "__unstuff0:" when a "stuff-bit" in the next bytes is captured.

unstuff. At the label "__unstuff0:", the first three instructions inserts a "1" into

simplified with two instructions -- a "bset w5, #0" and a "nop"

"mov _PORTU, w1" could be executed at the 5
th

 cycle (It is executed at the 6
th

 cycle now). The last instruction "bra __bit0"

ure07 we can see that the first K-state of PID is assumed to be a stuff bit and copi

The current J-state is sampled into register w1. The bit marked by a BLUE vertical

The firmware tests the sample if it is a "SE0" or not after sampling the bit0 AND bit1 because the "USB HUB" has a

which is called "EOP dribble". Please refer to the section 7.1.9.1 on page 157 of USB2.0 Specification. This

is a simple way to identify the ending of the bit stream but seems to be not reliable. The data transmission fails occasional

connected to a HUB. Please refer to the section "Known BUGs" at the end of this document. The

rent when the bit7 (last bit of a byte) is sampled. The instruction "bra z, __unstuff7" is executed

le because I MUST put the instruction "bra __bit7" at the 9
th

 and

<6> The Last bit of a Byte and the EOP

bit" is detected at the ninth or tenth cycle (the low six bits of register w5 is 000000b), then the firmware will

branch to the label "__unstuff0:" and continue. The sample of the previous bit in register w0 will be discarded. The sample

he current bit in register w1 will be moved into w0 and the firmware samples the next bit into register w1. We know the

bit". However, this piece of code is used to receive the

bit" in the next bytes is captured.

At the label "__unstuff0:", the first three instructions inserts a "1" into the

a "bset w5, #0" and a "nop" -- then the instruction

cycle now). The last instruction "bra __bit0"

copied into register w0 when the

w1. The bit marked by a BLUE vertical

The firmware tests the sample if it is a "SE0" or not after sampling the bit0 AND bit1 because the "USB HUB" has a

which is called "EOP dribble". Please refer to the section 7.1.9.1 on page 157 of USB2.0 Specification. This

is a simple way to identify the ending of the bit stream but seems to be not reliable. The data transmission fails occasionally

ion "Known BUGs" at the end of this document. The

rent when the bit7 (last bit of a byte) is sampled. The instruction "bra z, __unstuff7" is executed

and 10
th

 cycle. There MUST be a

12 Yet Another Firmware Based Soft USB Device

LOOP to receive the whole bit stream. That makes the codes at the label "__unstuff7:" diff

use the "DO loop" feature of dsPIC33 because it

demonstrate this piece of code. You can read the nine instructions below the label "_bit6:" in the source file "sie.s".

The firmware uses a "Branch Table" to process eac

Table" is helpful to get a consistent latency. The figure08 shows that piece of code with "__BranchTable0:".

 The instruction "mov _packet, w1" fetches the head

bytes in the buffer are "ones' complement", the instruction "com.b [++w1], w0" fetches and negates all bits of the PID byte.

There are three steps to process token "SETUP".

maintained by the firmware. If the device address in token is matched with the address stored in variable "_addr:", the

firmware will set the bit13 of "__ucontr0:". That means the data attached to this "SETUP"

device address is not matched, the firmware will exit CN interrupt

received after interrupt exiting MUST be stored into

transmissions to all downstream ports, the firmware MUST ensure that all data packets without correct device address are

stored into the buffer "_token:" and won't destroy

reassigned to the variable "_packet:" (the current buffer pointer). All eight bytes data packet attached on the token "SETUP"

MUST be sent with a PID "DATA0" and stored into "_datax:". Third, initializ

"0x00". That means a valid "Control Transmission" is starting now. At the same time, the bit12 of variable "__ucontr0:" is

cleared to indicate that the data attachment

figure09 shows how the firmware handles a token "SETUP".

There are two steps to process a token "OUT". First, compar

"SETUP". Second, according to the bit3 of variable "__uendpt0" the firmware determines which memory buffer

<7> Token SETUP and OUT Processing

Yet Another Firmware Based Soft USB Device

LOOP to receive the whole bit stream. That makes the codes at the label "__unstuff7:" different from others. I d

because it is impossible to be ported to PIC24F series chip

this piece of code. You can read the nine instructions below the label "_bit6:" in the source file "sie.s".

The firmware uses a "Branch Table" to process each PID when the first "SE0" of "EOP" is captured. The "Branch

ncy. The figure08 shows that piece of code with "__BranchTable0:".

The instruction "mov _packet, w1" fetches the head address of the current memory buffer into register w1. Because all

", the instruction "com.b [++w1], w0" fetches and negates all bits of the PID byte.

There are three steps to process token "SETUP". First, compare the device address in token with the address

maintained by the firmware. If the device address in token is matched with the address stored in variable "_addr:", the

firmware will set the bit13 of "__ucontr0:". That means the data attached to this "SETUP" is allowed to be received. If the

device address is not matched, the firmware will exit CN interrupt service routine directly and ensure that all data packet

received after interrupt exiting MUST be stored into the buffer "_token:". Because USB HUB will br

, the firmware MUST ensure that all data packets without correct device address are

"_token:" and won't destroy the buffer "_datax:" and "_datay:". Second,

signed to the variable "_packet:" (the current buffer pointer). All eight bytes data packet attached on the token "SETUP"

"DATA0" and stored into "_datax:". Third, initialize the low byte of variable "__uendpt0:" with

eans a valid "Control Transmission" is starting now. At the same time, the bit12 of variable "__ucontr0:" is

cleared to indicate that the data attachment of the next token "IN" or "OUT" will be transmitted with

are handles a token "SETUP".

There are two steps to process a token "OUT". First, compare the device address just like processing the token

"SETUP". Second, according to the bit3 of variable "__uendpt0" the firmware determines which memory buffer

<7> Token SETUP and OUT Processing

rent from others. I don't like to

e ported to PIC24F series chip. I don’t make a figure to

this piece of code. You can read the nine instructions below the label "_bit6:" in the source file "sie.s".

h PID when the first "SE0" of "EOP" is captured. The "Branch

ncy. The figure08 shows that piece of code with "__BranchTable0:".

buffer into register w1. Because all

", the instruction "com.b [++w1], w0" fetches and negates all bits of the PID byte.

the device address in token with the address

maintained by the firmware. If the device address in token is matched with the address stored in variable "_addr:", the

is allowed to be received. If the

routine directly and ensure that all data packet

buffer "_token:". Because USB HUB will broadcast all

, the firmware MUST ensure that all data packets without correct device address are

buffer "_datax:" and "_datay:". Second, the buffer "_datax:" is

signed to the variable "_packet:" (the current buffer pointer). All eight bytes data packet attached on the token "SETUP"

the low byte of variable "__uendpt0:" with

eans a valid "Control Transmission" is starting now. At the same time, the bit12 of variable "__ucontr0:" is

will be transmitted with PID "DATA1". The

the device address just like processing the token

"SETUP". Second, according to the bit3 of variable "__uendpt0" the firmware determines which memory buffer --

13 Yet Another Firmware Based Soft USB Device

"__datax:" or "__datay:" -- should be used to store the data attached on this

has been occupied if the "__uendpt0[3]" equals "0" and the firmware MUST use the buffer "__datay:". When the

"__uendpt0[3]" equals "1", the buffer "__datay:" has been

the firmware doesn't modify the "__uendpt0[7

correctly and an "ACK" is sent to the host.

The CN interrupt service routine will be exited directly when the token "SETUP" or "OUT" is processed. The firmware

doesn't receive the data attachment in the same interrupt context. It is

of buffer "_token:" has to be increased to 12 bytes in order to accommodate the longest transmission (SYNC

+ CRC16) broadcasted by the HUB. A bit variable "__ucontr0[13]" has to be used to associate the token and its data

attachment. (Note: The "__ucontr0[13]" will be set if the device address is matched.) Another way to simpli

waiting and capturing the data attachment directly when a token is processed. We can use the

6bit (KJKJKJ) of the next "SYNC" and a group of J

do the "CRC5" verification then branch back to the label "__waitK:" to continue to receive the data attachment. Please refer

to the section 7.1.18.1 on page 168 of USB2.0 S

"EOP" and the next "SYNC" byte.

The processing to a PID "DATA0" is diff

a "DATA0" might be attached to a token "OUT" or "SETUP". That means the firmware MUST distinguish these two

different types of transmission in order to give a correct report about the current token when the data packet is received.

This is another inconvenience splitting the "data" stage from the "token" stage.

<8> PID DATA0 and DATA1 Processing

Yet Another Firmware Based Soft USB Device

should be used to store the data attached on this "OUT". More specifically, the buffer "__datax:"

if the "__uendpt0[3]" equals "0" and the firmware MUST use the buffer "__datay:". When the

, the buffer "__datay:" has been occupied and the firmware MUST use the buffer "__datax:". Here

the firmware doesn't modify the "__uendpt0[7-0]". These bits are modified only when the data attachment is received

The CN interrupt service routine will be exited directly when the token "SETUP" or "OUT" is processed. The firmware

doesn't receive the data attachment in the same interrupt context. It is NOT a good design and wastes the memory. The size

en:" has to be increased to 12 bytes in order to accommodate the longest transmission (SYNC

CRC16) broadcasted by the HUB. A bit variable "__ucontr0[13]" has to be used to associate the token and its data

"__ucontr0[13]" will be set if the device address is matched.) Another way to simpli

waiting and capturing the data attachment directly when a token is processed. We can use the

and a group of J-state (6.5bit maximum) between "EOP" and

do the "CRC5" verification then branch back to the label "__waitK:" to continue to receive the data attachment. Please refer

to the section 7.1.18.1 on page 168 of USB2.0 Specification to get more information about the time interval between a

"DATA0" is different from PID "DATA1". A "DATA1" is only attached to a token "OUT"

"DATA0" might be attached to a token "OUT" or "SETUP". That means the firmware MUST distinguish these two

rent types of transmission in order to give a correct report about the current token when the data packet is received.

ience splitting the "data" stage from the "token" stage.

<8> PID DATA0 and DATA1 Processing

. More specifically, the buffer "__datax:"

if the "__uendpt0[3]" equals "0" and the firmware MUST use the buffer "__datay:". When the

and the firmware MUST use the buffer "__datax:". Here

0]". These bits are modified only when the data attachment is received

The CN interrupt service routine will be exited directly when the token "SETUP" or "OUT" is processed. The firmware

a good design and wastes the memory. The size

en:" has to be increased to 12 bytes in order to accommodate the longest transmission (SYNC + PID_8bytes

CRC16) broadcasted by the HUB. A bit variable "__ucontr0[13]" has to be used to associate the token and its data

"__ucontr0[13]" will be set if the device address is matched.) Another way to simplify the code is

waiting and capturing the data attachment directly when a token is processed. We can use the three bit of EOP and the first

state (6.5bit maximum) between "EOP" and the next "SYNC" to try to

do the "CRC5" verification then branch back to the label "__waitK:" to continue to receive the data attachment. Please refer

mation about the time interval between an

"DATA1". A "DATA1" is only attached to a token "OUT" but

"DATA0" might be attached to a token "OUT" or "SETUP". That means the firmware MUST distinguish these two

rent types of transmission in order to give a correct report about the current token when the data packet is received.

14 Yet Another Firmware Based Soft USB Device

In the figure11 we can see the difference between a "DATA0" and "DATA1". w4[1-0] will be set to "01" when a token

"SETUP" is processed successfully. w4[3-2] is "01" as well. That means an "ACK" has been sent to the host. If a token

"OUT" is received successfully, w4[1-0] will be set to "11" and w4[3-2] will be set to "ACK" or "NAK" according to the

indicator in the variable "__ucontro[3-2]".

It depends on the variable "__uendpt0[0]" to determine what type of token – "SETUP" or "OUT" – takes the current

DATA0 packet. The variable "__uendpt0[7-0]" is always cleared when a token "SETUP" is received. That’s why we use an

instruction "btss __uendpt0, #0" to do this judgment.

There are two important variables defined in the module "sie.s" – "__uendpt0" and "__ucontr0". The variable

"__uendpt0[1-0]" is used as a flag that indicates the type of the current token. When the host or hub sends a token "SETUP"

and its data attachment, the firmware will respond an "ACK" and set "__uendpt0[1-0]" to "01". The "__uendpt0[2]" is

simultaneously set to "1" to indicate that an "ACK" has been sent. Because the PID of data attached to a token "SETUP" is

always "DATA0", the "__uendpt0[3]" will be set to "0". "__uendpt0[7-4]" indicates the valid byte length of the data

attachment. It is usually set to "8".

When the host or hub sends a token "OUT" and its data attachment, the firmware will determine which buffer (__datax

or __datay) should be used for the data attachment according to "__uendpt0[3]". The variable "__uendpt0" won't be

modified at this time. When the data attachment is received, the firmware will send a handshake according to the value of

"__ucontr0[3-2]" and "__ucontr0[3-2]" is initialized to "10" at power on and "BUS RESET" period. The initial value "10"

means sending a "NAK" to the host. The value of "__uendpt0[7-0]" won't be modified when the firmware sends "NAK"

repeatedly.

If we are ready to handle the data attached to the token "OUT", we can set the "__ucontr0[3-2]" to "01". When the host

resend the token "OUT" and data attachment, the firmware will send an "ACK" to the host and set "__uendpt0[2-0]" to

"111". That means the token "OUT" and its data attachment has been received and an "ACK" has been sent successfully.

The "__uendpt0[3]" is used as a flag which indicates that the PID of data attached to the current token "OUT" is "DATA0"

or "DATA1". If it is a "DATA0", the "__uendpt0[3]" equals "0". The "__uendpt0[7-4]" indicates the byte length of data

attachment and is between 0 and 8. The "__ucontr0[3-2]" will be reset to "10" when an "ACK" is sent successfully. The

firmware will respond "NAK" until we set the "__ucontr0[3-2]" to "01" again.

When the host or hub sends a token "IN", the firmware will send a handshake specified by the variable

"__ucontr0[1-0]". It is initialized to "10" at power on and "BUS RESET" period. That means sending a "NAK" to the host.

The "__uendpt0" won't be modified when a "NAK" is sent repeatedly. If the data sent to the host is ready, we can set the

"__ucontr0[1-0]" to "01" then the data packet will be sent when the host sends a token "IN" again. The firmware will

determine which PID ("DATA0" or "DATA1") should be used according to "__ucontr0[12]". When "__ucontr0[12]" equals

"0", the "DATA1" will be used as the PID of current data packet. It is contrary to the "__uendpt0[3]". We must notice that

the firmware always sets the "__ucontr0[12]" to "0" when a token SETUP is received because the PID of the first data

packet attached to the token "OUT" or "IN" is always "DATA1". The host will send an "ACK" or "NAK" to the device

when the data packet is received. The firmware will toggle the "__ucontr0[12]" and reset "__ucontr0[1-0]" to "10" when an

"ACK" is received. If a "NAK" is received, the firmware will set the "__uccontr0[1-0]" to "01" and resend the buffered data

packet automatically.

The "Control Write" (SETUP+OUT+OUT+......+OUT+IN) transmission procedure depends on the token type

represented by "__uendpt0[1-0]". When a token "SETUP" is received, the firmware sets "__uendpt0[1-0]" to "00". The

<9> Details of variables __uendpt0 and __ucontr0

15 Yet Another Firmware Based Soft USB Device

firmware could determine the token type through the bit value of "__uendpt0[0]" when the data attachment is received. If

the "__uendpt0[0]" equals "0", the current token is a "SETUP". The firmware sends an "ACK" and set "__uendpt0[1

"01". When the first token "OUT" and its data attachment (

and set the "__uendpt0[1-0]" to "11". In another word, the "__uendpt0[1

is detected. That's why the firmware can dete

It is complex to maintain the value of "__uendpt0[10]" and

"__uendpt0[7-0]" will be cleared. Please refer to the code

"DATA0" or "DATA1" is received, the firmware will clear or set the "__uendpt0[

to the codes blow the label "__isData1:" and "__isData0:". When a

"__uendpt0[7-4,2-0] and keep "__uendpt0[3]" unchanged if the

the label "__Sending:". After sending the

the transmission status. Please refer to the code

The figure12 shows that how the firmware calculates the valid byte length of the data attachment sent by the host. The

codes is split into six pieces. When the data is received, the register w2 points to the tail of the whole data attachment

including SYNC/PID/CRC16. The memory buffer he

register w1 plus 1 (instruction: com.b [++w1], w0) that means the SYNC byte is discarded. The result of "w2

(instruction: sub w2, w1, w2) includes the

into stack (instruction: dec w2, [w15++]). This result will be pop

subtracted 2 bytes by the instruction "dec2 [

the valid byte length of current data attachment.

When the firmware sends data attached to a token "IN", the valid byte length (0 to 8 bytes) MUST be set into

"__ucontr0[7-4] first. The "__ucontr0[12]" is used to indicate the PID ("DATA0" or "DATA1") of current data attachment.

This bit is cleared when a token "SETUP" is received

"__ucontr0[15-13]" is for internal use. The "__ucontr0[

It is very similar as the procedure of "bit

The register w5 is used to track the "bit-

detected, the firmware branches to the label "__dostuff:" and continue. A zero is inserted into the bit0 of w5 then the level of

D+/D- is flipped. The instruction "bra w2" is used to return to the major routine. That is for reducing the code si

MUST write a correct address into register w2.

In the figure13 we can see that an instruction "xor _LATU" is used to generate the signals of D+/D

"_PORTU". Flipping or remaining the level of D+/D

<10> Data Sending and bit stuff

Yet Another Firmware Based Soft USB Device

mine the token type through the bit value of "__uendpt0[0]" when the data attachment is received. If

uals "0", the current token is a "SETUP". The firmware sends an "ACK" and set "__uendpt0[1

"01". When the first token "OUT" and its data attachment (marked by "DATA1") comes, the firmware will send an "ACK"

nother word, the "__uendpt0[1-0]" MUST be "00" or "11" when an

is detected. That's why the firmware can determine the token type by only the least bit of "__uendpt0[1

It is complex to maintain the value of "__uendpt0[10]" and "__uendpt0[7-0]". When a token "SETUP" is received, the

0]" will be cleared. Please refer to the codes blow the label "__isSetup:". If a data attachment marked by a

"DATA0" or "DATA1" is received, the firmware will clear or set the "__uendpt0[3]" if an "ACK" is responded. Please refer

blow the label "__isData1:" and "__isData0:". When a HANDSHAKE starts to be sent, the firmware will clear

0] and keep "__uendpt0[3]" unchanged if the HANDSHAKE is an "ACK". Please ref

the label "__Sending:". After sending the HANDSHAKE, the firmware will set the "__uendpt0[10,7

the transmission status. Please refer to the codes blow the label "__bytes:".

firmware calculates the valid byte length of the data attachment sent by the host. The

is split into six pieces. When the data is received, the register w2 points to the tail of the whole data attachment

including SYNC/PID/CRC16. The memory buffer head is fetched into register w1 (instruction: mov _packet, w1). Then

register w1 plus 1 (instruction: com.b [++w1], w0) that means the SYNC byte is discarded. The result of "w2

the PID and CRC16 only. The firmware subtracts the PID byte and push

into stack (instruction: dec w2, [w15++]). This result will be popped into register w2 when a HANDSHAKE

subtracted 2 bytes by the instruction "dec2 [--w15], w2" that means the CRC16 is discarded. Now the value of register w2 is

the valid byte length of current data attachment.

When the firmware sends data attached to a token "IN", the valid byte length (0 to 8 bytes) MUST be set into

he "__ucontr0[12]" is used to indicate the PID ("DATA0" or "DATA1") of current data attachment.

This bit is cleared when a token "SETUP" is received and toggled when a HANDSHAKE

13]" is for internal use. The "__ucontr0[11-8]" is not used now.

dure of "bit-unstuff" to do "bit-stuff" when the firmware sends a bit stream to the host.

-stuff condition" (six continuous "1") within the bit stream. If the c

to the label "__dostuff:" and continue. A zero is inserted into the bit0 of w5 then the level of

is flipped. The instruction "bra w2" is used to return to the major routine. That is for reducing the code si

MUST write a correct address into register w2.

In the figure13 we can see that an instruction "xor _LATU" is used to generate the signals of D+/D

"_PORTU". Flipping or remaining the level of D+/D- is controlled by the value of the register w0.

mine the token type through the bit value of "__uendpt0[0]" when the data attachment is received. If

uals "0", the current token is a "SETUP". The firmware sends an "ACK" and set "__uendpt0[1-0]" to

d by "DATA1") comes, the firmware will send an "ACK"

0]" MUST be "00" or "11" when an PID "DATA0"

bit of "__uendpt0[1-0]".

0]". When a token "SETUP" is received, the

blow the label "__isSetup:". If a data attachment marked by a

3]" if an "ACK" is responded. Please refer

starts to be sent, the firmware will clear

is an "ACK". Please refer to the codes blow

, the firmware will set the "__uendpt0[10,7-4,2-0]" according to

firmware calculates the valid byte length of the data attachment sent by the host. The

is split into six pieces. When the data is received, the register w2 points to the tail of the whole data attachment

ad is fetched into register w1 (instruction: mov _packet, w1). Then

register w1 plus 1 (instruction: com.b [++w1], w0) that means the SYNC byte is discarded. The result of "w2-w1"

subtracts the PID byte and pushes the result

HANDSHAKE is sent and it is

d. Now the value of register w2 is

When the firmware sends data attached to a token "IN", the valid byte length (0 to 8 bytes) MUST be set into

he "__ucontr0[12]" is used to indicate the PID ("DATA0" or "DATA1") of current data attachment.

HANDSHAKE "ACK" is received. The

stuff" when the firmware sends a bit stream to the host.

stuff condition" (six continuous "1") within the bit stream. If the condition is

to the label "__dostuff:" and continue. A zero is inserted into the bit0 of w5 then the level of

is flipped. The instruction "bra w2" is used to return to the major routine. That is for reducing the code size and we

In the figure13 we can see that an instruction "xor _LATU" is used to generate the signals of D+/D- through the

gister w0.

16 Yet Another Firmware Based Soft USB Device

It is a little bit different from the sending proc

cycle to fetch a new byte from memory buffer into register w3. Because the firmware always uses instruction "rrc.b [w6++],

w3" to fetch the data, there are only seven bits (bit1

That means the firmware has to prepare the NRZI code for the bit0 of next byte according to the value of SR[C] which

MUST NOT be destroyed by all instructions below "rrc.b [w6++], w3" includ

firmware doesn't prepare the return address in register w2 for the "__dostuff:" procedure of the bit0 of next byte because

three cycles are needed to form a LOOP. The return address is made up when the bit0 of n

The procedure of token "IN" is simpler than "SETUP" and "OUT". We need to notice that there is a

w1, w2" prior to the instruction "bra __SendBytes". In this instruction the register w1 is the total byte length of the data

to the host including "SYNC/PID/CRC16" and w2 is reduced by 1. That leads to an unexpected result

"__uendpt0[7-4]" will be the valid byte length of the data sent to the host

instruction with "mov #0x0003, w2" then the "__uendpt0[7

The procedure of HANDSHAKE (ACK/NAK/STALL) processing might make you to be confused. The CN interrupt

service routine exits when all data are sent to the host so a new interrupt will be triggered by the

Because the HUB always BROADCAST all data packets to all

sent to other devices will be received as well. Unfortunately there is only a PID byte and no device address

packet. I have to use the variable "__uendpt0[2

"__uendpt0[2-0]" equals "110", the handshake should be sent to me because there was a data packet just sent to the host.

<11> Token IN and HANDSHAKE from the Host

<12> API functions in module sie.s

Yet Another Firmware Based Soft USB Device

rent from the sending procedure of bit1 to bit5. When the bit6 is sent, the firmware uses the last

cycle to fetch a new byte from memory buffer into register w3. Because the firmware always uses instruction "rrc.b [w6++],

w3" to fetch the data, there are only seven bits (bit1-bit7) fetched into register w3 and bit0 is shifted into

That means the firmware has to prepare the NRZI code for the bit0 of next byte according to the value of SR[C] which

MUST NOT be destroyed by all instructions below "rrc.b [w6++], w3" including the codes of

firmware doesn't prepare the return address in register w2 for the "__dostuff:" procedure of the bit0 of next byte because

. The return address is made up when the bit0 of next byte is sent.

The procedure of token "IN" is simpler than "SETUP" and "OUT". We need to notice that there is a

w1, w2" prior to the instruction "bra __SendBytes". In this instruction the register w1 is the total byte length of the data

to the host including "SYNC/PID/CRC16" and w2 is reduced by 1. That leads to an unexpected result

4]" will be the valid byte length of the data sent to the host after all data are sent. You can replace this

instruction with "mov #0x0003, w2" then the "__uendpt0[7-4]" will be zero at the end of data sending.

(ACK/NAK/STALL) processing might make you to be confused. The CN interrupt

service routine exits when all data are sent to the host so a new interrupt will be triggered by the

all data packets to all devices connected at the downstream port

sent to other devices will be received as well. Unfortunately there is only a PID byte and no device address

. I have to use the variable "__uendpt0[2-0]" as a flag to determine which handshake is sent to my dev

0]" equals "110", the handshake should be sent to me because there was a data packet just sent to the host.

<11> Token IN and HANDSHAKE from the Host

<12> API functions in module sie.s

dure of bit1 to bit5. When the bit6 is sent, the firmware uses the last

cycle to fetch a new byte from memory buffer into register w3. Because the firmware always uses instruction "rrc.b [w6++],

fetched into register w3 and bit0 is shifted into register SR[C].

That means the firmware has to prepare the NRZI code for the bit0 of next byte according to the value of SR[C] which

codes of procedure "__dostuff:". The

firmware doesn't prepare the return address in register w2 for the "__dostuff:" procedure of the bit0 of next byte because

ext byte is sent.

The procedure of token "IN" is simpler than "SETUP" and "OUT". We need to notice that there is an instruction "dec

w1, w2" prior to the instruction "bra __SendBytes". In this instruction the register w1 is the total byte length of the data sent

to the host including "SYNC/PID/CRC16" and w2 is reduced by 1. That leads to an unexpected result -- the variable

all data are sent. You can replace this

4]" will be zero at the end of data sending.

(ACK/NAK/STALL) processing might make you to be confused. The CN interrupt

service routine exits when all data are sent to the host so a new interrupt will be triggered by the handshake of the host.

devices connected at the downstream ports, the handshakes

sent to other devices will be received as well. Unfortunately there is only a PID byte and no device address in the handshake

ine which handshake is sent to my device. If the

0]" equals "110", the handshake should be sent to me because there was a data packet just sent to the host.

17 Yet Another Firmware Based Soft USB Device

If you want to coding base on the module "sie.s" but with C language, you can use the variable "__uendpt0" and

"__ucontr0" directly. However, I highly recommend use the API functions built in the module "sie.s". There are seven API

functions total and their C prototypes are listed below with a minor manual.

- BYTE _usbGetSetup(BYTE * setup); /* Fetch the data attached to the token SETUP */

The parameter "setup" is a pointer which will be written into register w0 when the function is called. The length of the

buffer pointed by "setup" MUST be equal or greater than eight bytes. The parameter "setup" is allowed to point to an odd

address. When it equals NULL, this API function will return a zero directly. This API function will copy eight bytes into the

memory buffer pointed by "setup" when a token "SETUP" and its data attachment is received in advance or just return zero

if the current token isn't "SETUP". You should poll this API function in the main task loop of your code.

- void _usbLoadData(BYTE * _data, BYTE length); /* Upload the data to be sent to the host */

The pointer parameter "_data" MUST point to a buffer in which the data packet stored. This parameter will be written

into register w0 by the C compiler. It is allowed to point to an odd address or to be NULL. The byte parameter "length"

indicates the valid data length in bytes and will be written into register w1 by the C compiler. It MUST be equal or less than

eight. When "_data" equals NULL and "length" equals to zero, an "empty packet" will be sent to the host. The PID (DATA0

or DAT1) of the packet is determined according to the previous packet. This API function doesn't return until an "ACK" is

received from the host and it doesn't have a strategy to deal with "time out".

- BYTE _usbReadData(BYTE * _data, BYTE length); /* Fetch the data attached to the token OUT */

The pointer parameter "_data" MUST point to a buffer which is used to store the data. It will be written into register

w0 by the C compiler. It is allowed to point to an odd address or to be NULL. When it equals NULL, the byte parameter

"length" MUST be zero or the API function will return "-1" directly. The byte parameter "length" indicates the byte length

of the buffer and it will be written into register w1 by the C compiler. When the "length" equals zero, this API function will

wait an "empty packet" sent by the host led with whatever "DATA0" or "DATA1". When the "_data" is not NULL, the

parameter "length" will be compared with the real data length sent by the host and fill the buffer with minimum bytes. The

unfilled buffer will keep the initial value.

- void _usbSendZLP(void); /* Send an empty packet with PID "DATA1" to the host */

In the "Status" stage of a "Control-write" sequence, you can invoke this API function to complete the current

transmission. If you want to send an empty packet which isn't led by a particular PID "DATA1", you MUST invoke the

function "_usbLoadData" with parameter "(NULL, 0)".

- void _usbWaitZLP(void); /* Waiting an empty packet sent by the host */

This function equals "_usbReadData(NULL,0)" and could be used in the final "Status" stage of a "Control-read"

sequence. It doesn't matter that the PID of this empty packet is "DATA0" or "DATA1".

- void _usbSetAddress(BYTE a) /* Invoke me when you receive the new device address assigned by the host */

The byte parameter "a" MUST be the new address from the host. It will be written into register w0 by the C compiler.

There are two things to be done in this function. First, the function "_usbSendZLP" will be invoked automatically to

complete the current "Control-write" sequence. Second, the variable "_addr" is replaced with the new value of parameter

"a".

- void _usbSetConfig(BYTE c); /* Invoke me when you receive the new configuration assigned by the host */

The byte parameter "c" MUST be the new configuration and it will be written into the register w0 by the C compiler.

18 Yet Another Firmware Based Soft USB Device

The variable "_conf" will be replaced with the new value of parameter "c" and the function "_usbSendZLP()" will be

invoked automatically to complete the current "Control-write" sequence.

In this version of the firmware I didn't verify the CRC5 code bound on each TOKEN. I found a rapid CRC5 algorithm

on the Internet -- https://www.michael-joost.de/crc5check.pdf -- and you may try to convert this piece of code from AVR

assembly into dsPIC33 assembly. There is another regular algorithm -- http://janaxelson.com/files/usb_crc.c.

The practical algorithm of CRC16 in my project comes from a thread which was posted on Microchip's forum --

https://www.microchip.com/forums/m603309.aspx. This CRC16 algorithm is used for not only USB but also other

communication protocols. For example, the "Modbus" which is mentioned in this thread. There is another rapid CRC16

algorithm published at https://www.modbustools.com/modbus_crc16.html but it hasn't been tested in my project.

I made a little bit modification to the source code posted by "flamewatcher" in order to adapt to the 16bit dsPIC33. The

C source code is listed below and reimplemented with assembly language in my project. In the source file "sie.s", the code

below the label "__CRC16:" calculates the CRC code and simultaneously copy the data into buffer "__datay".

unsigned short _ComputeCRC16(const unsigned short * buf, int len)

{

 int j;

 unsigned char i;

<13> CRC5 and CRC16 Algorithm

19 Yet Another Firmware Based Soft USB Device

 unsigned short crc = 0xffff; //seed

 for (j = 0; j < len; j++)

 {

 unsigned short b = buf[j];

 for (i = 0; i < 16; i++)

 {

 crc = ((b ^ (unsigned short)crc) & 1) ? ((crc >> 1) ^ 0xA001) : (crc >> 1);

 b >>= 1;

 }

 }

 return crc;

}

It's allowed to connect multiple devices with a HUB on the USB bus. Different type of device has different demand of

transmission. For example, the size of data transmitted from a keyboard is very small but MUST be transmitted opportunely

when a key is pressed. Because the data transmission is always launched by the host but not the device, the keyboard

requires the host to launch transmission automatically in a specific interval. Another example is USB sound card. A stereo

music which is played at 44.1KHz sample rate needs 44100x2x2 bytes per second. It's not too much and the host MUST

send enough bytes within one second to avoid clicking. An USB mass storage device requires the host to send data as much

as possible within one frame. Because of the limitation of bandwidth there must be a strategy to assign proper bandwidth for

different device. Please refer to the section 4.7 on page 34 and section 5.4 - 5.8 on page 20 - 34 of USB2.0 Specification.

There are four types of transmission defined by USB2.0 Specification. The first one is "Bulk Transmission". It will be

arranged into every frame as much as possible. USB mass storage devices should use this type of transmission. The second

one is "Isochronous Transmission". A prenegotiated amount of USB bandwidth will be occupied for it with a prenegotiated

delivery latency. It's used for USB audio/video devices. The third one is "Interrupt Transmission". It will be launched in a

prenegotiated interval by the host. It's proper for USB mouse and keyboard. The last one is "Control Transmission". It's used

to configure a device or transmit small amount of data. Minimum bandwidth is allocated for this type of transmission.

Please refer to the section 4.7 on page 20 and section 8.5.2 to 8.5.5 on page 221 of USB2.0 Specification.

The devices declare the types of transmission that they need by reporting the "endpoints" they own to the host. An

"endpoint" is represented by a 4bit digit which is called "endpoint address" and assigned a memory buffer. Assume that

there is a device which needs to transmit data with "Bulk Transmission". It should allocate a memory buffer with 64 bytes

length and report an endpoint address to the host. It MUST report some extra information about this endpoint address

including "type of transmission" and "transmission direction" and "buffer length" etc. The host will allocate enough

bandwidth for this endpoint according to this information. We should notice that every device MUST have an endpoint with

address ZERO and only the "Control transmission" is allowed through this endpoint. All other endpoints are optional. Please

refer to the section 5.3.1 on page 33 of USB2.0 Specification.

There are some devices which have multiple functions. For example, a keyboard combined with a touch panel is a

composite device of keyboard and mouse. It has multiple endpoints to be assigned to the two functions. The keyboard

function uses endpoint 2 & 3 and the mouse function uses endpoint 4 & 5. The endpoint 2 & 3 makes an "interface" for the

keyboard and endpoint 4 & 5 makes another interface for the mouse. The interfaces can be merged into a group which is

<14> Hints about Module usb.c

20 Yet Another Firmware Based Soft USB Device

called a "Configuration". The host activate

interface when the device is plugged into the USB port

interfaces.

"Device/Configurations/Interfaces/Endpoints" are defined by a data structure which is called "Descriptor". There must

be a "Device" descriptor built in a device with single or multiple "Co

device is plugged into the host or hub, the device descriptor will be fetched first then the configuration/interface/endpoint

descriptor.

In the "Device" and "Interface" descriptor there is a member whi

predefined function such as keyboard and mouse and

predefined class code in descriptors. The host will know how to communicate with these device

a driver for the host to support the device.

In most of device the class code in the

descriptor. Some devices have their class code defined in devic

are listed on https://www.usb.org/defined-

inserted between the interface descriptor and the endpoint descriptor.

My project is a "HID" (Human Interface Device) device. There are some "subclass" predefined under this class and

"protocol" predefined under a "subclass". I didn't use any "subclass" a

device. Basic data communication could be supported by the host but the host doesn't concern the "meaning" of these data.

The communication between the host and

which is split into small data elements. The bit width of a data element and the usage and value scope are defined by the

device in a "Report Descriptor". Please refer to the section 5.2

Specification.

When a device is plugged into the host or HUB, the initial device address is 0. The host fetch

a group of "Control Transfer" which are sent to "endpoint 0" and "address 0". The first token "SE

usually "0x80 0x06 0x00 0x01 0x00 0x00 0x40 0x00". (Please refer to the section 9.3 and 9.4 on page 248 of USB2.0

Yet Another Firmware Based Soft USB Device

ates a configuration and transmits data through endpoints which belongs to an

when the device is plugged into the USB port. A complete device is formed with a bunch of configuration and its

"Device/Configurations/Interfaces/Endpoints" are defined by a data structure which is called "Descriptor". There must

be a "Device" descriptor built in a device with single or multiple "Configuration/Interface/Endpoint" descriptors. When the

, the device descriptor will be fetched first then the configuration/interface/endpoint

In the "Device" and "Interface" descriptor there is a member which is called "Class".

predefined function such as keyboard and mouse and USB disc etc. When we design these types of device we can declare a

predefined class code in descriptors. The host will know how to communicate with these device

in the device descriptor is usually zero and device class is defined by the interface

descriptor. Some devices have their class code defined in device descriptor but it is not common. All predefined class codes

-class-codes. There is a specific descriptor for each predefined device class. It is

inserted between the interface descriptor and the endpoint descriptor.

My project is a "HID" (Human Interface Device) device. There are some "subclass" predefined under this class and

"protocol" predefined under a "subclass". I didn't use any "subclass" and "protocol". That means my project is a custom HID

device. Basic data communication could be supported by the host but the host doesn't concern the "meaning" of these data.

The communication between the host and HID device is organized into a bunch of "Report". A "Report" is a bit stream

which is split into small data elements. The bit width of a data element and the usage and value scope are defined by the

device in a "Report Descriptor". Please refer to the section 5.2 - 5.6 on page 14 and section 6.2.2

When a device is plugged into the host or HUB, the initial device address is 0. The host fetch

a group of "Control Transfer" which are sent to "endpoint 0" and "address 0". The first token "SE

usually "0x80 0x06 0x00 0x01 0x00 0x00 0x40 0x00". (Please refer to the section 9.3 and 9.4 on page 248 of USB2.0

data through endpoints which belongs to an

evice is formed with a bunch of configuration and its

"Device/Configurations/Interfaces/Endpoints" are defined by a data structure which is called "Descriptor". There must

nfiguration/Interface/Endpoint" descriptors. When the

, the device descriptor will be fetched first then the configuration/interface/endpoint

ch is called "Class". Some USB devices have

disc etc. When we design these types of device we can declare a

predefined class code in descriptors. The host will know how to communicate with these devices and we don’t have to build

device descriptor is usually zero and device class is defined by the interface

e descriptor but it is not common. All predefined class codes

. There is a specific descriptor for each predefined device class. It is

My project is a "HID" (Human Interface Device) device. There are some "subclass" predefined under this class and

nd "protocol". That means my project is a custom HID

device. Basic data communication could be supported by the host but the host doesn't concern the "meaning" of these data.

eport". A "Report" is a bit stream

which is split into small data elements. The bit width of a data element and the usage and value scope are defined by the

5.6 on page 14 and section 6.2.2 on page 23 of HID1.11

When a device is plugged into the host or HUB, the initial device address is 0. The host fetches all descriptors through

a group of "Control Transfer" which are sent to "endpoint 0" and "address 0". The first token "SETUP" and the data is

usually "0x80 0x06 0x00 0x01 0x00 0x00 0x40 0x00". (Please refer to the section 9.3 and 9.4 on page 248 of USB2.0

21 Yet Another Firmware Based Soft USB Device

Specification.) The first two bytes is a command which means "Get Descriptor". The next two bytes indicates that a "Device

Descriptor" will be fetched. The last two bytes is the byte length required by the host. In this example, the last two bytes is

"0x40 0x00". That means the host wants to get "0x0040" bytes from the device. Following the token "SETUP" there are

series of token "IN". Because the data attached to token "SETUP" is transmitted via "DATA0", the data of the first token

"IN" has to be transmitted via "DATA1". The device has to split all data into small pieces according to the buffer length of

endpoint 0. The host will repeatedly send token "IN" and the data PID is alternately switched between "DATA0" and

"DATA1" until all data are sent by the device. At the end of the transmission the host sends a token "OUT" and a "ZLP"

(zero length data attachment) with PID "DATA1" to the device. With that "ZLP" the complete data interaction is end up.

A critical problem is how the host knows all data has been sent by the device. The strategy is listed below.

- a. The host submits a maximum length to the device. Such as "0x0040" quoted above.

- b. If the real data length in device is longer than the maximum value submitted by the host, the device just sends

part of data that fulfill the requirement of the host. Data remainder has to be discarded. Then the transmission will be

ended automatically by the host.

- c. if the real data length in device is shorter than the maximum value submitted by the host, the device should

send all data to the host. If the length of the last data block equals the buffer length of endpoint, An extra zero length

data packet has to be sent to the host. The transmission will be ended when the host receives the "ZLP". The PID of this

"ZLP" might be "DATA0" or "DATA1" and following the previous data packet.

This transmission consisted with a "SETUP" and a series of "IN" and a "OUT" with a "ZLP" as "DATA1" is called

"Control Read" sequence. Another similar sequence is "Control Write", which consists with a "SETUP" and a series of

"OUT" and a "IN" with a "ZLP" as "DATA1". The "Control Write" sequence is a little bit simpler because the host knows

the real data length and will generate proper numbers of token "OUT". The device should send a "ZLP" as "DATA1" to the

host when all data has been received.

The data stage (a series of "IN" or "OUT") is optional. Sometimes there isn't any data need to be sent. For example,

when a new device address is allocated by the host, the host will send a token "SETUP" with 8 bytes data "0x00 0x05 0x03

0x00 0x00 0x00 0x00 0x00" to the initial device address 0. The first two bytes means "Set Address" and the third byte

"0x03" is the value of new address. The last two bytes is "0x0000" that means there isn't any data sent to the device. The

device just sends a "ZLP" as "DATA1" to complete this transmission.

There is a tiny trick in this interaction. The host sends a token "IN" at the end of transmission to obtain the "ZLP" as

"DATA1". The device address in this token is still the initial value zero. The device MUST receive this token "IN" first and

send the "ZLP" to the host then renew the device address when an "ACK" is sent by the host.

In the source file "usb.c" there is a group of descriptors and four API functions. All three types of HID reports

(Input/Output/Feature) are activated by the "HID_ReportDescriptor" and all of them are 64 bytes length. I set two strings

index in the "USB_DeviceDescriptor" which are used to index the "Manufacture String" and "Product String". These two

strings will be displayed on some host platform when the device is plugged.

The four API functions prototype are listed below:

- void USB_vInit(void); /* Power On Initialization */

<15> API functions in Module usb.c

22 Yet Another Firmware Based Soft USB Device

It's not implemented so far.

- BYTE USB_bRxRequest(void* Request); /* Fetch eight bytes data attached to token SETUP

 and process some standard requests */

The pointer parameter "Request" is NOT allowed to be NULL. Only three standard requests are handled by this

function -- Get Descriptor (Request[1] == 0x06), Set Device Address (Request[1] == 0x05) and Set Configuration

(Request[0] == 0x00 && Request[1] == 0x09). Two standard requests defined in HID1.11 Specification -- Set Report

(Request[0] == 0x21 && Request[1] == 0x09) and Get Report (Request[0] == 0xA1 && Request[1] == 0x01) are NOT

handled and directly return "USB_REQ_SETUP" to the caller. An extra request -- Set Idle (Request[0] == 0x21 &&

Request[1] == 0x0A) -- which might be sent on some LINUX platform, is NOT handled and return "USB_REQ_SETUP" as

well.

- BYTE USB_bGetCtrlData(BYTE * dat, WORD siz, WORD exLength); /* Fetch all data attachment

 of token OUT after SETUP */

The pointer parameter "dat" indicates the buffer and is NOT allowed to be NULL. The parameter "siz" indicates the

byte length of the buffer. The third parameter "exLength" indicates the expected length defined in the data attachment of

token SETUP. When the function "USB_bRxRequest" is invoked, the "exLength" is represented by "Request[6]" and

"Request[7]".

When the parameter "siz" is equal or greater than the parameter "exLength", all data attached to token OUT will be

handled and a "ZLP" will be sent to the host by this function. When the parameter "siz" is less than "exLength", the data

will not be handled correctly but no buffer overflow error generated.

The return value is the total bytes received from the host.

- BYTE USB_bSendCtrlData(BYTE* dat, WORD siz, WORD exLength); /* Send data to the host via Control

 Read sequence */

The pointer parameter "dat" points to the buffer in which the data is stored. It is allowed to be NULL. When "dat"

equals NULL, the parameters "siz" and "exLength" MUST be set to zero simultaneously. The parameter "siz" is allowed to

be zero and "exLength" MUST be zero simultaneously. The parameter "exLength" is the expected length defined in the data

attachment of token "SETUP". When the "siz" and "exLength" are all zero, a "ZLP" as "DATA1" will be sent to the host.

When "siz" is less than "exLength" and equals times that of "MAX_PACKET_SIZE", an extra "ZLP" will be sent to the

host as the tail block of data. After all data sending, the "ZLP" as "DATA1" from the host will be waiting for. The return

value is the length of the last data block.

There are two ways to send a report to a HID device on WINDOWS platform. First, invoke the WINDOWS API

function "HidD_SetFeature" to send a "Feature Report" to the device through a "Control Write" sequence. Second, invoke

the other WINDOWS API function "HidD_SetOutputReport" to send an "Output Report" to the device through the

"Interrupt Transmission". If the device doesn't have "Interrupt Endpoint", the "Output Report" will be sent through a

"Control Write" sequence as well. The device will receive 8 bytes data attachment of token "SETUP" as "0x21 0x09 0x00

0x03 0x00 0x00 0x40 0x00" when the function "HidD_SetFeature" is invoked. If the function "HidD_SetOutputReport" is

invoked, the 8 bytes should be "0x21 0x09 0x00 0x02 0x00 0x00 0x40 0x00". For more details of these WINDOWS API

please refer to https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/hidsdi/.

<16> Hints about Module hid.c

23 Yet Another Firmware Based Soft USB Device

There are also two ways to receive reports from the device. We can invoke the WINDOWS API function

"HidD_GetFeature" to receive a "Feature Report" from a HID device. When this function is invoked a token "SETUP" and

data attachment "0xA1 0x01 0x00 0x03 0x00 0x00 0x40 0x00" will be sent to the device. Another WINDOWS API

function "HidD_GetInputReport" can be invoked to read "Input Report" from a HID device through the "Interrupt

Transmission". If there isn't any interrupt endpoint in the device, this function will read data via a "Control Read" sequence

and the data packet of token "SETUP" is "0xA1 0x01 0x00 0x01 0x00 0x00 0x40 0x00". Please refer to the section 7.2 on

page 50 of HID1.11 Specification.

If the host invokes "HidD_SetFeature" to send 64 bytes to the device, the bitwise complement of all bytes will be

calculated and stored in a buffer. These bytes will be sent back to the host when the function "HidD_GetFeature" is invoked

by the host. The first two bytes sent by the host are used as a counter in a loop which simulates a simple task launched by

the device. After the loop ending the device will process the token "SETUP" generated by the function "HidD_GetFeature".

That means if the host sends some random bytes to the device, the firmware running inside the device will delay for a

random period then send back the bitwise complements. If the host calls "HidD_SetOutputReport" to send data to the device,

all data will be send back as their original form without any delay.

There is a global variable "State" defined in the module "hid.c". The value of "State" is "COMMAND" when the data

from the host is received and "RESPONSE" when the data sent back is ready. If the host invokes "HidD_GetFeature" to

read data from the device when the value of "State" is "COMMAND" still, a "ZLP" will be sent back to the host. We can

return some specific data to the host to indicate that the real data isn't ready so the host is allowed to poll the data in a loop.

Unfortunately it doesn't work because the module "sie.s" can NOT generate an interrupt when a token "SETUP" is received.

In another words, the processing of token "SETUP" in the module "hid.c" is NOT in real time.

- void HID_vInit(BYTE Mode); /* Initialization when power on and chip reset */

The parameter "Mode" is used to indicate the reason of reset. It's "power on reset" or "software reset" or "watch dog

reset" etc.

- BYTE HID_bRxRequest(void * Req, WORD siz); /* Handle some requests defined in HID1.11 Specification */

The pointer parameter "Req" points to a buffer with byte length indicated by the parameter "siz". If the "Req" is valid

and "siz" equals 2, the first two bytes received from the host will be put into the buffer and the return value is "1" that means

the data in the buffer "Req" is valid. If the return value is "0" that means there isn't any valid data returned through the

buffer "Req".

- BYTE HID_bTxResult(void * dat, WORD siz); /* Return a data packet to the host */

The parameter "dat" points a buffer in which the data packet is stored. The parameter "siz" is the byte length of the data

packet. So far this function is only used to set the value of global variable "State" and return "1" to the caller directly. All

data interaction is implemented within the module "hid.c".

The module "main.c" is very simple. The function "setup" is called by the module "sie.s" when the chip is powered on

and reset. The function "loop" is the major task loop in that there is a short type variable "Req" which will be used as a

<17> API functions in Module hid.c

<18> main.c

24 Yet Another Firmware Based Soft USB Device

counter in a loop. The value of "Req" is set with the first two bytes of data received from the host when the function

"HID_bRxRequest" is called. The LED is lighted up before the loop and turned off when the loop starts. We will know the

period of the loop through the state of the LED.

25 Yet Another Firmware Based Soft USB Device

Known BUG

When the device is plugged into an USB HUB, the communication fails occasionally when the host sends data to the

device. The frequency of failure is related to the data sent by the host. Specifically if the host sends random data to the

device repeatedly, the frequency of failure is very low. If the host sends all bytes with same value, such as 64 bytes 0xFF,

the frequency of failure is higher. This bug is triggered only when the device is connected to a HUB. It's never been

triggered when the device is connected to the host directly.

